Simulation of a Multiple Input Multiple Output (MIMO) wireless system

John Fitzpatrick
TC4
52140938
April 2004

B.Eng
IN
Telecommunications Engineering

Supervised by Dr. Conor Brennan
Acknowledgements

I would like to thank my supervisor Dr. Conor Brennan for his guidance, assistance and approachability throughout this project. I would also like to thank John Diskin for his work on the ray tracing program. Finally I would like to thank my parents and Laura for their support throughout my project.

Declaration

I hereby declare that, except where otherwise indicated, this document is entirely my own work and has not been submitted in whole or in part to any other university.

Signed: .. Date:

ii
Abstract

This project explores the development of a multiple input multiple output (MIMO) simulator using ray tracing techniques. This project gives an overview of ray tracing techniques, beamforming, MIMO channel models and MIMO systems. It explains the ability of MIMO systems to offer significant capacity increases over traditional wireless systems, by exploiting the phenomenon of multipath. By modelling high frequency radio waves as travelling along localized linear trajectory paths, they can be approximated as rays, just as in optics.

The radio environment is then represented using a ray tracing C++ program. I highlight some of the different approaches used to realize a MIMO system, the most important being the Singular Value Decomposition (SVD). I illustrate the development of the MIMO simulator, through explanations of the techniques and algorithms I developed and used. These algorithms model the system under ideal conditions with no noise distortions. I show the use of the MIMO simulator created, and investigate the MIMO channel. The results obtained show the affects of changing the different parameters of the system on the MIMO channel and the radio environment.

Finally, in the conclusion, I discuss the future of MIMO systems and recommend further modifications, which could be made to the MIMO simulator, to create a more accurate and efficient system.
Table Of Contents

CHAPTER 1 - INTRODUCTION ... 1

CHAPTER 2 - TECHNICAL BACKGROUND... 2

 2.1 MULTIPATH .. 3
 2.2 RAY TRACING ... 3
 2.3 BEAMFORMING .. 4
 2.4 LINEAR ARRAYS .. 6
 2.5 MIMO .. 7
 2.5.1 MIMO Transmission .. 8
 2.5.2 The MIMO Channel H .. 9
 2.6 GAUSSIAN ELIMINATION ... 10
 2.7 SINGULAR VALUE DECOMPOSITION (SVD) ... 12

CHAPTER 3 – IMPLEMENTATION OF RAY TRACING .. 13

 3.1 RAY TRACING ... 14
 3.1.2 The ray tracing program .. 14
 3.2 CONVERGENCE OF ORDER ... 26

CHAPTER 4 - IMPLEMENTATION OF MIMO SIMULATOR 30

 4.1 GAUSSIAN ELIMINATION ... 30
 4.2 SVD .. 33
 4.2.1 Operation of the SVD algorithm ... 33
 4.2.2 Matlab SVD ... 35
 4.3 FURTHER MODIFICATIONS TO THE RAY TRACING PROGRAM 39
 4.4 PLOTTING THE RESULTS ... 40
 4.5 THE MIMO SIMULATOR .. 41
 4.5.1 MIMO simulator users guide ... 43

CHAPTER 5 – RESULTS ... 46

 5.1 SVD IN FREESPACE ... 46
 5.2 NUMBER OF ELEMENTS IN AN ARRAY ... 49
5.3 Dielectric Parameters and Corridor Model .. 51

CHAPTER 6 - CONCLUSIONS AND FURTHER RESEARCH 55

Matlab code for Beamforming ... 58
C++ Gaussian Elimination Code ... 60
Matlab Singular Value Decomposition (SVD) Code 64
Matlab ‘mimo’ Code ... 66
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 2-1</td>
<td>MULTIPATH ENVIRONMENT</td>
<td>3</td>
</tr>
<tr>
<td>FIGURE 2-2</td>
<td>SIMO SYSTEM</td>
<td>5</td>
</tr>
<tr>
<td>FIGURE 2-3</td>
<td>LINEAR BEAMFORMING ARRAY</td>
<td>6</td>
</tr>
<tr>
<td>FIGURE 2-4</td>
<td>BEAMFORMING</td>
<td>7</td>
</tr>
<tr>
<td>FIGURE 2-5</td>
<td>THREE ELEMENT MIMO SYSTEM</td>
<td>8</td>
</tr>
<tr>
<td>FIGURE 2-6</td>
<td>DATA TRANSMISSION IN MIMO SYSTEM</td>
<td>8</td>
</tr>
<tr>
<td>FIGURE 3-1</td>
<td>BUILDING STRUCTURE</td>
<td>15</td>
</tr>
<tr>
<td>FIGURE 3-2</td>
<td>OBLONG (WALL)</td>
<td>16</td>
</tr>
<tr>
<td>FIGURE 3-3</td>
<td>FACE</td>
<td>17</td>
</tr>
<tr>
<td>FIGURE 3-4</td>
<td>RAY NODES</td>
<td>19</td>
</tr>
<tr>
<td>FIGURE 3-5</td>
<td>DIRECT RAY</td>
<td>20</td>
</tr>
<tr>
<td>FIGURE 3-6</td>
<td>FIRST ORDER IMAGE</td>
<td>21</td>
</tr>
<tr>
<td>FIGURE 3-7</td>
<td>FINDING REFLECTION POINTS</td>
<td>22</td>
</tr>
<tr>
<td>FIGURE 3-8</td>
<td>FINDING THE REFLECTION POINT</td>
<td>25</td>
</tr>
<tr>
<td>FIGURE 3-9</td>
<td>SAMPLE POINTS FOR CONVERGENCE</td>
<td>27</td>
</tr>
<tr>
<td>FIGURE 3-10</td>
<td>CONVERGENCE GRAPH, BLUE = 1ST, RED = 2ND, GREEN 3RD ORDER</td>
<td>27</td>
</tr>
<tr>
<td>FIGURE 3-11</td>
<td>2D PLOT OF 4TH ORDER ROOM WITH 6 WALLS</td>
<td>28</td>
</tr>
<tr>
<td>FIGURE 3-12</td>
<td>3D PLOT OF 4TH ORDER ROOM WITH 6 WALLS</td>
<td>29</td>
</tr>
<tr>
<td>FIGURE 4-1</td>
<td>SCREENSHOT OF GAUSSIAN ELIMINATION PROGRAM</td>
<td>32</td>
</tr>
<tr>
<td>FIGURE 4-2</td>
<td>SCREENSHOT OF C++ SVD PROGRAM</td>
<td>34</td>
</tr>
<tr>
<td>FIGURE 4-3</td>
<td>SCREENSHOT OF RAY TRACING PROGRAM</td>
<td>43</td>
</tr>
<tr>
<td>FIGURE 4-4</td>
<td>SCREENSHOT “PLEASE ENTER ORDER”</td>
<td>43</td>
</tr>
<tr>
<td>FIGURE 4-5</td>
<td>SCREENSHOT “PLEASE RUN ‘MYSVD’ ”</td>
<td>44</td>
</tr>
<tr>
<td>FIGURE 4-6</td>
<td>SCREENSHOT “PLEASE RUN ‘MIMO’”</td>
<td>44</td>
</tr>
<tr>
<td>FIGURE 4-7</td>
<td>RESULT OF RAY TRACING PROGRAM, TX ANTENNA IN FREESPACE</td>
<td>45</td>
</tr>
<tr>
<td>FIGURE 4-8</td>
<td>RESULT OF RAY TRACING PROGRAM, RX ANTENNA IN FREESPACE</td>
<td>45</td>
</tr>
<tr>
<td>FIGURE 5-1</td>
<td>TX FREESPACE ANTENNA GAIN PLOT</td>
<td>46</td>
</tr>
<tr>
<td>FIGURE 5-2</td>
<td>RX FREESPACE ANTENNA GAIN PLOT</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE 5-3</td>
<td>TX FREESPACE ANTENNA GAIN PLOT WITH ANTENNA SHIFTED UP</td>
<td>48</td>
</tr>
<tr>
<td>FIGURE 5-4</td>
<td>RX FREESPACE ANTENNA GAIN PLOT WITH ANTENNA SHIFTED UP</td>
<td>48</td>
</tr>
<tr>
<td>FIGURE 5-5</td>
<td>3 ELEMENT ANTENNA ARRAY</td>
<td>49</td>
</tr>
<tr>
<td>FIGURE 5-6</td>
<td>5 ELEMENT ANTENNA ARRAY</td>
<td>50</td>
</tr>
<tr>
<td>FIGURE 5-7</td>
<td>7 ELEMENT ANTENNA ARRAY</td>
<td>50</td>
</tr>
<tr>
<td>FIGURE 5-8</td>
<td>TX CORRIDOR MODEL</td>
<td>52</td>
</tr>
<tr>
<td>FIGURE 5-9</td>
<td>RX CORRIDOR MODEL</td>
<td>52</td>
</tr>
</tbody>
</table>
Chapter 1 - Introduction

In the modern era of communications, the ability to send large volumes of data is crucial. With the increasing use of wireless LAN technology and third generation mobile telephony systems, the demand for data services has never been greater. The bandwidth of wireless communication systems is often limited by the cost of the radio spectrum required. Any increase in bit rate, which can be realised without increasing the bandwidth, makes the system more spectrally efficient and less costly. Traditional wireless communication systems have been made more spectrally efficient through the use of clever coding techniques and algorithms. However, the fundamental bandwidth limitation does not change. Multiple Input Multiple Output (MIMO) communication systems have been an increasingly hot topic of research over the past eight years, due to their ability to greatly increase spectral efficiencies.

As opposed to traditional wireless systems, in which there is one transmitting and one receiving antenna, MIMO systems use arrays of multiple antennas at both ends of the communication link, all operating at the same frequency at the same time. This introduces spatial diversity into the system, which can be used to tackle the problem of multipath. In wireless communications system, such as point to point radio links, radio waves do not simply propagate from the transmit antenna to the receive antenna. Rather they bounce and scatter off objects, this effect is known as multipath. This effect is regarded as an impediment to the accurate transmission of data in traditional wireless links. MIMO systems exploit multipath by using the rich scattering environment to increase the spectral efficiency of the wireless system.

The modelling of radio waves on a large scale can be very complex. There is however, a simplification. At high frequencies radio waves can be approximated as travelling along localized paths. This is similar to the geometrical treatment of light rays in optics. Using ray tracing methods, complex radio environments can be modelled.

The use of numerical techniques is crucial to the operation of MIMO systems. Algorithms and signal processing at both ends of a MIMO wireless link are crucial to encode and
decode the data. The most important numerical method in MIMO systems is Singular Value Decomposition (SVD). This allows the complex path, which exists between transmitter and receiver to be analysed and simplified.

By combining the above techniques it was the aim of this project to develop a fully operational MIMO simulator. The simulator needed to model indoor radio environments and be easy to use.

Chapter 2 - Technical Background
In wireless communications systems, such as point-to-point radio links, radio waves do not simply propagate from the transmit antenna to the receive antenna. Rather, they bounce and scatter off objects. This effect is known as multipath. When the radio waves strike an object in the environment, they scatter randomly as can be seen in Figure 2.1. This is also known as independent Rayleigh scattering. The red line shows the direct propagation path, whereas the many blue lines show the multiple propagation paths produced by multipath.

Figure 2-1 MultiPath Environment

2.1 Multipath

Multipath results in multiple copies of the same transmitted signal arriving at the receiver, at different times. As they arrive at different times they have varying phase delays, which can result in scattered signals combining destructively at the receiver producing destructive interference and fading. To carry out any simulation, the multipath environment needs to be modelled. This is done using ray tracing.

2.2 Ray tracing

The radio environment was modelled using ray tracing. Ray tracing was initially developed in the field of computer graphics to produce photorealistic computer generated images. Ray tracing operates by calculating the path taken by a ray of light from a light source to the point of interest. At frequencies greater than approximately 900MHz, radio waves can be described as travelling along localized ray paths (i.e. approximately a straight line). The
reasoning behind treating the waves as having linear trajectories stems from Maxwell’s equations.

At high frequencies a more simple method can be used for handling electromagnetics. These are known as asymptotic methods, more specifically Lumberg-Kline asymptotic expansions. These are methods of simplification for the solution to Maxwell’s equations.

\[
H(r, \omega) \approx e^{-j\psi(r)} \sum_{n=0}^{\infty} \frac{H_n(r)}{(j\omega)^n}
\]

\[
E(r, \omega) \approx e^{-j\psi(r)} \sum_{n=0}^{\infty} \frac{E_n(r)}{(j\omega)^n}
\]

Most of the variables in these equations such as the phase function part are of very complicated and I did not delve into their origin. Asymptotic methods are methods for expanding functions, evaluating integrals, and solving differential equations, which become increasingly accurate as some parameter approaches a limiting value [12]. The term of interest is the frequency term \(\omega\). As the frequency approaches zero, only the first term of the summation of both the electric field and magnetic field remain. This first term is called the geometrical optics field as it encompasses the classical geometric optics field characteristics [12]. Using the first term, the geometrical optics field, it can be shown how it behaves as a ray, which is infinitesimal in width. I did not go into any more detail on this but for further information please see the noted reference.

For this reason ray tracing can be used as a method for the simulation and approximation of radio wave propagation at high frequencies. The ray tracing of radio waves operates in the same manner as optical ray tracing, where transmitters replace light sources and the points of interest are the receivers.

2.3 Beamforming

One solution to the problem of Multipath is to use directional antennas with a single antenna at either end. Though these will only work if both ends of the link are static, if the receiver or transmitter is mobile then motor driven directional antennas to rotate the transmitter can
be used. However this is not very practical on a small scale. Another solution is to use multiple antennas at either the transmitting or receiving end of a link, to accomplish what is known as beamforming. Beamforming techniques were originally developed for applications in radar and sonar systems. Using multiple antennas introduces spatial diversity into the system. These antennas are also known as ‘smart antennas’. Spatial diversity is based upon the fact that two signals detached in space exhibit independent fading in the radio channel [3].

Figure 2.2 below, shows a smart antenna system with multiple antennas at one end of the link. These systems are also known as SIMO (single-input multiple output). Originally multiple antennas were placed at the receivers to introduce spatial diversity. This proved to be too costly and inefficient and the multiple antennas were then placed at the transmitters.

Figure 2-2 SIMO System

Figure 2.2 above, shows a SIMO system operating in a simple modelled room with six walls. In this case there is one transmitting antenna and three receive antennas. The idea behind this system is that the probability of not being able to successfully detect a signal, due to destructive interference, decreases exponentially with the number of antennas used in a linear array.
2.4 Linear arrays

Beamforming can be accomplished by using many different types of arrays, such as linear, circular and planar arrays. I will only be considering linear arrays as shown in figure 2.3. The principal behind beamforming is to introduce different power and phase weightings to each of the antennas in the array. This is done in such a way as to generate constructive interference in the desired direction.

![Figure 2-3 Linear Beamforming Array](image)

A linear array is shown in figure 2.3, the elements are uniformly spaced with spacing d. It shows a wave incident on the array at an angle θ, with respect to the normal. The wave arrives earlier at element 2 than at element 0 or 1. The distance between each element is given by $d \sin \theta$, and therefore the phase delay between two adjacent elements will be the time it takes the incident wave to travel the extra distance. The spacing between the elements must be large enough so as to achieve independent fading. If they are not appropriately spaced, there will be a loss in spatial diversity.

When different phase and power weightings are applied to transmitting linear arrays, beamforming can be produced. The average signal-to-noise ratio (SNR) is increased using beamforming, by focusing energy in desired directions; this is shown in figure 2.4.
As is seen in the above figure, the different applied weightings result in destructive and constructive interference in such a way so as to create a main lobe of constructive interference in a particular direction, this is known as the directivity. This plot was obtained using the Matlab code in appendix 1. This effect can also be implemented at the receiver end of a link by phasing and weighting the received signals. However, in severe multipath environments, beamforming will no longer be effective, as the signals are too severely scattered to be effectively recovered.

2.5 MIMO
MIMO exploits multipath, traditionally a pitfall in wireless communications, to enhance rather than degrade the signal. MIMO systems consist of multiple transmitters and multiple receivers. For MIMO systems to be most effective, a rich multipath scattering environment is needed to create independent propagation channels. It is the rich scattering in the propagation channel, which offers multiple parallel sub channels at the same frequency, therefore giving higher capacities over the same bandwidth.
The figure 2.5 above shows a MIMO transmission system consisting of three transmit antennas and three receive antennas. The channel ‘H’ is presumed to be a rich scattering environment. MIMO uses the multi antenna spatial diversity at both ends of the link, treating the multiplicity of the different scattering paths as separate parallel sub channels.

2.5.1 MIMO Transmission

The figure above demonstrates how data is transmitted in a MIMO system. Consider the 6-bit data stream shown above, this data stream is broken down (demultiplexed) into N equal rate data streams, where N is the number of transmitting antennas, which is three in this
case. Each of the lower bit rate sub streams are transmitted from one of the antennas. All are transmitted at the same time and at the same frequency, therefore they mix together in the channel. Since all sub streams are being transmitted at the same frequency, it is very spectrally efficient.

Each of the receive antennas picks up all of the transmitted signals superimposed upon one another. If the channel ‘H’ is a sufficiently rich scattering environment, each of the superimposed signals will have propagated over slightly different paths and hence will have differing spatial signatures. The spatial signatures exist due to the spatial diversity at both ends of the link, and therefore create independent propagation channels. Each transmit receive antenna pair can be treated as parallel sub channels (i.e. a single-input single-output (SISO) channel), this will become clearer when I discuss the analysis of the channel H. Since the data is being transmitted over parallel channels, one channel for each antenna pair, the channel capacity increases in proportion to the number of transmit-receive pairs.

2.5.2 The MIMO Channel H
Since each of the receive antennas detects all of the transmitted signals, there are $N \times N$ independent propagation paths, where there are N transmit and N receive antennas. This allows the channel to be represented as a $N \times N$ matrix. Again using a 3×3 system as an example, the matrix below is obtained.

$$H = \begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}$$

Each of the elements in the channel matrix is an independent propagation path. Referring back to figure 2.6 the paths can be seen, h_{ij} represents the path from transmit antenna i, to receive antenna j. The transmitted signal can be represented as a vector, as can the received signal. Hence, the system can be represented as the following equation.

$$r = Hs + n$$

Where $r =$ received signal vector, $H =$ Channel Matrix, $s =$ Transmitted signal vector, $n =$ noise.
The transmitted signals in the vector r are complex signals, as are the channel matrix values and the received signals in vector s. The complex form in each of the elements in the vectors represents the power of the signal and its phase delay. The complex form of the elements of the channel matrix ‘H’ represent the attenuation and phase delay associated with that propagation path. The next step is to look at how the received signal can be decoded.

2.6 Gaussian Elimination

Gaussian elimination is a method, which can be used to determine at the receiver, what signal was transmitted. From the previous section the system equation $r = Hs + n$ is known. Ignoring any noise in the channel, for the sake of simplification, the system equation simplifies to $r = Hs$. This states that the received signal is equal to the transmitted signal multiplied by the channel matrix. In this case it is presumed that the receiver has full knowledge of the channel properties and hence knows the channel matrix.

Gaussian elimination is a systematic approach used to solve sets of linear equations. The process works by reducing the equations to triangular form as they can be more easily solved using back substitution. Back substitution is simply the formal name given to the way one would solve the equations by hand.

As an example consider the following triangular system.

\[
\begin{align*}
3x_1 + 5x_2 + 2x_3 &= 8 \quad \text{(1)} \\
8x_2 + 2x_3 &= -7 \quad \text{(2)} \\
6x_3 &= 3 \quad \text{(3)}
\end{align*}
\]

Equation (3) gives

\[
x_3 = \frac{3}{6} = \frac{1}{2}
\]

Using back substitution of x_3 into equation (2) gives,

\[
x_2 = \frac{1}{8}(-7 - 2x_3) = -1
\]

Again using back substitution into equation (1) gives,

\[
x_1 = \frac{1}{3}(8 - 5x_2 - 2x_3) = 4
\]
As can be seen triangular systems can be very easily solved. The problem is reducing a set of linear equations to triangular form. This is done using a method called pivoting, which reorganizes the equations to eliminate some of the variables. Pivoting is best explained with an example.

As an example consider the following system

\begin{align*}
8x_2 + 2x_3 &= -7 \\
3x_1 + 5x_2 + 2x_3 &= 8 \\
6x_1 + 2x_2 + 8x_3 &= 26
\end{align*}

These equations must be reorganized to obtain a pivot equation. This will allow \(x_1 \) to be eliminated for one of the equations. So reorganizing gives,

\begin{align*}
3x_1 + 5x_2 + 2x_3 &= 8 \\
8x_2 + 2x_3 &= -7 \\
6x_1 + 2x_2 + 8x_3 &= 26
\end{align*}

The next step is elimination of \(x_1 \) from the third equation. The matrix shown on the left below is the augmented matrix.

\[
\begin{bmatrix}
3 & 5 & 2 & 8 \\
0 & 8 & 2 & -7 \\
6 & 2 & 8 & 26
\end{bmatrix}
\]

\(x_1 \) can be eliminated from the third equation by subtracting \(\frac{6}{3} \) times the pivot equation from the third equation. This will give the following result.

\[
\begin{bmatrix}
3 & 5 & 2 & 8 \\
0 & 8 & 2 & -7 \\
0 & -8 & 4 & 10
\end{bmatrix}
\]

This gives a new pivot equation and the same principle as previous can be applied. Here \(x_2 \) can be eliminated by subtracting \(\frac{-8}{8} = -1 \) times the pivot equation. Then the system is in triangular form.

\begin{align*}
3x_1 + 5x_2 + 2x_3 &= 8 \\
8x_2 + 2x_3 &= -7
\end{align*}
These can then be solved using the back substitution method as discussed earlier.

I wrote a program in C++, which performs Gaussian elimination with both complex and real numbers. This is discussed and shown in detail in the chapter ‘implementation of MIMO simulator’.

The problem with Gaussian elimination is that if the matrices are singular or very close to singular, then a pivot equation cannot be established.

2.7 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a set of techniques for solving sets of linear equations and matrices that are singular or very close to singular. The SVD theorem states that any $M \times N$ matrix H whose number of rows M is greater than or equal to its number of columns N, can be written as the product of an $M \times N$ column-orthogonal matrix U, an $N \times N$ diagonal matrix D with positive or zero elements (the singular values), and the transpose of an $N \times N$ orthogonal matrix V [8]. This decomposition is shown below.

\[
H = UDV^T
\]

U and V are unitary row orthogonal matrices and so,

\[
U \times U^T = V \times V^T = 1
\]
SVD can be used to decompose the MIMO channel matrix H into a set of equivalent single-input single-output (SISO) channels. Using the system equation established earlier $r = Hs + n$, and using the results of the SVD, the system equation can be rewritten as,

$$r = UDV^T s + n$$

For the sake of simplicity the noise in the system is ignored. Hence,

$$r = UDV^T s$$

$$U^T r = U^T UDV^T s$$

Since U and V are orthogonal,

$$rU^T = DV^T s$$

Let $\tilde{r} = U^T r$ and $\tilde{s} = V^T s$, therefore the system equation becomes

$$\tilde{r} = D\tilde{s}$$

Since D is a diagonal matrix, this represents the system as equivalent parallel SISO channels.

The advantage of this is that the values of the diagonal matrix D determine the number of independent parallel channels available in the channel H. This is given by the number of non-zero eigenvalues, each of these gives the rank of that particular sub channel. Also the values obtained from the orthogonal matrices of the SVD gives the gains of the independent channels. These can be used to find weightings for the transmitting and receiving antennas. This creates beamforming as seen earlier and greatly increases the system performance. I will discuss this in greater detail in a later section.

Chapter 3 – Implementation of Ray Tracing
3.1 Ray tracing

The radio environment was modelled using ray tracing. Ray tracing was initially developed in the field of computer graphics to produce photorealistic computer-generated images. Ray tracing operates by calculating the path taken by a ray of light, from a light source to the point of interest.

At frequencies greater than approximately 900MHz, radio waves can be described as travelling along localized ray paths (i.e. approximately a straight line). Therefore, ray tracing can be used as a method for the simulation and approximation of radio wave propagation. The ray tracing of radio waves operates in the same manner as optical ray tracing, where light sources are replaced by transmitters and the points of interest are the receivers.

3.1.2 The ray tracing program

To simulate an indoor radio environment the geometry of the environment must be determined. At the beginning of the project I was given a ray tracing program, which could handle up to second order reflections, for a single antenna, single receiver system, with no specific weighting applied. The program was written in C++ and Matlab is used to plot the results of the ray tracing. For the ray tracing program to be used for multiple input multiple output systems the program needed to be modified. The modifications needed were as follows:

- perform calculations for up to Nth order reflections,
- use multiple antennas and multiple receivers,
- apply weighting to both the receiver and transmitter.

C++ is an object oriented programming language. This meant that modifying and adding to the code was simplified as the program was well structured in a logical format.

The program uses objects to represent the different aspects of the system. These were represented in classes containing the constructors and functions for each object. The program calculates the power level at every point in the environment, how it does this will be explained later. These assigned power values are in dBs, and can then be plotted in MATLAB. I will now go through the different objects of the system and describe how each functions.
3.1.2.1 Building structure

Each modelled building is made up of oblongs (walls). Using the object oriented relationship ‘is a part of’, the following relationship between the elements making up the building structure is as follows.

![Diagram of Building Structure]

Figure 3-1 Building Structure

3.1.2.2 Walls

The modelled environments were rooms represented by a number of walls. The model for each wall is an oblong, described by six faces and with material parameters ε (permittivity), μ (permeability), and δ (conductivity). Each oblong also has dimensional characteristics specified; these are its thickness and its origin position. The location of an oblong is given by a 3D point, this 3D point being its origin position, which can be seen in figure 3.2.
Above shows the format in which an oblong is represented. A file called ‘building_data.res’ contains all of the oblongs in the above format, which go into making up the room. This file is modified by the user to model different environments. When the program is run it reads in each oblong and stores it in an array present in the class ‘building.cpp’. The user can specify the maximum number of oblongs that the system can deal with by changing the variable ‘max_oblongs’. This variable is used so that the program will not read in a large number of oblongs, which would take too long to process.

The power level at a wall is set at -80dB, this is so that each wall is visible in the plot obtained from MATLAB.
3.1.2.3 Faces

Each oblong (wall) is made up of six faces. One face is described by four 3D points and a normal direction. The constructor for a 3D point is specified in ‘point.hh’ and ‘point.cpp’. A 3D point is of the form (x, y, z).

![Figure 3-3 Face](image)

The constructors and operator overloads for an oblong and a face are contained in the classes ‘oblong.cpp’ and ‘cface3d.cpp’ respectively. These classes contain a very important operation, which allows the program to determine if a given point is inside a particular oblong or face.

The program begins by reading in all of the building data from ‘building_data.res’. Each oblong contained in this file is processed to generate information about the building. This is done using the function ‘process_each_oblong’, which takes in the origin point of the oblong, the directions associated with it (the X, Y, Z directions), the distance in each of directions, and the dielectric parameters of the oblong. From these parameters the function creates information about the faces, normals, and dielectric properties. Each time an oblong is processed it is appended to a description of the building. The building class, located in ‘building.hh’, and its functions in ‘building.cpp’, describes the building.
Now the building structure and parameters are known. The program must read in the locations of the base stations, i.e. the transmitters. The data for the base stations is stored in the user modifiable file, ‘base_stations.res’, in the following format.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-Number of base stations</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>30.2</td>
<td>10.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

The location of each base station is given by a 3D point of the form (x,y,z) as can be seen in the format shown above.

The locations of each base station is read in and stored in an array called ‘base_stations[]’. The original program could not compute specified field points; rather it calculated all field points in the defined environment. The program needed to be able to compute specific field points (i.e. receiver antennas), to make it possible to find the channel matrix H. I will discuss this further later. The specific field points are stored in the user modifiable file ‘receivers.res’, in the same format as the locations of the base stations. With these modifications the program can handle multiple transmitting and multiple receive antennas.

One of the most essential parts of the ray tracing program is the ‘contour_fields’ function. This function breaks down the room that is being modelled into a grid of points. The size of this grid can be set using the value assigned to the variable ‘noc’ (number of contours), with the size being noc^2. The grid takes a 2D cross-section through the room at a particular height. Each of these grid points is known as a field point and is the location at which the electric field will be calculated. A field point is described in the class ‘CPoint3d’, where each field point is simply a 3D coordinate. The program then increments through each of the field points, calculating the value of the electric field (magnitude and phase) at each point. A field point can be considered as a receiver, it is the point in which we are interested in the electric field.
3.1.2.4 Finding the rays

A ray is made up of nodes. Each node is a critical point in its path between transmitter (base station) and receiver (field point). As can be seen in figure 3.4, there are four types of critical points for a ray. Two are the source point, which is the base station (TX) and the field point (RX). There are however, two others. When a ray strikes an oblong a certain amount of its power propagates through the oblong, this is known as a transmission point. Part of the incident power is also reflected, known as a reflection point. The amount of power transmitted and reflected depends on the dielectric properties of that oblong. In the ray list not only are the nodes stored, but the type of node is also stored, as it is needed in order to calculate the appropriate electric field value.

The ray list contains all of the data about rays propagating from a base station to a field point. Each field point has a ray list associated with it. A ray list is defined by the class ‘ray_list.hh’ and its functions are described in ‘ray_list.cpp’.

The value of the electric field at each of the field points is the sum of all rays incident on that particular point. Since there can be many rays contributing to the field strength, each of these rays must be identified. The rays are found using the functions ‘find_first_order_reflected_rays’ and ‘find_second_order_reflected_rays’.
The first ray identified, which is the simplest, is the direct ray. This is simply the ray that propagates directly from the source to receiver as seen in figure 3.5. In this particular example the direct ray does not pass through any walls (oblongs), and hence is made up of only two nodes the source and receiver. However, if it passed through one or more walls, the difference is that the direct ray is made up of several transmission nodes, as well as the source and receive nodes. The ‘find_direct_ray’ function takes in the field point and base station index to compute the direct ray.

Next, higher order rays need to be found. The order of a ray is simply the number of reflection nodes it has. In the original ray tracing code the highest order that could be computed was two. This was modified, so that more accurate values, which were needed for the program to operate as a MIMO simulator, could be computed. I will discuss this modification in detail in a later section.

For a ray to be represented its point of intersection with a particular oblong must be known, as this will be a reflection node associated with the ray. As discussed earlier the treatment of ray tracing for radio wave modelling is in many ways very similar to optics. The reflection discussed here is no different. In order to find the reflection point of ray with an oblong a geometrical technique is used.
Images are used in this technique to find the point of reflection with each oblong. The constructor for an image is found in ‘Cimage’. An image is simply a 3D point mirrored through the face of an oblong. This is shown below.

The image is found through the face closest to the source. The distance between the source and the face is d, which is the same as the distance from the face to the image. The first order images are found using the function ‘make_first_order_images’. These images are then stored in an array along with information about the image, such as the oblong and face, and also the coordinates of its source.

![First Order Image](image)

Figure 3-6 First Order Image

Next all of the second order images must be found. A second order image is just an image of an image. The function ‘make_second_order_images’ is used to compute these. The program simply goes through the array containing all of the first order images and applies the same principle to finding the images of those points.

Both the first and second order images are needed to find the first and second order rays. A second order ray is one, which has two reflection nodes in its ray list. Simply put where it has reflected off two walls before reaching the field point. An example below shows both a first and second order ray incident on a field point.
The geometrical method of finding the reflection points can be seen in this diagram. In the case of the second order, the program creates a vector directly from the source or image point, to the face. It then computes the dot product of the normal with this vector. The solution to this dot product determines whether or not a reflection will occur. If the solution is non-zero then a reflection will occur and an image exists, else there is no image.

Figure 3-7 Finding Reflection Points

The original program could not deal with higher order images, greater than second order, and so this needed to be modified. Higher order images and hence higher order reflections give a more accurate representation of the radio environment and the amount of scattering present. In a MIMO system, it is the rich scattering environment which allows for increased capacities and signal to noise ratios, and so the more precise the environment model the more effective the simulator.

One of the most time consuming parts of the project was modifying the code to compute up to N^{th} order reflections. The functions already in place to find first and second order reflections were hard coded, these needed to be replaced with a dynamic function which could compute all images and rays up to a user specified limit. The first new function I created was `make_Nth_order_images`. This function replaces the first and second order functions in the original program.

To simplify the way in which images are referenced I created a new array called `current_order_images`. This is a 3D array containing 3D image points. The three elements of the array contain the transmitting antenna index, the order of the image, and the images themselves respectively. Using this array simplified the storing of the images into a logical structure making it easier to store and address particular images.

`make_Nth_order_images` is ran with the following structure
“void make_Nth_order_images(int N, int base_station_index)”

When run, it loads the first transmitter location from base station index and sets it as a zero order image.

\[
current_order_images[base_station_index][0][0]=base_stations[base_station_index]
\]

This is done because images that are currently being calculated need to know the location of the previous order image, since images of orders greater than one are an image of an image, as seen previously. For this purpose a temporary array called ‘previous_order_images’ was created to store the image values while the next higher order images are being calculated. The function works by iterating using a ‘for’ loop through all images up to the user specified limit N. At the beginning of this loop the following line is used,

\[
previous_order_images[index]=current_order_images[base_station_index][y-1][index]
\]

This stores all of the current order images to the temporary array previous order images. In the case of the first iteration of the loop, these images will be the base station locations.

Another array ‘current_order_images_count’ stores the number of images for each of the current orders. In the case of the first iteration it will be the number of images for a particular base station. The value in this array is used to know how many images exist for a particular order. Due to the complexity of the calculations and the number of images generated, an upper limit on the number of images is specified in ‘max_order’. A control loop checks ‘max_order’ after every iteration to make sure it has not exceeded the predefined limit. If the limit is reached, the program moves on to the next order. This is done so as to control the computational time and computer resources used by the program.

The function finds the image of the current order images through each face of each oblong. The object oriented structure of the program, where a face is part of an oblong etc. made this easier than it would have otherwise been. The following segment of code shows how this is achieved.

```c
//Iterate for every Oblong
for( counter = 0 ; counter < 6 ; counter ++)
{
    //Iterate for each of the 6 Faces in an Oblong
    the_face = the_building.listoblong(i).face(counter) ;
```
$v = previous_order_images[j].listpoint() - the_face.pl()$;
$component = v*the_face.normal();$ //perpendicular distance from Oblong
if(component>0.0) //if the image point lies infront of face
{
 current_order_images[base_station_index][y][image_count] =
 CImage(previous_order_images[j].listpoint() -
 the_face.normal()*(2.0*component),i,counter,y,j) ;
}

This piece of code iterates through each oblong and each face of each oblong. The limit on the loop is set to six as each oblong has six faces. Once a particular face is selected the program then creates a vector from the current point being considered. In the first iteration this is a base station, to the origin point of the face. The origin point can be seen as pl in figure 3.2. As seen before, the program then computes the dot product of the vector with the normal of the face. This gives a value component. If the value of this component is non-zero then the image exists, and the value of the component is the perpendicular distance from the point to the face. The next line of code looks very complicated but it simply finds the image point through the face. It does this by computing the image, which is twice the perpendicular distance (component) from the point of interest, perpendicularly through the wall. The program then stores this image point in the ‘current_order_images’ array.

Once all of the images are known the next step is finding the rays. As with finding the images, the code in the original program was hard coded to compute the first and second order rays. Here two new functions needed to be created ‘find_nth_order_reflected_rays’ and ‘create_nth_order_reflected_rays’. The major functionality is in ‘create_nth_order_reflected_rays’, ‘find_nth_order_reflected_rays’ basically acts as a control loop iterating for each image and order, and calling ‘create_nth_order_reflected_rays’ within each iteration.

This function is called in the following manner:
create_N_order_reflection_ray(current_order_images[base_station_index][k][i], field_pt, base_station_index, k);
As can be seen, it is passed a particular base station, an image and its order, and also the field point. As seen earlier a ray is made up of nodes, two of these nodes are always the base station and the field point. The intermediary nodes are the nodes that this function needs to find. It does this by finding the point of intersection.

The function ‘create_nth_order_reflected_rays’, first determines whether a reflection takes place by finding the dot product of the component and the vector, this was discussed earlier. If a reflection exists the reflection point must be found. This is best explained geometrically with an example and diagram.

As can be seen from the previous piece of code, the function creates three points,

- **P1** - The image
- **P2** - The field point
- **P3** - Origin point of the face

The program finds two new vectors P2-P1 and P3-P1. The dot product of these new vectors with the normal of the face, gives the perpendicular distance from the field point to the image point, and the perpendicular distance from the image point to the face, respectively. The program then divides these values to obtain the ratio of the distance between the image and face and the distance between the image and field point. By multiplying this ratio by the P2-P1 vector gives

![Figure 3-8 Finding the reflection point](image)
the distance from the image point to the field point. This vector is added to the image point P1 to give the coordinates of the reflection point.

When the reflection points are found the ray is computed. A ray containing a reflection point will be a first order or greater ray. The number of reflections in a ray is equal to the order of the ray. The ‘analyse_direct’ function is initially used to compute the direct ray from a transmitter to a field point with no reflections. This function also finds the transmission points through which each ray passes.

In the case of multiple reflections, the ‘analyse_direct’ function is first used from the base station to the first point of reflection, and from this point to the next reflection and so on until the field point is reached. The first ray obtained is the ray from the base station to the first reflection point, which is stored in ‘s2i’ (source to intersection). The next task is to compute the ray between two reflection points, since there may be many reflection points there are many reflection-to-reflection rays. These are stored in array called ‘i2i’ (intersection-to-intersection).

The final ray is the one from the last reflection to the field point, which is stored in ‘i2f’ (intersection-to-field point). Once all these rays are computed the source node and field point node are they are combined to create the ray, this is done by the function ‘create_N_order_reflection_ray’, this function returns the complete ray from transmitter to field points.

This explains the full operation of the ray tracing program. There are a few more modifications that were made but I will explain these when I explain the function of the overall MIMO simulator program.

3.2 Convergence of order

Having modified the program to calculate up to N order reflections, I needed to decide what order to run most of my simulations. As the order is increased, the complexity of the problem increases, and hence the computational time required becomes greater. A trade-off needs to be made between the granularity of the results and the time taken to compute them.
To do this I took a sample of ten field points from the same environment computed to different orders. The environment modelled is shown here.

![Sample points for convergence](image)

Figure 3-9 Sample points for convergence

I then plotted each of the results and overlaid them to see could I obtain any convergence between orders up to the third order.

![Convergence graph](image)

Figure 3-10 Convergence graph, Blue =1st, red =2nd, Green 3rd Order

As can be seen in the graph, the values at the field points begin to converge even after an order of three. For this reason when modelling most of the environments I used an order of
three or four. When computing for orders greater than these the computational time greatly increases, and the extra accuracy obtained does not justify the extra time. For example, the following room was modelled for both 4th and 5th order. The 4th order took approximately 3.5 hours on a Pentium 3, but approximately 8 hours for the 5th order.

![2D plot of 4th order room with 6 walls](image)

Figure 3-11 2D plot of 4th order room with 6 walls
Figure 3-12 3D plot of 4th order room with 6 walls
Chapter 4 - Implementation of MIMO Simulator

4.1 Gaussian Elimination

As discussed earlier Gaussian elimination is a method that can be used to decode at the receiver of a MIMO system, the signal which was transmitted. For Gaussian elimination to work, full channel knowledge needs to be known at the receiver. Put simply the receiver must know the channel matrix H.

As part of the project I wrote a C++ program, which uses Gaussian elimination on both real and complex numbers. By inputting the channel matrix and the received signal vector the program computes the transmitted signal vector. I wrote the program to operate on square matrices, since the MIMO systems I was trying to simulate had the same number of transmitters and receivers and hence produces a square channel matrix.

The full source code for the program can be seen in the appendices.

The first thing that must be specified by the user is the size of the square channel matrix. This is done by changing the value of the integer N. In the main function the user must specify the channel matrix, as shown below for a 2x2 channel matrix.

\[
\begin{align*}
 b[0][0] &= \text{complex}\left(-1.265,0.8963\right); \\
 b[0][1] &= \text{complex}\left(1.109,0.1234\right); \\
 b[1][0] &= \text{complex}\left(0.567,-1.64\right);
\end{align*}
\]

The function ‘gauss’ is then called and takes in the channel matrix as a parameter. Since the channel matrix is stored in an array ‘b’ this must be passed into the function. Unfortunately in C++ one cannot pass an array into a function. To pass in the array a pointer to the first element of the array is passed. The pointer is created as follows.
The ‘gauss’ function takes in the pointer and then creates a temporary array in which it loads the channel matrix.

The user is then asked to enter the received signal vector, each element of this vector would be received by one of the receive antennas. This vector is stored in an array called ‘a’. The vector ‘a’ is attached to the end of the channel matrix, this produces what is known as the augmented matrix. The augmented matrix has the following form.

\[
\begin{bmatrix}
 b_0 & b_1 & a_0 \\
 b_2 & b_3 & a_1
\end{bmatrix}
\]

The ‘b’ values represent the channel matrix and the ‘a’ values is the received signal vector.

The next step is the elimination step.

In this step the pivot equation is found and then used to eliminate the first variable. For the theory of how this operates see the technical background chapter. The best way to see how the code operates is to follow the steps of the example given in the technical background chapter. This step is iterated until the system is reduced to triangular form.
Then the value obtained by reducing the system to triangular form is then used to solve the equations. This is done using back substitution as discussed earlier. The algorithm to perform this is shown below.

```c
//**********perform back substitution step.
s[N-1]=a[N-1][N]/a[N-1][N-1];
for (row=N; row>=0; row--)
{
    for(int column=N-1; column>=row+1; column--)
    {
        a[row][N]=s[column]*a[row][column]*a[row][N];
    }
}
```

I originally wrote this program to perform Gaussian elimination on real numbers. I then imported the ‘complex’ class from the ray tracing program into my code and modified it to perform the Gaussian elimination on complex numbers. Shown below is a screenshot of the final program performing Gaussian elimination on a complex 2x2 matrix.

![Figure 4-1 Screenshot of Gaussian Elimination program](image-url)
4.2 SVD

As previously discussed in the chapter entitled ‘Technical background’, Gaussian elimination will not work on matrices, which are almost singular. By singular I mean matrices in which all the elements of the matrix have identical or very similar values. With some difficulty, I adapted an algorithm from ‘numerical recipes in C’, to perform singular value decomposition on a square matrix. Although the original algorithm could perform SVD on any arbitrary size matrix, for the MIMO systems I was simulating, the channel matrix was always square.

4.2.1 Operation of the SVD algorithm

In the main function the user must set the value of the integer ‘N’ to the size of the square matrix. They must also enter the channel matrix values; this is done in the following segment of code.

```c
aa[0][0]=1.1;
aa[0][1]=1.01;
aa[0][2]=1.11;
aa[1][0]=1.098;
aa[1][1]=1.26;
aa[1][2]=1.89;
```

The array ‘aa’ is 2 dimensional, with the first element corresponding to the rows of the matrix and the second being the columns of the matrix. This is the most logical way to represent matrices in C++.

The SVD algorithm is called using,

`int dsvd(float **a, int m, int n, float *w, float **v)`

The parameters taken in by the algorithm are as follows,

- `a` = mnx matrix to be decomposed, gets overwritten with `u`
- `m` = row dimension of `a`
- `n` = column dimension of `a`
- `w` = returns the vector of singular values of `a`
- `v` = returns the right orthogonal transformation matrix
In the case of the square matrix the value for ‘n’ and ‘m’ are the same and so in the main function both of these are set equal to the value of the integer ‘N’.

As previously discussed, in C++ an array cannot be passed directly to a function. Rather a pointer to the first element of the array is passed.

In the main function the following piece of code was used to convert the array to a pointed memory location.

```c
aa=(float **) malloc((unsigned) N*sizeof(float*));
    for(i=0;i<=N-1;i++) aa[i]=a[i];

vv=(float **) malloc((unsigned) N*sizeof(float*));
    for(i=0;i<=N-1;i++) vv[i]=v[i];
```

Since a 2 dimensional array is used to store the matrix, the pointer also needs to be 2 dimensional (i.e. a pointer to a pointer). The ‘malloc’ function is used to assign the memory locations to each of the pointed arrays. The algorithm reads in the array ‘aa’, which would be the channel matrix, and returns the three matrices of the SVD.

To verify the correct functioning of the SVD algorithm for real numbers, the results below can be seen and compared with the results from Matlab verified to be correct.

![Figure 4-2 Screenshot of C++ SVD program](image_url)
```matlab
[U,D,V]=svd(H)

U =

0.4886  -0.0413  0.8715
0.6552   0.6770 -0.3352
0.5762  -0.7348 -0.3578

D =

3.7914  0   0
 0   0.6440  0
 0   0   0.1993
```

Unfortunately, due to time constraints, I did not succeed in modifying the algorithm to perform SVD on complex matrices. I began modifying it in a similar way as I did the Gaussian elimination program. I first imported the complex class from the ray tracing program and changed all the floating point numbers to complex type. This produced many errors in the code. Since 2 dimensional pointers are used to represent the matrices, and a complex number consists of two values, I had to change each of these pointers into a 4 dimensional pointer. Once again this produced many errors. I finally succeeded in have the SVD program read in the complex values and convert them into a dimensional pointed array.

Due to the complex way in which the SVD is performed I simply did not have enough time to try and modify it more to work on complex numbers. For this reason I resorted to using Matlab to perform the SVD.

4.2.2 Matlab SVD

The Singular value decomposition in Matlab is used in the following way. Presume a matrix ‘H’.
\[
[U, S, V] = \text{SVD}(H)
\]
This returns a diagonal matrix S, of the same size as ‘H’, with non-negative diagonal elements in decreasing order. It also returns the unitary matrices U and V. The values returned are the solutions to the product,

\[
H = U S V^T
\]

Due to the fact that the SVD was now being implemented in Matlab and not in C++ as originally planned, I made some more modifications to the C++ program so as to make the MIMO simulator as easy to use as possible.

The ray tracing code was modified to calculate the channel matrix ‘H’. The code reads in the locations of the receivers from a user modifiable file called ‘receiver.res’. The format of this file is the same as for the base station locations file. The channel matrix is simply the received field strength magnitude and phase, from each of the transmitting antennas at the receivers. The output of each of the transmitters is normalised to a magnitude of one and a phase of zero, and therefore the field strength at each field point corresponds to the magnitude and phase distortion over that particular propagation path. For example, for a three transmitter, three receiver system, there will be nine different values. Each value corresponds to one transmit receive antenna pair. These values correspond to the channel matrix and are written to a file called ‘received_fields.res’.

The first task of the Matlab code is to read in these values and create the channel matrix. Due to the order in which the channel matrix is written in the ray tracing program, and the format I needed the matrix to have in Matlab the following piece of code was needed.
A temporary matrix called ‘htemp’ is first generated. This is simply a one-column matrix with all the channel matrix values. The size of this matrix is then noted and its square root found. This value ‘N’ represents the MIMO system dimensions. In the case of a three transmitter, three receiver system, ‘N’ would have the value 3.

The ‘Matrix’ is then converted into a NxN matrix, the order in which this is done is crucial; otherwise the matrix will not be a true representation of the channel. This matrix is the channel matrix ‘H’.

The weights are calculated in the following manner. From the system equation:

\[r = Hs + n \]

For the purpose of simplicity the noise term is discounted.

\[r = Hs \]

The Singular Value Decomposition of the channel matrix ‘H’ gives:

\[H = UDV^T \]

Subbing this into the system equation gives:

\[r = UDV^T s \]

Since \(UU^T = 1 \), the equation can be simplified by multiplying both sides by \(U^T \), to give:

\[U^T r = DV^T s \]
From this the weightings can be obtained. The weightings for the transmitters are given by U^T and the weightings for the receivers are given by DV^T.

The weightings are in the form of an $N \times N$ matrix, but to be used as weightings for N antennas there needs to be only N elements. In order to obtain the $N \times l$ matrix needed, I multiply the $N \times N$ matrix by an $N \times l$ matrix. All elements of the $N \times l$ matrix are equal to a normalised value with a real part value of 1 and with no phase angle.

The following piece of Matlab code shows how the SVD and weightings are found.

```matlab
[U,S,V] = svd(H);
for l = 1:(sqrt(N)),
    s(l)=complex(1.0,0);
    %Creates the normalised transmit weighting vector s
end
txweights=s*S*(V')
%Calculates the transmitter weightings
rxweights=s*(U')
%Calculates the receiver weightings
```

The calculated weights are then written to two files, ‘receiveweights.res’ and ‘transmitweight.res’. The format that is used by the C++ ray tracing program and Matlab to represent complex numbers is different. The ray tracing program uses a tab delimited format specifying the real part and then the imaginary part of the complex number. Only one complex number is written to each line. Whereas Matlab represents a complex number in the format ‘real+imaginary’, also it Matlab specifies more than one complex number per line. The following piece of code converts from the Matlab format to the format needed to be compatible with the ray tracing program, and writes these values to the files.
These calculated weightings create beamforming at both ends of the link. Beams are formed in directions corresponding to the quality of each sub channel. For more on this please see the results section. Here I will show the beams being formed and I will explain this concept in more detail.

4.3 Further modifications to the ray tracing program

To make the ray tracing program more user friendly and to create an overall MIMO simulator, further modifications were needed. To calculate the channel matrix, the ray tracing program applies an initial weighting to the transmitting antenna array. This weighting is simply a normalised weighting with a magnitude of one and no phase angle. Once the antenna weightings are calculated from the Matlab code, they need to be applied in the ray tracing program and plots obtained.

At this point the ray tracing program calculated the field points for a gain pattern of only the transmitter. If I was plotting the gain pattern of the receiver antenna, I needed to swap around the data files relating to the receiver and transmitter. Essentially I was plotting the receiver as a transmitter. For the final MIMO simulator this was unacceptable. I wanted the ray tracing program to calculate the gain patterns for both the transmitter and receiver simultaneously and also apply the appropriate weightings to each.
I created a new function called ‘read_in_receiver_base_stations’. This function reads in the receiver locations from ‘receiver.res’, and stores them as base stations. The following piece of code shows how this is done.

```cpp
for( i = 0 ; i < NO_OF_STATIONS ; i++ )
{
    cin >> temp1 >> temp2 >> temp3 ;
    base_stations[i] = CPoint3d(temp1, temp2, temp3 ) ;
    cout << " base stations at " << base_stations[i] << endl ;
}
```

The locations of the receiver base stations is stored in an array called ‘base_stations’, this array is also used to store the locations of the transmitter locations.

Additionally I created two other functions to read in the antenna weightings which were calculated by Matlab. This functions ‘read_in_receiver_ant_weights’ and ‘read_in_ant_weight’ read in the values from ‘receiveweight.res’ and ‘transmitweight.res’ respectively.

For the program to calculate two plots, it essentially iterates twice, once for the transmitter calculations and once for the receiver calculations. To do this, the ‘contour_fields’ function was taken out and replaced with two other functions, ‘contour_fields_tx’ and ‘contour_fields_rx’. The only difference between the original contour fields plot and the two new functions are the locations of the data that is stored and read in, the functionality of both is the same.

4.4 Plotting the results

The final part of the MIMO simulator is plotting the results obtained to view the antenna gain patterns. These are plotted in Matlab using the ‘surf’ function. ‘Surf’ is used to view mathematical functions over a rectangular surface.

“Surf(X,Y,Z,C) – draws a surface graph of the surface specified by the coordinates (X₀,Y₀,Z₀). If X and Y are vectors of length m and n respectively, Z has to be a matrix of size m x n, and the surface is defined by (Xⱼ,Yⱼ,Zⱼ). If X and Y are left out, Matlab uses a
uniform rectangular grid. The colours are defined by the elements in the Matrix \(C \), and if left out \(C=Z \) is used.” [8]

The plot obtained from surf is a 3D plot giving. However it is not a 3D plot of the environment modelled for the ray tracing program. As discussed in an earlier section, the ray tracing program takes a cross sectional area through the room, this is 2 dimensional. In surf the \(X \) and \(Y \)-axis are spatial, whereas the \(Z \)-axis represents the magnitude of the electromagnetic field. The varying colour of the plot is a representation of this magnitude.

I wrote a Matlab function, called ‘mimo’, to plot both the transmitter and receiver gain patterns, from the results obtained from the ray tracing program. This function can be seen in appendix 4.

The ‘mimo’ function reads in the results from the ray tracing program, which are stored in ‘contour_fields_tx.res’ and ‘contour_fields_rx.res’. Although the values calculated by the ray tracing program are complex, having a magnitude and phase, the values stored in these files are real numbers. The magnitude of each field point is calculated from its complex value and this is the value written to ‘contour_fields_tx.res’ and ‘contour_fields_rx.res’. The reason for this is that to obtain a plot of the radio environment only the magnitude is used. The size of the plots obtained is given by the variable ‘NOC’ (number of contours). For all of the plots I calculated I set ‘NOC’ to 55.

4.5 The MIMO Simulator

The MIMO simulator is a culmination of all the techniques and programs that have been discussed so far. I have amalgamated all of them to create a user-friendly MIMO simulator. Below is a flow chart of the operation of the MIMO simulator.
User modifies the input data files, to set program

Building_data.res
Base_stations.res
Receivers.res

User executes the raytrace.cpp file, which firstly calculates the channel matrix H

Received_fields.res

User is then prompted to run 'mysvd' in Matlab. This must be done from the location of the program.

Received_fields.res
rxweights.res
txweights.res

The ray trace then continues using the appropriate weightings, and calculates the gain plot values.

txweights.res
rxweights.res
Contour_fields_tx.res
Contour_fields_rx.res

User is then prompted to run 'mimo' in Matlab. This plots the results.

Contour_fields_rx.res
Contour_fields_tx.res
4.5.1 MIMO simulator users guide

- Below shows the ray tracing program and its structure. The different classes and header files can be seen on the left. The user can modify the number of oblongs, which are to be calculated in the class ‘raytrace.cpp’.

![Screenshot of ray tracing program](image1)

- Having modified the input data files to the desired parameters, as shown in the ray tracing section, compile and run the ray tracing program. When the program is run the user is prompted to enter the order to which they would like calculate the channel matrix. The higher the order the more accurate the calculation. However it is limited to an order of twelve for reasons of computational time.

![Screenshot “Please enter Order”](image2)
At this stage the program will calculate the channel matrix H, and the window below will be displayed. This requests that the user execute ‘mysvd’ in Matlab. This must be done from the folder in which the program is resident.

Figure 4-5 Screenshot “Please run ‘mysvd’ ”

When the user runs ‘mysvd’, Matlab creates the weighting files. The user must then type ‘y’ for the program to continue. The user is then prompted to enter the order to which they would like to calculate the antenna gain patterns. I recommend an order of 3 to 4, for reasons of computational time and for reasons of convergence as discussed previously. Once the program completes the user is presented with the following screen and asked to run the function ‘mimo’ in Matlab.

Figure 4-6 Screenshot “Please run ‘mimo’“
When ‘mimo’ is run, it takes in the magnitude values calculated in the ray tracing program and plots the using ‘surf’ in Matlab. From this the following types of plots are obtained. This is a freespace environment with no oblongs.

Figure 4-7 Result of ray tracing program, TX antenna in freespace

Figure 4-8 Result of ray tracing program, RX antenna in freespace
Chapter 5 – Results

5.1 SVD in Freespace

The advantage of the Singular Value Decomposition (SVD), when used in a MIMO system can best be seen in freespace. The number of channels available in freespace is only one. This is because in freespace there are no objects to scatter the rays in the environment. The diagonal matrix for the following freespace system is:

\[
S = \begin{bmatrix}
7.0637 & 0 & 0 \\
0 & 0.0138 & 0 \\
0 & 0 & 0.0000
\end{bmatrix}
\]

From this it is clear that there is essentially only one sub channel available. The weightings are calculated from the ‘mysvd’ algorithm and applied to the antenna arrays. When this is done the following plots are obtained.

![Figure 5-1 TX freespace antenna gain plot](image)
Figures 5.1 and 5.2 are the same MIMO system. 5.1 is a plot of the transmitter antenna array gain and 5.2 is a plot of the receiver antenna gain. As can be seen in this freespace example the weights obtained create beamforming of a main lobe in the direction of the opposite end of the link. This can be further seen with another example. The transmitter array is kept in the same position but the receiver array is shifted up. The following plots are obtained.
Figure 5-3 TX freespace antenna gain plot with antenna shifted up

Figure 5-4 RX freespace antenna gain plot with antenna shifted up
From the above two figures, it can be seen that the SVD modifies the weights to give the optimum signal at the receiver. The main lobe of the antenna gain patterns will always form in the direction of the opposing antenna, when the SVD method is used to calculate the weights.

5.2 Number of elements in an array

The number of antenna elements in each array determines not only the number of channels that are available, but also the width of the lobes. In most of my results I used three element antenna arrays at both the receiver and transmitter. The following plots show the affect of increasing the number of elements in each array. For them assume a receiver is present directly across from the transmitter.

![3 element antenna array](image-url)

Figure 5-5 3 element antenna array
Figure 5-6 5 element antenna array

Figure 5-7 7 element antenna array
As can be seen from the above figures, as the number of elements in the antenna array increases the width of the main lobe decreases. This is due to there being more elements available to create the constructive and destructive interference necessary.

5.3 Dielectric parameters and corridor model

The next test I carried out was to look at the effects of different dielectric parameters in the oblongs, on the radio environment. As discussed earlier each oblong has material parameters ε (permittivity), μ (permeability), and δ (conductivity). Changing these parameters will affect the reflectivity of each oblong. Since MIMO relies on the scattering in the environment, an increase in the reflectivity should give an increase in the quality of each sub channel.

I essentially combined two experiments into one. One experiment observed the affect of the different dielectric parameters on the radio environment, and one looked at the change in the MIMO channels that this increase in reflectivity causes. For the calculation of the channel matrix each of the antenna elements in the plots have no weighting applied, only the normalised weight. Hence each antenna element is omni directional. The Singular Value Decomposition (SVD), on this channel matrix not only gives the weights, but also gives the relative quality of each sub channel.

With the ε (permittivity), μ (permeability), and δ (conductivity) set to the following values respectively 3.0, 1.0, and 0.0 for the both oblongs.
Figure 5-8 TX corridor model

Figure 5-9 RX corridor model
The SVD on the channel matrix for these plots gave the following diagonal matrix:

\[
S = \\
\begin{bmatrix}
7.5056 & 0 & 0 \\
0 & 5.6567 & 0 \\
0 & 0 & 3.5202 \\
\end{bmatrix}
\]

I then changed the dielectric parameters of the oblongs to the following values, \(\varepsilon \) (permittivity), \(\mu \) (permeability), and \(\delta \) (conductivity) set to the following values respectively 20.0, 5.0, and 2.0 for the both oblongs.

![Figure 5-10 TX corridor model, increased dielectric parameters](image)
The SVD on the channel matrix for these plots gave the following diagonal matrix:

$$S = \begin{pmatrix} 8.5539 & 0 & 0 \\ 0 & 6.0949 & 0 \\ 0 & 0 & 4.2386 \end{pmatrix}$$

As can be seen the quality of each of the channels increases due to the increased reflectivity and hence increased scattering in the environment. The plots shown above clearly show how the lobes are formed. The side lobes seen in these plots are steered in such a direction so as to reflect once of an oblong before reaching the receiver. The diagonal matrices from the SVD, show that there are three channels available in the case of two oblongs.
Chapter 6 - Conclusions and Further Research

The original goal of the project goal was to develop a MIMO simulator this was achieved. The developed program was written in C++ and Matlab. It allows for the simulation of a MIMO system, operating in an indoor 3D radio environment. The program is user friendly and very easily modified to model different indoor environments.

Throughout the course of this project I learned a great deal about radio wave propagation and electromagnetics in general. Up to the point of beginning my project I had very little experience in C++, and so I was forced to develop my ability in this area, to become proficient enough to carry out the rather complex C++ aspect of the project. I also further developed my knowledge of Matlab and numerical techniques. Due to time constraints, there are some aspects of the simulator that I would have liked to develop further.

The calculation of the Singular Value Decomposition (SVD) is currently performed in Matlab, and the result files imported into the ray tracing part. I would have liked to complete the work I started on creating an SVD algorithm in C++. I have a working SVD algorithm for real numbers only, and I would have liked this to also incorporate complex values. The advantage of this would be in simplifying the operation for the user. The user would not have to use Matlab, but rather, all of the calculations would be carried out automatically in C++.

Currently the MIMO simulator takes a rather simplistic view of the channel model, by ignoring noise. Further work in improving the simulator might be to create a more realistic channel model. Noise could be incorporated into the system by not discounting the noise factor in the system model as I did. The noise factor could be modelled as a vector of complex Gaussian values with zero mean. The maximum magnitude of the Gaussian variables could be varied to simulate varying noisy environments.

I would have also liked to explore the by simulation the increases in capacity and bit rates offered by MIMO systems. This could be compared with traditional Single input Single Output (SISO) systems, different Multipath environments, and also MIMO systems with varying numbers of antenna elements.
There was one unusual problem with the MIMO simulator that I only noticed toward the end of my project. The spacing between each of the antenna elements seems to be crucial. On some occasions when I ran the simulator I obtained strange plots, however when only the antenna elements spacing were changed to different values the simulator worked correctly. I would have like to investigate this problem more to find the cause of the problem. My advice is to use an antenna spacing of 0.37 times the wavelength.

All of these improvements could be added into the current MIMO simulator to make it more realistic and more efficient. I thoroughly enjoyed carrying out this project and learnt a great deal.
References

[12] “Introduction to the Uniform geometrical theory of diffraction”
Appendix 1

Matlab code for Beamforming

close all
clear all

winsize = [1 29 1280 928];
fig1 = figure(1);
set(fig1, 'Position', winsize);

f = 900000000.0;
omega = 2.0*pi*f;
c = 300000000.0;
delta_t = 0.25*1/f;
lambda = c/f;
wave_number = 2.0*pi/lambda;

numframes= 12;
no_of_phases = 8;

M=moviein(numframes,fig1,winsize);
M=moviein(numframes*no_of_phases,fig1,winsize);

% create the movie matrix
set(gca,'NextPlot','replacechildren')
%axis equal % fix the axes

array_center = 0.0 + 0.0*j;
array_offset = lambda/2.0;
no_of_sources = 10; % Keep as an even amount
 for (k = 1:no_of_phases)
 phase_offset(k) = 1.0*(pi/2.0 - 2.0*pi*(k-1)/(numframes)) ;
 end

for count = 1 : no_of_sources
 source(count) = array_center - ((no_of_sources-1)/2)*array_offset +
 (count - 1)*array_offset;
 for(k = 1:no_of_phases)
 phase(count,k) = (count-1)*phase_offset(k) ;
 end
end

x_upper = -6.0;
x_lower = 6.0;
x_count = 150;
delta_x = (x_upper - x_lower) / (x_count);
y_lower = 3*lambda;
y_upper = 3*lambda + 12.0;
y_count = 150;
delta_y = (y_upper - y_lower) / (y_count);
for(k = 1:no_of_phases)
for(count1 = 1:x_count)
 for(count2 = 1:y_count)
 field(count1,count2,k) = 0.0;
 pos = x_lower + (count1 - 1)*delta_x + j*(y_lower + (count2 - 1)*delta_y) ;
 for(count3 = 1:no_of_sources)
 dist = abs(source(count3) - pos) ;
 field(count1,count2,k) = field(count1,count2,k) +
 sqrt(2*j/(pi*wave_number*dist))*exp(-j*(wave_number*dist + phase(count3,k))) ;
 end
 end
end

for(l = 1: no_of_phases)
for(k = 1:numframes)

 wave = real(field(:,:,l)* (cos(omega*k*delta_t) + j*sin(omega*k*delta_t))) ;

 surf(wave);
 view(270,90)
 caxis('manual');
 shading interp
 %axis([0 upper_x 0 upper_y -1 wall_height])
 the_index = (l-1)*numframes + k ;
 M(:,the_index) = getframe;
 %f = getframe(gcf);
 % [M, map] = frame2im(f);
 % imshow(M, map);
end
end
movie(M,100) ;
Appendix 2

C++ Gaussian Elimination Code
//John Fitzpatrick TC4 DCU
//Gaussian elimination

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <time.h>
#include <string.h>
#include "complex.hh"

const int N = 2; //Number of rows and columns (Square matrix)

void gauss(complex **tempmat) //Function reads in temporary matrix
{
 int i, j;
 complex a[N][N+1]; //Matrix which will be used

 //********Converts from temp pointed array to 2D array
 for(i=0; i<N; i++)
 {
 for(j=0; j<=N; j++)
 {
 a[i][j]=tempmat[i][j];
 }
 }
 //**
//***** Takes in the received signal vector from user
float real, imag;
cout << "Enter in the received signal vector" << endl;
 for(i=0; i<N; i++)
 {
 cout << "r" << i << " real : ";
 cin >> real;
 cout << "r" << i << " imag : ";
 cin >> imag;
 a[i][N]=complex(real, imag);
 }

complex s[N];

//***** Print out of Augmented Matrix A^T
 cout << "The Augmented matrix is:" << endl;
 for(i=0; i < N; i++)
 for(j=0; j<N+1; j++)
 cout<< a[i][j] <<endl;

//***** Perform elimination step
 for(int index=0; index<=N; index++)
 {
 complex pivot;

 for(int row=index+1; row<=N-1; row++)
 {
 pivot = -a[row][index]/a[index][index];
 for(int column=index+1; column<=N; column++)
 {
 a[row][column]=a[index][column]*pivot+a[row][column];
 }
 }
/** perform back substitution step. */
s[N-1]=a[N-1][N]/a[N-1][N-1];
for (row=N; row>=0; row--)
{
 for(int column=N-1; column>=row+1; column--)
 {
 a[row][N]=s[column]*a[row][column]-
 a[row][N];
 }
 s[row]= a[row][N]/a[row][row];
}

/******************Print answer
 cout<< "The transmitted signal vector is " << endl;
 for(i=0; i<=N-1; i++)
 {
 cout << s[i]<< endl;
 }

*/

void main()
{
 int i;
 complex b[N][N+1], **bb;
b[0][0]=complex(-1.265,0.8963);
b[0][1]=complex(1.109,0.1234);
b[1][0]=complex(0.567,-1.64);
b[1][1]=complex(1.892,0.2454);

//*****Needed to convert 2D array to pointed array
 bb=(complex **) malloc((unsigned) N*sizeof(complex*));
 for(i=0;i<=N-1;i++) bb[i]=b[i];

//**
 gauss(bb);

}
Appendix 3

Matlab Singular Value Decomposition (SVD) Code

%Reads in complex matrix in tabbed format from a '*.res' file
%Computes SVD of a complex channel matrix
%Finds weightings to be applied to receive and
%transmit antennas for MIMO systems and writes result to '*.res files'
%***

[re, im]=textread('received_fields.res','%f %f'); %Loads in real and imag parts of txt file
htemp=complex(re, im); %Creates N^2 size vector of channel matrix values
size(htemp);
N=ans(1); %Finds size of matrix N
index=1;

%Converts htemp Vector to H channel Matrix
q=1;
for R = 1:(sqrt(N)),
 for C = 1:(sqrt(N)),
 H(R,C)=htemp(index);
 if q<=N,
 index=index+1;
 end
 end
end

%***

[U,S,V] = svd(H);

for l = 1:(sqrt(N)),
 s(l)=complex(1.0,0); %Creates the normalised transmit weighting vector
 s
end
txweights=s*S*(V')%Calculates the transmitter weightings
rxweights=s*(U') %Calculates the receiver weightings

%*******************Write tx weights to file****************************

for R = 1:(sqrt(N)),
 realtemp(R)=real(txweights(R));
 imagtemp(R)=imag(txweights(R));
end
txfile = fopen('transmitweight.res','w');

for R = 1:(sqrt(N)),
 fprintf(txfile,'%f	',realtemp(R));
 fprintf(txfile,'%f
',imagtemp(R));
end
close(txfile);

%*******************Write rx weights to file****************************

for R = 1:(sqrt(N)),
 realtemp(R)=real(rxweights(R));
 imagtemp(R)=imag(rxweights(R));
end
for R = 1:(sqrt(N)),
 rxtemp(R,1)=realtemp(R);
 rxtemp(R,2)=imagtemp(R);
end

rxfile = fopen('receiveweight.res', 'w');

for R = -(sqrt(N)):-1,
 G=-R;
 fprintf(rxfile, '%f
', realtemp(G));
 fprintf(rxfile, '%f
', imagtemp(G));
end
fclose(rxfile);
Appendix 4

Matlab ‘mimo’ Code

load 'contour_fields_tx.res'
NOC = 55;
fields = zeros(NOC,NOC);
for (count1 = 1:NOC)
 for (count2 = 1:NOC)
 fields(count1, count2) = contour_fields_tx((count1 - 1)*NOC + count2);
 end
end
figure(1); surf(fields,'FaceColor','red','EdgeColor','none');
lighting phong
view(0,90)
shading interp
colorbar
title 'Transmitter Gain pattern in dBs'
xlabel('Y coordinates')
ylabel('X coordinates')
load 'contour_fields_rx.res'
NOC = 55;
fields = zeros(NOC,NOC);
for (count1 = 1:NOC)
 for (count2 = 1:NOC)
 fields(count1, count2) = contour_fields_rx((count1 - 1)*NOC + count2);
 end
end
figure(2); surf(fields,'FaceColor','red','EdgeColor','none');
lighting phong
view(0,90)
shading interp
colorbar
title 'Receiver Gain pattern in dBs'
xlabel('Y coordinates')
ylabel('X coordinates')