
INTEGRATING PRESERVATION FUNCTIONS

INTO THE WEB SERVER

by

Joan A. Smith
B.A. 1986 University of the State of New York

M.A. 1988 Hampton University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2008

Approved by:

Michael L. Nelson (Director)

Kurt Maly

Steven J. Zeil

Mohammed K. Zubair

Simeon Warner

ABSTRACT

INTEGRATING PRESERVATION FUNCTIONS

INTO THE WEB SERVER

Joan A. Smith

Old Dominion University, 2008

Director: Dr. Michael L. Nelson

Digital preservation of the World Wide Web poses unique challenges, different from the preservation

issues facing professional Digital Libraries. The complete list of a website’s resources cannot be

cited with confidence, and the descriptive metadata available for the resources is so minimal that

it is sometimes insufficient for a browser to recognize. In short, the Web suffers from acounting

problem and arepresentationproblem. Refreshing the bits, migrating from an obsolete file format

to a newer format, and other classic digital preservation problems also affect the Web. As digital

collections devise solutions to these problems, the Web will also benefit. But thecore World Wide

Web problems of Counting and Representation need a targeted solution.

As the host of web content, the web server is uniquely positioned to assist inthe preservation of

the resources it serves. It both knows the resources ithas, and knows what kind of resources they

are. This dissertation presents research in which preservation functions have beenintegratedinto the

web server itself. The CRATE Model defines a method for addressing theCounting Problem and the

Representation Problem using existing web server-compatible technology.A series of experiments

which evaluated this approach are presented, along with a technical review of the MODOAI web

server module which acts as the preservation agent. The feasibility of this approach is demonstrated

by a quantitative analysis of its use in a commercial web testing environment.

iii

©Copyright, 2008, by Joan A. Smith, All Rights Reserved.

iv

Dedicated to my mother and to the memory of her mother.

. . . a barren field gives birth to the fertile ground
— Byzantine (Septuagint) Psalter

v

ACKNOWLEDGMENTS

Considering how many people influenced this research or directly contributed to it through creative

discussion, commentary, or plain critique, it seems unfair to not have them asco-authors or at least

co-inspirators, so to speak. If not for Michael Nelson, my eternally patient advisor, this whole

project would never have begun. He and Johan Bollen took the time to convince me that pursuing a

PhD was a worthwhile endeavor. More importantly, Michael then followed upby securing funding

for this research from both the Andrew Mellon Foundation and the Libraryof Congress. His guid-

ance was always on target; he knew somehow when to apply pressure and when to step back. I am

indebted to him on many levels and for many reasons.

Still, the process is long and courage falters. Stephan Olariu and Hussein Abdel-Wahab provided

much-needed encouragement and support at critical points along the way, particularly in overcoming

the first hurdle, the Diagnostic (PhD qualifying) Exam. The Candidacy Exam committee members,

Kurt Maly, Simeon Warner, Steven Zeil and Mohammed Zubair, provided very helpful feedback

and commentary on the initial proposal and I greatly appreciate the time and effort they put into

reviewing that as well as this dissertation.

Throughout these years I’ve also had the good fortune to have Martin Klein and Frank Mc-

Cown as project partners, research colleagues and office mates. Working with them has been both

productive and rewarding. The pseudo-competition to get papers accepted at conferences added a

dimension of fun to what was otherwise just plain hard work. In addition, I have benefited from the

software development efforts of Terry Harrison and Aravind Elango,who wrote the initial prototype

of MODOAI, from which the author’s current modular version was derived.

I owe Howard Smith (while at Symantec) and Jim Gray (of Kronos) many thanks for suggesting

testing methods and for providing commercial test environments forMODOAI. It isn’t often that such

an academic endeavor can be tested in a commercial environment. The experience was especially

helpful in defining criteria for metadata utility compatibility and in designing off-linetests for the

software.

When it comes to software engineering, however, one individual standsabove the rest. If I have

learned anything at all about the art and practice of software engineering, it is thanks to John Owen.

As a professional colleague, business partner, and friend, his depthof knowledge and love of the

craft have been an inspiration and a guide. The version ofMODOAI developed for this dissertation

owes its new architecture and implementation style to the debates and discussionswe’ve had. From

moral support to technical opinions his help has been invaluable.

Michael Nelson guided the development of the CRATE concept and its focus on thecounting

anddescriptionproblems. The complex object implementation, particularly MPEG-21 DIDL, is

based on the work of Herbert Van de Sompel and Jeroen Bekaert. Their research significantly

vi

helped clarify the concepts and goals of the CRATE model.

There have, of course, been many others whose professionalism andsupport have made a differ-

ence during my time at Old Dominion University. Janet Brunelle gave me an opportunity to teach

the Computer Science capstone course, renewing my interest in teaching while simultaneously re-

minding me just how much work goes into preparing lectures. The department’sadministrative staff,

particularly Phyillis Woods, kept the paperwork straight and the paychecks coming. Ajay Gupta and

his systems staff assisted, supported, and restored as only "Sys Admins"can. Among these system

administrators, Chris Robinson, Ian Gullet and Joshua Robertson were especially important to the

"Counting Problem" experiments. I appreciate their help with both hardware and software.

Ultimately, of course, it all comes down to family, and here I have been blessed with good

fortune beyond the normal measure. My parents and siblings have continually expressed both con-

fidence in my abilities as well as a belief in the value of education for its own sake. Last, but most

importantly, I have had the unflagging devotion of a wonderful husband.Howard Smith has been

with me through it all, with patience and love. There is no way to express how much this has meant

to me every day. This PhD belongs to him.

vii

ACRONYMS

AIP Archival Information Package (OAIS)

API Application Programming Interface

CCSDS Consultative Committee for Space Data Systems

DIDL Digital Item Declaration Language

DOI Digital Object Identifier

DIP Dissemination Information Package (OAIS)

DL Digital Library

GIF Graphics Interchange Format

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JPEG Joint Photographic Experts Group

KWF Kahn-Wilensky Framework

LANL Los Alamos National Laboratory

METS Metadata Encoding and Transmission Standard

MIME Multipurpose Internet Mail Extensions

MPEG Moving Picture Experts Group

NDIIPP National Digital Information Infrastructure and Preservation Program

NSSDC National Space Sciences Data Center

OAI Open Archives Initiative

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

OAIS Open Archival Information System

PDF Portable Document Format (Adobe)

PNG Portable Network Graphics

PREMIS Preservation Metadata Implementation Strategies

RDF Resource Description Framework

RSS Really Simple Syndication

SIP Submission Information Package (OAIS)

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Unform Resource Name

W3C The World Wide Web Consortium

WWW The World Wide Web

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES .. xiii

CHAPTER

I INTRODUCTION . 1
1 The Challenge of Digital Preservation . 1
2 Scope . 4
3 Approach . 5
4 Organization . 7

II CURRENT PRACTICE IN DIGITAL PRESERVATION 9
1 Preservation: Definitions and Limitations . 9
2 Digital Preservation Models & Implementations 12
3 LOCKSS . 19
4 OAI-PMH . 21
5 Socio-Economic Factors Influencing Preservation 23
6 Summary . 25

III THE CURRENT ROLE OF THE WEB SERVER IN DIGITAL PRESERVATION . . . 26
1 Incidental Web Preservation: Usenet .26
2 Intentional Web Preservation: Internet Archive 27
3 Other Web Archiving Efforts . 31
4 The Web Server As Agent of Migration . 32
5 Summary . 34

IV THE CURRENT ROLE OF SEARCH ENGINES IN DIGITAL PRESERVATION . . . 35
1 The Search Engine as Agent of Discovery35
2 The Search Engine as Agent of Refreshing 52
3 The Search Engine as Agent of Preservation 55
4 Summary . 55

V RESOURCE ENUMERATION: THE COUNTING PROBLEM 56
1 The Counting Problem Defined . 56
2 Why the Counting Problem Exists . 56
3 The Sitemap Protocol . 61
4 Summary . 63

VI EVALUATION OF RESOURCE ENUMERATION METHODS 64
1 A Counting Problem Experiment . 64
2 A Comparison of Enumeration Methods . 76

ix

3 Summary of Experiment Results . 82
4 Resource Enumeration & the Race Condition Problem 82
5 Strategies for Optimizing Resource Enumeration 83
6 Summary . 83

VII RESOURCE DESCRIPTION: THE REPRESENTATION PROBLEM 84
1 The Representation Problem Defined . 84
2 Why The Representation Problem Exists . 85
3 Search Engines & Representation . 86
4 Web Servers, Browsers, & Representation 88
5 Representation Models, Metadata, and Interoperability91
6 Summary . 92

VIII EVALUATION OF METADATA UTILITIES ON THE WEB SERVER 93
1 A Representation Problem Experiment . 93
2 Performing the Experiments . 105
3 A Quantitative Comparison of Utility Performance 106
4 Summary of Experiment Results . 109
5 Strategies for Selecting Metadata Utilities 110
6 Summary . 110

IX CRATE: A MODEL FOR SELF-DESCRIBING WEB RESOURCES 112
1 CRATE: A Data-Centric Preservation Model 113
2 Complex Objects As Archival Information Packages (AIPs) 114
3 Building The CRATE . 118
4 CRATE Compared with Other Complex-Object Models 119
5 Implementing the CRATE Model . 120
6 Summary . 122

X MODOAI: AN IMPLEMENTATION OF THE CRATE REFERENCE MODEL . . . 123
1 Background: The Apache Web Server .123
2 History ofMODOAI . 127
3 The Design & Structure ofMODOAI . 129
4 CustomizingMODOAI . 133
5 CRATE Deployed InMODOAI . 134
6 Summary . 134

XI CONCLUSIONS . 135
1 Contributions . 135
2 Future Work . 137
3 Integrating Preservation Functions into the Web Server138

BIBLIOGRAPHY .. 140

APPENDICES

A CRATE XML SCHEMA DOCUMENTS . 153
1 The Simple CRATE Schema: crate.xsd . 153

x

2 CRATE LANL DIDL Schema: oaicrate.xsd 155

B EXAMPLE CRATE RESPONSES . 156
1 CRATE Plugins in the Identify Response . 156
2 CRATE Plugins in the Get Record Response 160
3 OAI-PMH List Identifiers Response . 163

C EXAMPLES OF METADATA UTILITY OUTPUT 164
1 Comparative Metadata Output of a Small JPEG File 164
2 Other Examples of Metadata Utility Output 169

D APACHE CONFIGURATION DIRECTIVES FOR MODOAI 178
1 The Structure of theMODOAI Configuration File 178
2 Contents of the modoai.conf File . 181
3 Example Shell Script Invoking Jhove Options 182

E SITEMAP FILES . 183
1 Using Sitemap Tools . 183
2 Example Sitemap File . 185

VITA . 187

xi

LIST OF TABLES

Table Page

1 Threats to Digital Preservation . 3
2 Dublin Core Categories . 11
3 File & Structural Map Sections of METS . 14
4 OAI-PMH Verbs . 22
5 Problematic snapshots on the Wayback Machine 29
6 Website content of the Sliding Directories experiment 38
7 Log data from two sites . 41
8 Crawler Statistics from the Sliding Directories experiment.42
9 HTTP Request-Response Example .60
10 Composition of the CS Website . 65
11 MIME Distribution on Test Website . 66
12 Web Server Log Fields . 70
13 HTTP Response Codes .73
14 Request Distribution by HTTP Method .73
15 Request Distribution by MIME Type .74
16 Request distribution on the CS Website . 74
17 Resource duplication on a site . 75
18 Links on CS Website Main Page . 78
19 Fully-qualified internal links on the CS Website. 79
20 Dynamic Resource Request Distribution .. 82
21 The MIME Content Type Categories .. 90
22 HTTP Headers . 91
23 Content Distribution on Test Website .97
24 Test Website MIME Type Resource Distribution 97
25 Metadata Utility Assessment . 100
26 Plugin Specification . 101
27 Average distribution of hits per test run. .. . 107
28 Performance Metrics . 108
29 Directives in modoai.conf . 178
30 MODOAI plugin elements & attributes . 179

xii

LIST OF FIGURES

Figure Page

1 Preservation vs Backup .2
2 Website as tree . 5
3 Conceptualization of the Kahn-Wilensky Framework 10
4 OAIS Functional Model . 13
5 VERS, METS & PREMIS Complex Objects . 15
6 The VERS Workflow . 17
7 The LANL MPEG-21 DID Complex Object . 18
8 Acroread Metadata . 20
9 Basic OAI-PMH Data Model . 21
10 OAI-PMH With Complex Objects . 24
11 Languages on the Rosetta Stone .27
12 Archived CS-ODU Webs on Wayback .. . 28
13 Jhove Metadata . 30
14 ARC Model . 31
15 Unhandled MIME Type & Resource Migration 33
16 Number of resources in the test website .. 37
17 Sliding Directories structure . 38
18 Gradual resource removal 40
19 Crawling patterns on site MLN . 43
20 Hourly crawling patterns on site MLN . 44
21 Deep website schema . 46
22 Entry page to test website . 46
23 Wide & Deep Sites . 47
24 Subdirectory Main Page Examples .49
25 Crawling Patterns on Bread Crumb Site . 50
26 Crawling patterns on Buffet Site .51
27 Buffet Site Crawling Pattern . 53
28 Bread Crumb Site Crawling Pattern . 54
29 Website & Apache Server File System .57
30 Crawler’s view of a website .60
31 Website URLs in a Sitemap file . 62
32 The CS Department Website . 67
33 Web Log Gaps 2006 . 68
34 Web Log Gaps 2007 . 69
35 Percent of All Resources Visited .. . 70
36 Percent of Public Resources Visited .. . 71
37 Resources Found in Logs & Snapshot 77
38 Snapshot Resources Crawled 79
39 Report from Audit My PC . 80
40 Site Coverage from Web Logs .81
41 Website Coverage from Integrated Counting Techniques 82
42 Resource Representation .. 84
43 Representing Content .87

xiii

44 ASCII Art . 88
45 Search Engine resource transformation 89
46 Test Website Sample Page . 95
47 PDF from the Test Website . 95
48 Visual Map of the Test Website .96
49 META Tag Content Example . 99
50 Apache Configuration .102
51 Web Traffic Patterns .103
52 Sample CRATE XML . 106
53 CRATE Process in OAIS Context .113
54 CRATE in the OAIS Model . 115
55 Two Views of a Resource .117
56 The CRATE model and example CRATE configurations 118
57 CRATE Object as MPEG-21 DID . 121
58 The Apache Server Life Cycle .. 124
59 The Apache Process Loop .. 126
60 TheMODOAI processing loop . 131
61 Two foos having lunch . 165
62 KDE Desktop File Inspector . 168
63 A Sample Digital Photograph for Exif Tool .169
64 Sample PDF analyzed by Jhove .171
65 Sample HTML file for Dublin Core analysis . 175
66 Links on a web page . 184

1

CHAPTER I

INTRODUCTION

Digital information lasts forever or five years, whichever comes first.
— Jeff Rothenberg[118]

1 THE CHALLENGE OF DIGITAL PRESERVATION

Significant funds have been devoted to digital preservation research,but there is still no consensus

regarding the best preservation strategy. Various governments around the world have organizations

whose mission is digital preservation, including the US [95], the UK [93], Holland [66], Australia

[94], and Japan [142], among others. Each program has a primary focus, usually the digitization

and preservation of official collections such as historical cultural works and/or government records.

Some countries are attempting to coordinate their efforts, for example throughthe International

Conference on Preservation of Digital Objects [59], but so far no international standard has been

developed and accepted [73].

Preserving “everyday” websites is arguably harder than preservation of more formal collec-

tions because so many non-professional people are involved in creatingand managing their own

web content. Such home-grown sites typically lack the metadata and other structures that facilitate

archiving commercial digital libraries, and a single site may contain a wide variety of styles and re-

source types but have no information on who authored the pages and no way to organize the content

by, for example, topic.

Should we care about these ordinary, common-place sites? There are lotsof reasons that we

should, and not merely because tomorrow’s US President probably haspages on today’s Facebook

site. Much of our social commentary and daily communication has moved from print media to

online sites including web pages, blogs, and social networking sites. The one thing all of these sites

have in common is that they are hosted on a web server. Since web serverstypically host many

sites, reaching one server can mean reaching a large number of independent websites. Host servers

usually offer a variety of services to their client websites - shopping carts, PHP support, web log

analysis, backup facilities - all of which are automated features requiring littleto no manpower

support by the provider. What if there were an automated preservation option (as opposed to merely

a site back-up process), which is similarly simple to install and administer? If we could harness

the web server itself as an agent of preservation, we could improve our chances of achieving the

long-term preservation of web content.

This dissertation follows the style of theInternational Journal on Digital Libraries

2

FIG. 1: The difference between “preservation” and “backup” is more obvious in the non-digital
realm where the concepts of “original”and “copy” are well-understood. Readers know that the
images on these pages are themselves copies, and that the Rosetta Stone [115] in the British Museum
(left) is the “original” while the item for sale in a museum catalog [116] on the right is a replica,
i.e., not the original.

There is a difference betweenpreservationandbackup, although to the lay person that difference

is perhaps not as obvious in digital media as it is in archeology (see Figure 1). Consider this

dissertation, for example. Written using a digital typesetting system and authoring tools (LaTeX),

it is precisely duplicated on several systems and on a backup DVD. Which of these is the canonical

file, or are they all “original”? A small piece of metadata, the timestamp, could possibly be used to

declare that one particular file is the original and the others are copies. The distinction becomes less

clear if the copies are made with the “preserve timestamp” option.

Since digital media is so readily replicated, the need for a preservation strategy may not be

obvious. There are many threats to the long-term persistance of digital information. Rosenthal et

al. [114] identified over a dozen factors that could limit or prevent recovery (see Table 1 on the next

page). Examples of each can be found in world news archives. In the digital world, preservation

encompasses not juststoring bits and bytes but also ensuring that they continue to beaccessible,

whether they are dark archives (for example, backup tapes which may be only rarely accessed, or

historical files retained for general archival purposes), or a website’s often-retrieved home page.

Arguably the most influential document on digital preservation has been theReference Model

for an Open Archival System[20]. A comprehensive review of issues and best practices written by

3

TABLE 1: This list of threat factors for digital preservation comes from [114]. The threats are real.
A cursory search of an international news archive will produce an example for each of them.

• Media Failure • Communication Errors
• Hardware Failure • Failure of Network Services
• Software Failure • Software Obsolescence
• Internal Attack • Operator Error
• External Attack • Natural Disaster
• Economic Failure • Organizational Failure

• Media and Hardware Obsolescence

The Consultative Committee on Space Data Systems, it identified three key preservation activities:

(1) Data refreshing

(2) Migration from one format to another

(3) Emulation

All three are essential for preserving digital information. The problems and issues associated with

digital preservation are the same whether the target is a static, small website ora sophisticated,

dynamic digital library.

Maintaining a viable archive is only part of the story, however; the content should also be

discoverable. On the web such content discovery typically means using a search engine like Google

or Yahoo. The data that the search engine produces ultimately comes from the web server. A

lengthy and repetitive request-response for each URL occurs between the search engine and the web

server. The process is often inefficient [16], wasting computational cycles and bandwidth. A bigger

problem is that large sections of the web remain “hidden” [110], even though they can be accessed

through the server if a visitor knows where to look. Visible content, crawledby search engines, has

the advantage of being at least temporarily preserved in the search engine cache, effectively turning

the cache into an incidental preservation resource [87].

Up to now, web servers have participated in preservation more by accident than by design. Files

that are accessible via the web may be actively replicated on other web servers [12, 56, 27], cached

by search engines [87], haphazardly stored by casual users, or intentionally archived as part of a

site snapshot [146, 61]. In a previous study we demonstrated that a large percentage of a website’s

known content could be reconstructed using search engine caches (the “web infrastructure”) [86].

Reconstruction only applied to crawled pages, of course. Pages that were not advertised on the site

itself or at another site as an external link, were never crawled and therefore were not recoverable

from the search engine cache. Our data indicated that an advertised link would be crawled; the key

is to advertise every canonical resource to the crawler. By extending theinteraction between web

4

server and crawler to encompass a more complete view of the site, preservation of web-accessible

resources would be improved.

This is a much harder problem to solve than it would seem at first glance. The answer depends

on who is asking the question.Content-negotiation, for example, can determine whether a document

is returned in an English-language version or a French-language version. Some parts of a site may

be cloaked from certain clients. Yet other difficulties stem from the fact that a website is not a simple

mapping of a file system tree (Figure 2 on the following page). Dynamic content like CGI scripts

also adds to the problem’s complexity. In addition, web resources may not physically exist on the

server but instead be composed on-the-fly by the combination of a file system resource (HTML

page), data from a database (dynamic content) and the access control imposed by the web server

configuration file (httpd.conf, for instance). A subsequent visitor to the site who issued the identical

request string could actually receive different content in reply. For example, if the dynamic content

is a request for Unix time (number of seconds since 1970), that portion ofthe page will not be

the same as the previous response. Even though a website is visualized as adirected graph of

URIs, a URI does not necessarily have a file system equivalent. The loose hierarchy of web pages,

including the hypothetical “website tree” pictured in Figure 2 on the next page, are abstractions

of reality. Web resources exist as URIs, essentially independent of any links to other URIs. The

mapping between a website and the file system is thus not one-to-one. In short, enumerating every

accessible site resource may not be possible but we may be able to utilize features of the file system,

web configuration, and server logs to achieve an acceptable approximation.

2 SCOPE

This dissertation addresses two of the problems that arise in website preservation, theCounting

Problem (getting all of a website’s resources) and theRepresentation Problem(getting sufficient

resource description information, i.e., “metadata”). Both are crucial for digital preservation [117],

because resources cannot be accessed if we do not know enough about them, and they cannot be

preserved if we do not have a copy of them. The web server is uniquely positioned to assist in solv-

ing these problems, in large part because it produces the content we seek to preserve. It bothhasthe

resources and knowsaboutthem. The following questions represent the scope of this dissertation:

(1) What tools and methods can improve resource enumeration?

(2) Can enumeration tools be integrated with the web server?

(3) Can metadata be automatically and extemporaneously extracted from web resources?

(4) Can metadata utilities be integrated into the web server?

(5) Is it practical and safe to analyze resources at point of dissemination?

(6) Can the web server perform both resource analysis and resource delivery packaged together

in an archival-friendly format?

5

FIG. 2: Websites are often described as “trees”, with website “root” (index.html) linking to re-
sources in other parts of the site. In many cases, however, resourcesarenot linked to the main part
of the website (lower right). In other cases, they may link back-and-forth: websites are more like
graphs than trees. This is one reason why a website “counting problem” exists.

(7) Can preservation functionality be easily installed on a web server by a typical webmaster?

3 APPROACH

The author designed and ran many experiments during a 3-year period, some of them lasting more

than a year. Data was collected continuously throughout the period and theresults were monitored

for issues such as hardware failure or other errors that tend to occuron live web sites. The experi-

ments were focused on obtaining real-life metrics on the activities of web crawlers, such as patterns

arising from website change and the time to harvest sites of various type andsize. The author also

created various experiments examining the impact of metadata utilities on web server performance.

The experiments were done in a protected test environment as a proof of concept, followed with

longer, more detailed tests on a live, commercial server.

• The Counting Problem Several different sets of experiments were conducted to examine

website resource exposure, i.e., how much of a site is accessible and, if accessible, how much

is actually accessed. Each set involved the creation and installation of at least 4 distinct

websites with unique content and a series of scripts to monitor and record results.

– Search Engine CoverageThe first set of experiments looked at the major search en-

gines, tracking both the breadth and depth of their crawls and their persistence in the

6

face of missing or changed resources. This group of tests ran for over 6 months. A

second series of tests were created that looked as site structure and its impact on access.

These experiments (4 very large websites of over 20,000 pages each) were conducted

over the space of 13 months.

– Sitemap CoverageThe author used a snapshot of the Old Dominion University Com-

puter Science Department website to test the usefulness of Sitemaps as a solution for

website resource enumeration. It compared the different results obtained from popular

tools and the limitations these tools impose.

– Tools & Methods for Improving Resource EnumerationExpanding on the results of

the enumeration experiments, additional investigations were performed to examine other

potential repositories of website knowledge, i.e., logs and the web infrastructure. An

archived copy of Old Dominion University’s CS Department website was used as a

test bed. The coverage of the website by each source is compared against the original

website, and techniques for maximizing coverage are discussed.

• The Representation Problem Various utilities are examined which are designed to extract

metadata from digital resources. The author’s experiments tested a varietyof utilities against

a mid-size site having a variety of content commonly found on websites (HTML,PDF, Video,

etc.). Detailed performance metrics were obtained for the utilities.

– Fully Automated Describes utilities which have a command-line interface and can thus

be invoked using scripts. Reviews issues found with attempted implementation of some

of these utilities.

– Partially Automated A look at utilities which combine both automatic and manual

input.

– Web Server-Compatible UtilitiesA discussion of the utilities which proved more

amenable to server inclusion.

• Integration of Preservation Functions into the Web Server The author’s central thesis is

that the web server can actively participate in website preservation. The reference model for

this approach is called CRATE. A technical implementation of the CRATE reference model

was developed and evaluated via a new software module,MODOAI. Although based on a pre-

vious proof-of-concept module, the software was completely redesigned and reimplemented

by the author over the course of 2 years. TheMODOAI module has been installed on several

Apache web servers and tested under different load scenarios.MODOAI presents an inte-

grated solution to the two problems ofCountingandRepresentation. The basis for this model

is explained in detail.

7

– Web server modulesDescribes the widespread use of web server modules and their

installation in the Apache environment. Web server modules are the software foundation

for the CRATE implementation approach. (MODOAI).

– MODOAI A set of experiments was conducted usingMODOAI. A mid-size test website

was installed in a commercial, web-testing environment. The results of these experi-

ments are presented and evaluated.

– The CRATE Reference ModelPresents metrics of a standard website harvest (just the

resources) compared against a full CRATE archiving sequence (resources plus meta-

data).

4 ORGANIZATION

The dissertation is organized into the following chapters, grouped by major topic. Background ma-

terial in Chapters 2 – 4 covers basic digital preservation concepts, current practice, and how web

services affect preservation. Chapters 5 – 8 present the two preservation problems addressed in

this research, the Counting Problem and the Representation Problem. These chapters also describe

several experiments conducted as part of this research. Chapters 9 –11 present the CRATE refer-

ence model, an example technical implementation (MODOAI), and an evaluation. Ideas for further

research and conclusions are presented in Chapters 12 and 13. Finally, an extensive set of Appen-

dices provides additional technical information about the tools used in the experiments, the CRATE

Model schema documents, and other relevant supplementary materials.

The following gives a brief summary of each chapter.

Chapter 2: Current Practice in Digital Preservation Concepts of digital preservation are

introduced along with public and private programs aimed at preserving digital content of all kinds.

The OAIS model is reviewed, and socio-economic factors that influence preservation are discussed.

Chapter 3: The Role of the Web Server in Digital PreservationThis chapter looks at the

impact the internet has already had on digital preservation, and considers ways in which it can con-

tinue to aid preservation, both intentionally and incidentally. Private and publicefforts specifically

targeting preservation of World Wide Web content are discussed.

Chapter 4: The Role of Search Engines in Digital PreservationThe concepts of web infras-

tructure, lazy preservation, and search engines as motivators of web content are examined. A series

of experiments which mapped crawler coverage of different websites is reviewed and evaluated.

Chapter 5: Resource Enumeration: The Counting ProblemThis chapter presents a formal

definition of the counting problem and examines why the counting problem exists. The HTTP pro-

tocol is reviewed, along with website structure and common methods used for resource discovery.

Chapter 6: Evaluation of Resource Enumeration MethodsDescribes experiments to test

crawling, Sitemaps, and log harvesting as resource enumeration methods. Compares the results of

8

each method, and proposes strategies to achieve maximum website resourcelisting.

Chapter 7: Resource Description: The Representation ProblemCompares the minimal

metadata available from an HTTP Response with the breadth and depth of metadata expected in

an archival system. Examines some of the many utilities archivists use to generate resource meta-

data, and their limitations.

Chapter 8: Evaluation of Metadata Utilities on the Web ServerDescribes a series of tests

implementing utilities in an Apache web server environment. Discusses compatibility of metadata

utilities with an operational web server.

Chapter 9: CRATE: A Model for Self-Describing Web ResourcesThe CRATE model is

introduced as a OAIS Submission Information Package. We describe Complex Objects as examples

of Archival Information Packages (AIPs). The process of building aCRATE is detailed, followed

by a comparison of this model with other complex-object models.

Chapter 10: MODOAI : An Implementation of the CRATE Reference ModelDescribes the

design, development, and implementation of an Apache web server module which implements the

CRATE model.

Chapter 11: Evaluation of the MODOAI CRATE Implementation Reviews the results of the

experiments on the Counting Problem and the Description Problem, and evaluates the feasibility of

integrating preservaton functions into the web server.

Chapter 12: Future Work This chapter presents follow-on research areas suggested by the

results of the work presented in this dissertation.

Chapter 13: ConclusionsSummarizes the results and contributions of this research. Discusses

advantages of the CRATE approach in web resource harvesting for preservation. Presents the pros

and cons of using the web server as an agent of preservation.

Appendices: Provides related materials including CRATE schema documents, examples of the

XML text response generated by the ApacheMODOAI module, and detailed output from selected

metadata utilities.

9

CHAPTER II

CURRENT PRACTICE IN DIGITAL PRESERVATION

Data should be “born archival”
— Stewart Brand[15]

1 PRESERVATION: DEFINITIONS AND LIMITATIONS

1.1 Digital Libraries Compared with the World Wide Web

The rapid growth of the World Wide Web (“WWW” or simply “the Web”) as a phenomenon dis-

tinct from the development of professional digital libraries has created aspecial set of preservation

problems, stemming in part from the disorganized nature of the web. Libraries, whether digital

or not, have certain characteristics includingunique labellingof resources, information about each

resource, i.e.metadata, methods tolocateand toretrieveresources, and an expectedpersistence

over time thanks topreservation policiesand procedures. Web sites also have a specific path to

each resource, but both the path and the content may change often; multiple paths may lead to iden-

tical content; there is little or no metadata about the resources; accessible but unpublished paths are

common; and neither the web site nor its resources have much certainty of persistence.

Digital libraries have also benefited from research into “best practices”for creating, accessing,

maintaining, enhancing and preserving digital information. The seminal workon distributed digital

resource collections, is the Kahn-Wilensky Framework (KWF) [63], originally published in 1995

[62]. It describedhandleas the term for a resource’s unique identifier, implemented on the web

as Uniform Resource Name (URN), and defined thedigital objectas being an abstract data type

which is a combination of theresourceandkey-metadata, including the URN. Key-metadata may

include rights information such as copyright restrictions or limits on distribution.The KWF intro-

duces handle-creation authorities to ensure uniqueness in naming; an access protocol for depositing

objects into, and retrieving objects from, a repository; and the aggregationof multiple digital objects

into a composite digital object based on some shared characteristic. Figure 3on the following page

illustrates these concepts.

In summary, the salient characteristic of a digital library is its managed, metadata-oriented, or-

ganized structure which facilitates both current access and long-term preservation. By contrast, even

though the web itself has many elements of the KWF such as URNs and URLs (handles), ICANN

and DNS (handle authorities), an individual web site is often disorganized, lacks metadata, has no

inherent rights-management structure, and may literally disappear overnight. Despite superficial

similarities, digital libraries and the world wide web have very different characteristics.

10

FIG. 3: A digital library (repository) as conceived in the Kahn-WilenskyFramework. Image taken
from [3].

1.2 Dublin Core

The Dublin Core Metadata Initiative began as an attempt to create a simple standard set of re-

source metadata, one that would be easy for any repository to implement [31]. Like many metadata

schemes, Dublin Core (“DC”) evolved over time and now includes dozens of fields, elements, qual-

ifiers, and options. Table 2 on the next page lists the 15 elements referred toas unqualified or

“simple” Dublin Core. Despite detailed instructions provided by the DCMI, completion of this set

of fields is not simple, and produces different results when several people attempt to describe the

same resource, including those with professional training [70, 21]. Defining the metadata for a

resource requires domain knowledge, training and experience, even for something as simple as un-

qualified Dublin Core. Courses in “Cataloging and Classification” (AACR2,for example) are part

of Library Science curricula at universities nationwide. Metadata content is still a field for experts.

1.3 The Resource Description Framework

The Resource Description Framework (RDF) evolved alongside Dublin Core [89, 111], but exists

independently. It is “designed to encourage the reuse and extension ofmetadata semantics” [89]

and as such can contribute to the metadata available for a particular resource. RDF is a W3C rec-

ommendation, and part of the semantic web standard, an effort which seeks to map a “relationship

web” onto the Internet. RDFa [141] provides guidelines for integrating information into web pages

within the conventional HTML tag format. Users can embed information that is both human-usable

and machine-scrapable. Like Dublin Core, RDF calls for informed participation rather than ama-

teur input which makes it less likely to be used on pedestrian web sites, and which is more typically

implemented as part of a professional digital library such as Connexion [29]. Dublin Core, RDF,

and other metadata schemes have been incorporated into HTML/XHTML – forexample, by using

11

TABLE 2: An example using Simple (Unqualified) Dublin Core Categories. Thehypothetic doc-
ument is this dissertation. Many fields can be used more than once (Date, e.g.)and some have
multiple interpretations (Contributor and Creator, e.g.).

Element Description/Usage Example (this document)
Contributor Editor, translator Michael Nelson
Coverage Geographic area; region-encoding USA
Creator Author, co-author Joan A. Smith
Date File date, creation date, last change date May 28, 2008
Description General information PhD Dissertation
Format File type, media, manifestation Adobe PDF
Identifier Unique ID ∼jsmit/smith.pdf
Language Spoken or written English (American)
Publisher Organization, person, originator Joan A. Smith
Relation Alternate version(s); e.g. PS, RTF ∼jsmit/smith.ps
Rights Rights held, e.g. copyright and IPR ©Joan A. Smith
Source Origin of resource ∼jsmit/smith.tex
Subject Classification code, topic, or keyword Computer science research
Title Formal name of resource CRATE: Integrating

Preservation Functions
Into The Web Server

Type Content nature, genre Text

12

META tags (Dublin Core) or RDFa – but usage outside of digital libraries is not yet common [46].

2 DIGITAL PRESERVATION MODELS & IMPLEMENTATIONS

2.1 The OAIS Model

Research into digital preservation predates the Internet by over 20 years. The records from NASA’s

space program “Voyager” were known to be at risk as early as the 1960s, and the problems were

highlighted by the Commission on Physical Sciences, Mathematics, and Applications report in

1995 [28]. The National Space Sciences Data Center formed the Consultative Committee for Space

Data Systems (CCSDS), which set up detailed plans to preserve both digital and analog mission

data [20]. The CCSDS group’s efforts led to the creation of the Open Archival Information System

(OAIS), which continues to influence many digital preservation initiatives worldwide.

The “OAIS” model has been adopted by many digital libraries and preservation projects around

the world. OAIS provides a framework in which all preservation efforts -physical, digital, multime-

dia - share a common reference. It defines 3 primary roles: producer,consumer, and management.

The exact labels may differ by application area - author instead of producer, archivist instead of

management, for example - but the concept that items are submitted to an archiving entity for cura-

tion and later dissemination is applied to both the physical and the digital worlds.

In the acronym “OAIS” the word “Open” refers to the fact that the framework is developed

jointly in an open, public forum, in which any person or group may to participate. There is a

detailed Reference Model participants adhere to. The central unit of theOpen Archival Information

System is the information package itself, which incorporates the object and also other content and

supporting information elements such as provenance [20] or reproduction rights. OAIS defines three

variations of the information package:

1. SIP The Submission Information Package is the item sent by the creator to a OAIS archive

for preservation.

2. AIP The Archival Information Package is the item packaged by the OAIS archive for preser-

vation, i.e., with descriptive metadata and whatever other elements are necessary for it to

endure long-term storage.

3. DIP The Dissemination Information Package is the archived item, repackaged and presented

to a (future) consumer in a form that makes it usable to that consumer.

In other words, we make, we store, we retrieve. This simple scenario beliesthe complexity under-

lying preservation. The canonical OAIS functional model is illustrated in Figure 4 on the following

page, and shows the relationship of the SIP, AIP and DIP elements and the corresponding roles of

producer, manager, and consumer. Although the OAIS model encompasses the preservation of both

13

FIG. 4: This view of the OAIS Functional Model is taken from the CCSDS Report ([20]). Note
the operationally-intense role of management in creating and maintaining the Archival Information
Packages (AIP).

physical and digital objects, the harder problem is acknowledged to be in the digital realm [117] as

anyone with a 10-year-old floppy disk and a 100-year-old family bible canreadily understand.

Archival Information Packages (AIPs) are expected to contain sufficient (ideally, all)

preservation-related data to enable future access. The process is so difficult that it has been de-

scribed as requiring “heroic measures” [72]. A number of tools and procedures have been developed

to create submission (SIP), archival (AIP), and dissemination (DIP) packages but their requirements

standards differ considerably. Victoria Electronic Records System (VERS) Encapsulated Objects

are geared specifically to Australian government records [145] and have numerous provenance and

signature elements included in them. Trustworthy Digital Objects, described byGladney, provide

mechanisms to ensure long-term verifiability of the object [40]. The MetadataEncoding and Trans-

mission Schema (METS) only requires a file inventory and structural map, withmetadata like rights

and provenance completely optional [88]. Dublin Core, as mentioned earlier, is geared toward re-

source discovery. It is not focused on how resources are stored but on having a consistent albeit

small set of metadata available [148]. Just cataloging the underlying resource type is difficult, as

we will see in Chapter VII on page 84, but future accessibility to the resource depends on know-

ing details like file type, compression schemes, character set, and more. In short, migration and

representation are on-going digital preservation problems.

Despite its complexity, the OAIS model has considerable flexibility of interpretation. The OAIS

14

TABLE 3: File & Structural Map Sections of METS

Section Element Examples

File Location Source Path
Target Path
Source URL

Content By-Value (Base64)
By-Reference (File Ptr/URI)

Structural Map Div Sitemap
Links In/Links Out

model accounts for the existence of preservation problems, and provides roles and use-cases for

addressing them, but it does not prescribe a solution. Individual repositories can implement it

as they see fit. As [114] notes, the OAIS model is so flexible that almost any system can claim

conformance.

2.2 Complex Objects

The SIP, AIP, and DIP packages of the OAIS model arecomplex objects: they contain not just an

item to be preserved, but also include all associated information [96, 100]. One type of complex

object that is familiar to the general public is the DVD. The storage model in manycases is the

MPEG-4, an encoding format which is a type of complex object implementation. The DVD usually

contains not simply a movie but also embedded copyright protection, computer-accessible web

links, and occasionally music tracks, among other items. Complex object implementations enable

related items to be packaged together in a single digital delivery. The concept is employed in a

number of digital preservation systems, such as METS, PREMIS, VERS, and CRATE.

2.3 METS & PREMIS

The METS model is at the heart of many repository systems, including the widelyused software

packages DSpace and Fedora. The primary object, a METS “document,”contains seven major

sections (Figure 5 on the following page), but only the File and the Structural Map sections are

required (see Table 3). The Content element of the File section allows the resource to be included

either directly (encoded in Base64) or indirectly (by using a pointer). Indirection lets repositories

share information about resources without requiring the resource to beduplicated.

Some metadata schemas have been endorsed by METS. For the Descriptivesection, Dublin

Core and MARC are recommended. For the Administrative section, recommended schemas include

15

(A) (B) (C)

FIG. 5: (A) The VEO, a VERS Encapsulated Object; (B) The METS Document Object and (C) the
PREMIS Intellectual Entity. Each is a different implementation of the Complex Object type.

the Schema for Technical Metadata for Textfrom New York University, andTechnical Metadata

for Digital Still Imagesfrom the National Information Standards Organization (NISO). Like the

Victoria Electronic Record System (VERS) ingestion process (see Section2.4 on the following

page), metadata utilities can be used on each resource to extract data for the Technical portion of

the Administrative section. Descriptive metadata is still a problem because neither Dublin Core nor

MARC metadata can be derived for our sample resources.

Repositories customize METS via aprofile which manages the types of resources it contains.

An image collection can have one set of metadata specifications, while audio CDcollections have

another. Applying METS to a typical website raises complicated issues. Let us assume a hypo-

thetical site containing 3 very different but commonly-found types of resources, HTML, PDF, and

JPEG. Using the default profile (from the Library of Congress tutorial web site, for example) we

would probably need to create three separate METS documents, one for each resource. Alterna-

tively, we could adopt the PREMIS extensions to METS, which is more suited toour sample site.

In PREMIS, our web site could be mapped to an “Intellectual Entity” with each of the resources

comprising an “Object” contained within that entity. Figure 5–(B) gives a conceptual view of the

PREMIS Entity. On the other hand, our PDF can be considered a complete Intellectual Entity of

its own, and we could therefore archive it as a separate object. In this case, the PDF would have

a relationshipto the HTML referral page. Like many Archival Information Packages,the METS

AIP is an XML file where content may be included either By-Value or By-Reference. The structure

of the AIP follows the repository’s METS profile. In any case, mapping thesite’s resources to one

16

or more “documents” or to one or more “entities” will depend on the particular implementation at

the archiving repository. Two agencies archiving our site could adoptvery different strategies and

yet adhere to the METS model. The Library of Congress’s AIHT Projectshowed how complicated

ingestion can be when two sources implement a model like METS in different ways [97]. The

PREMIS data dictionary addresses this issue by providing more detailed guidelines for metadata

fields and content. This is a boon to the knowledgeable archivist, but a daunting set of criteria for

the typical webmaster.

2.4 VERS

The Victorian Electronic Records Strategy (VERS) was developed by the provincial government of

Victoria Australia to efficiently manage digital versions of official records [143]. VERS metadata

objects are designed to ensure authenticity. The VERS workflow (shown inFigure 6 on the follow-

ing page) involves the process of converting, encapsulating, and digitallysigning each record. A

record is stored as an encapsulated object (“VEO”) which includes a description of the object for-

mat; the VERS version under which it was stored; the digitally signed object, which contains both

object content and its metadata; the VEO signature and a locked signature block; and other compo-

nents designed to certify the content and validity of the record. Details of theVERS Encapsulated

Object are provided in a series of implementation guidelines [139]. The process of implement-

ing a pilot VERS system has many steps. These measures may seem extreme for non-official web

resources, but forgery of any digital document or web site is feasible [124].

The VERS system’s focus on evidentiary-quality digital archives requires a great deal more

metadata than is currently provided by everyday websites. The most important element, the digital

signature, poses a problem in that the required PKI infrastructure is notavailable through many web

hosting services; it is further complicated by the need to have a public key onrecord for this site. In

addition, the MD5-Digest directive in the Apache web server defaults to “off,” so it must be specif-

ically enabled at the server. Finally, although it ispossible, digitally-signing HTML documents

is not a prevalent practice. JPEG images occassionally have embedded copyright information, but

encrypted or digitally signed images are relatively rare. In short, VEOs make good government

records (AIPs), but are not practical for quotidian website preservation.

2.5 MPEG-21 DID

LANL has successfully adopted the flexible MPEG-21 DIDL model for usein digital repositories.

Figure 7 on page 18 shows how a Technical Report is stored in the MPEG-21 format at LANL. The

main MPEG-21 object, called a “container,” can have multiple nested containers, items, and com-

ponents. “Descriptors” accompany each of these elements to provide information such as origin,

date, and element content-type - i.e., metadata about the metadata. Although the original industry

17

FIG. 6: The VERS Workflow, as described and pictured in [144].

18

FIG. 7: The LANL MPEG-21 DID Complex Object

19

specification permitted deep nesting of containers and objects, LANL’s implementation only al-

lows a container to grow in breadth, not depth. This approach simplifies resource access, update,

and general management. Like many other XML-based complex-object models, metadata and re-

sources may be included either By-Reference or By-Value. If we haveadditional information about

a resource, it can be included within the container as an additionalitem. For example, more detailed

information about file Foo.pdf, including metadata about its embedded images, isproduced by the

Jhove PDF-HUL module (see Appendix C on page 164– 1 on page 164). The Jhove metadata would

be contained within oneitem-componentin the container, and the Acroread information (Figure 8

on the following page) would be contained within anotheritem-component. A third item-component

could hold the complete set of response-request fields.

LANL’s use of MPEG-21 exhibits a relatively simple ontology. Harvesting a web site would

produce three containers, one per resource. The number of items in each container would vary with

the number of metadata source-types. If no utilities were used, only the HTTPmetadata item would

exist. Otherwise, one item per metadata type would be included in the container.The final element

in each container is the resource itself, also enclosed withinitem tags.

3 LOCKSS

Digital preservation solutions often require sophisticated system administrator participation, dedi-

cated archiving personnel, significant funding outlays, or some combination of these. In a similar

vein, LOCKSS, “Lots of Copies Keep Stuff Safe,” is a solution adopted byseveral large research in-

stitutions and publishers such as Stanford University and the GovernmentPrinting Office [82]. Since

very long term availability of resources is not guaranteed by digital librarypublishers, subscribing

institutions need a way to ensure long-term access to the information without violating publisher

copyrights. An alliance of subscribers which act as a distributed back-up system, LOCKSS provides

a collection of cooperative, deliberately slow-moving caches operated byparticipating libraries and

publishers to provide an electronic “inter-library loan” for any participant that loses files. Because

it is designed to service the publisher-library relationship, it assumes a level of at least initial out-of-

band coordination between the parties involved. Its main technical disadvantage is that the protocol

is not resilient to changing storage infrastructures.

The protocol is based on peer-to-peer technology, and is particularly focused on the issue of au-

thenticity, since digital information is easily transformed. Bit-level comparisonsof multiple copies

are used to ensure file integrity over time. A complicated system of “voting” among the mem-

bers is used to prevent unauthorized distribution of copies to non-subscribing institutions. Rights

management is a central concern of publishers who have historically depended on the costs and

practicality of reproduction as one deterrent to copyright infringement. LOCKSS reassures publish-

ers by tracking which members are authorized subscribers of publications, and allowing restoration

20

<?adobe-xap-filters esc="CR"?>
<x:xmpmeta xmlns:x='adobe:ns:meta/'

x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf -syntax-ns#'

xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1

<?adobe-xap-filters esc="CR"?>
<x:xmpmeta xmlns:x='adobe:ns:meta/'x:xmptk='XMP toolk it 2.9.1-13,

framework 1.6'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf -syntax-ns#'

xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'

xmlns:pdf='http://ns.adobe.com/pdf/1.3/'>
<pdf:Producer>ESP Ghostscript 815.02</pdf:Producer>

</rdf:Description>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'

xmlns:xap='http://ns.adobe.com/xap/1.0/'>
<xap:ModifyDate>2007-03-14T10:00:21Z</xap:ModifyDat e>
<xap:CreateDate>2007-03-14T10:00:21Z</xap:CreateDat e>
<xap:CreatorTool>

dvips(k) 5.95a Copyright 2005 Radical Eye Software</xap:C reatorTool>
</rdf:Description>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'

xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/'>
<xapMM:DocumentID>uuid:ada536f0-811e-487d-b20a-23eb cfe106b7

</xapMM:DocumentID> </rdf:Description>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'

xmlns:dc='http://purl.org/dc/elements/1.1/'>
<dc:format>application/pdf</dc:format>
<dc:title> <rdf:Alt> <rdf:li xml:lang='x-default'>jcdl 07.dvi</rdf:li>

</rdf:Alt> </dc:title> </rdf:Description> </rdf:RDF>
</x:xmpmeta>c-9713-43b5a2f3f649'xmlns:pdf='http://n s.adobe.com/pdf/1.3/'>

<pdf:Producer>ESP Ghostscript 815.02</pdf:Producer>
</rdf:Description>
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'

xmlns:xap='http://ns.adobe.com/xap/1.0/'>
<xap:ModifyDate>2007-03-14T10:00:21Z</xap:ModifyDat e>
<xap:CreateDate>2007-03-14T10:00:21Z</xap:CreateDat e>
<xap:CreatorTool>

dvips(k) 5.95a Copyright 2005 Radical Eye Software</xap:C reatorTool>
</rdf:Description>

<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'
xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/'>
<xapMM:DocumentID>uuid:ada536f0-811e-487d-b20a-23eb cfe106b7

</xapMM:DocumentID> </rdf:Description>width
<rdf:Description rdf:about='uuid:d46586fa-403c-4c1c- 9713-43b5a2f3f649'
xmlns:dc='http://purl.org/dc/elements/1.1/'>
<dc:format>application/pdf</dc:format>
<dc:title><rdf:Alt> <rdf:li xml:lang='x-default'>draf tFoo.dvi</rdf:li>

</rdf:Alt> </dc:title> </rdf:Description> </rdf:RDF>
</x:xmpmeta>

FIG. 8: Metadata derived from Foo.pdf using Acroread.

21

FIG. 9: The basic OAI-PMH Data Model. This view is adapted from the modelpresented in [136].

of lost materials only when a specific set of criteria has been met.

4 OAI-PMH

The Open Archives Initiative Protocol for Metadata Harvesting, OAI-PMH, is based on a simple

data model consisting ofresources, items and records, as shown in Figure 9. Like many library-

driven initiatives, OAI-PMH is focused on resource metadata such as authorship, copyrights, cre-

ation and modification dates. Traditionally, the resource itself is not harvested. Instead, queries

requestmetadata recordssuch as Dublin Core metadata, using the resource’s unique OAI-PMH

identifieras the point of entry. Each of the metadata records has its own datestamp andidentifica-

tion type; queries can access an item’s metadata records by adding qualifiers. If the resource does

not change, but one of its metadata records has new information, the resource date will remain the

same while the metadata record has the more recent timestamp. Another feature of the OAI-PMH

data model is theset, enabling selective resource harvesting based not on a resource’slocation in

the site, but on the resource’s membership in that set. Finally, responses toqueries are returned in

XML, making it easily adaptable to text-based protocols like those used throughout the Internet.

For example, OAI-PMH requests and responses are typically communicatedover HTTP.

22

TABLE 4: OAI-PMH Verbs

OAI-PMH Verb Description
Identify returns a description of the repository (name, POC, etc.)
ListSets returns a list of sets in use by the repository
ListMetadataFormats returns a list of metadata formats used by the repository
ListIdentifiers returns a list of ids (possibly matching some criteria)
GetRecord given an id, returns that record
ListRecords returns a list of records (possibly matching some criteria)

OAI-PMH supports six verbs or “protocol requests” which are listed in Table 4. Three of the

verbs are aimed at helping a harvester understand the nature of an OAI-PMH Repository -Iden-

tify, ListMetadataFormats, andListSets. The ListSets verb can let a harvester know that a site

maintains sets, and what those sets are. Resources grouped by MIME types (e.g., image, audio)

and subject area (e.g., USHistory, animé) are typical examples of sets thata site might define and

support. The other three protocol requests are used for the actual harvesting of XML metadata:

ListRecords is used to harvestrecordsfrom a repository.ListIdentifiers is an abbreviated form

of ListRecords, retrieving onlyidentifiers, datestampsandset information. GetRecord is used to

retrieve an individualrecord from a repository. Required arguments specify theidentifier and the

metadata format.

The URL request string contains all of the elements needed for the serverto fulfill the request

which is executed via an HTTP GET command. For example, an OAI-PMH repository at baseURL

http://arxiv.org/oai2/ maintains resources in sets called “physics”, “cs”, “math”, and

“stat” (among others). To request only the “physics” records, and in particular only those records

that have changed since 27 September 2006, requires a simple URL:

http://arxiv.org/oai2?verb=ListRecords&set=physics
&metadataPrefix=oai_dc&from=2006-09-27

The response will contain Dublin Core metadata (records) for all items (identifiers) in the set

“physics” that have changed since September 27th 2006.

An OAI-PMH repository, or data provider, is a network-accessible server that can process the

six OAI-PMH protocol requests, and respond to them as specified by theprotocol document. A

harvester (or service provider) is an application that issues OAI-PMH protocol requests in order to

harvest XML formatted metadata. In ReST terms (over HTTP), this means thatcookies or other

session-management techniques are not needed. The request string contains all elements needed for

processing at the server, and the response string is simple XML over HTTP. Scalability in OAI-PMH

is achieved through building hierarchical harvesting networks withaggregators– services that are

both a harvester and a repository [69]. For example, a site might maintain a collection of PDF files

23

on the subject of “Probability” and also provide metadata (links, summaries) tosites that cover other

aspects of statistics.

Since some OAI-PMH requests can result in a very long response, the repository uses are-

sumptionTokento separate the long responses into many shorter responses. A ListRecords response

containing 1 million records could be separated into 2000 incomplete lists of 500 records each,

which may better suit the load requirements of the server. The fundamental, distinguishing char-

acteristic that separates harvesting with OAI-PMH from regular web crawling is that the repository

chooses the size of the resumptionToken, not the harvester. This allows repositories to dynamically

throttle the load placed on them by harvesters. The format of the resumptionToken is not specified

in the protocol and is left to individual repositories to define. Load-balancing, throttling and differ-

ent strategies for resumptionToken implementation are discussed in the OAI-PMH Implementation

Guidelines [69].

Another powerful feature of the OAI-PMH is that it can support any metadata format defined by

means of an XML Schema. The minimum requirement is support for Dublin Core[148], but this

metadata set can be automatically derived for a web resource from the HTTP header information.

This flexibility has generated considerable interest in liberal interpretationsof the data model’s el-

ements -resource, metadata, records, and items. In some cases, it means using OAI-PMH for

other than typical bibliographic scenarios [137]. In other cases, the interest is in transmitting the

actualresourceand not just themetadata. How does OAI-PMH, which is a metadata-transfer pro-

tocol, transmit the resource itself? This is accomplished by encoding the resource itself in Base64.

The resource has been converted to XML-compatible, ASCII-format metadata record which can be

included in an OAI-PMH response, as shown in Figure 10 on the next page.

Despite being a relative newcomer to the list of web-compatible protocols, OAI-PMH is already

in use to some extent by Google, MSN, and others [149, 45, 36]. It is an HTTP-based protocol de-

signed to allow incremental harvesting of XML metadata [135], with query responses that are both

human-readable and multi-system compatible. The low-barrier nature of the protocol with its six

simple verbs and query structure account for the interest by search engines, especially considering

the possibility of using a single query to generate a “latest updates” type of response containing

records about multiple resources on the server. Such an approach could save a search engine con-

siderable crawling and processing time.

5 SOCIO-ECONOMIC FACTORS INFLUENCING PRESERVATION

In his report to the Library of Congress on archiving the web, Peter Lyman cited cultural, eco-

nomic, and legal problems in addition to technical issues like emulation, migration, and decoding

of copyright protections [76]. Many of the problems fall into more than onecategory. For exam-

ple, DVDXCOPY software purchased on the web in 2002 is no longer usable because the requisite

24

FIG. 10: OAI-PMH can include complex objects as metadata. The MPEG-21 DIDL and METS are
complex object types. (Image adapted from [136]).

authorization keys are no longer maintained now that the company is out of business [32]. Law

suits caused the company’s demise (legal aspect), the software can only be activated by a key found

on the original web site (technical aspect), and the legal problems arose because commercial DVD

producers believed they were losing money to users of DVDXCOPY (economic aspect). For the

original DVDXCOPY site, preservation was not an option.

An example of intentionalnon-preservationof information is the cryptography analysis systems

developed at Bletchley Park during World War II [125]. Alan Turing’s vision of a finite state ma-

chine had been successfully built and used to decode ciphers during thewar. Rather than risk such

advanced technology being stolen, the UK government directed that everything be destroyed – from

the plans to the computers and their data [125, pages 279–292]. A similar dilemmawas recently

raised with the publication of nuclear-bomb fabrication information from an archived copy of an

Iraqi web site, restored as part of a US government initiative [17]. Another example which fea-

tured prominently in recent headlines is the web site of a congressman accused of soliciting (male)

Congressional pages [49].

While financial motives may be an obvious factor in the “preservability” of a web site, there are

other social aspects to consider. Many countries have a ban on certain types of political content,

and a wide variety of other topics are considered in bad taste, although the definition of “bad taste”

varies by culture. Accessibility to such content via the WWW would enable external (international)

groups to archive sites considered revolutionary by the local government. The decision ofwhich

25

sites are formally archived is not easily made, whether by local groups orexternal third parties. But,

supposing that all web sites regardless of content are to be preserved, and knowing that the process

is linear (at least, to some degree), which sites are at the top of the list, and which are at the bottom?

Who should make this determination? When tax dollars are applied to preservation, the public has

a vested interest in these decisions.

Governments and organizations necessarily prioritize their efforts because funding for any

project is always limited; this constraint applies as much to web archiving as itdoes to any task.

Social, cultural, and political motives will naturally influence web preservation, with “important”

collections garnering the lion’s share of effort. While the “Top Ten” list ofsites may change from

one year to another, parochial or pedestrian websites are unlikely to ever be on that list despite the

large number of sites created and maintained by ordinary users.

One idea that offers possibilities for improving this situation is todemocratizearchiving. It is the

author’s belief that putting archiving tools in the hands of the everyday webmastercouldproduce an

interest in digital preservation resulting in a variety of today’s quotidian sitesbeing accessible in the

far future. This dissertation presents concepts and tools that could contribute to this democritization

process, and hopefully to more of today’s digital information being availablein the distant future.

6 SUMMARY

Preservation is a complex problem with no single, perfect solution. Digital information varies too

much in format, protocol, and repository requirements to have a comprehensive solution that suits

all. Funding, expertise, and infrastructure requirements each impact the feasibility of any given

approach. What works well for a highly structured, professionally administered digital library may

not be practical for the everday website and webmaster. Automated approachesare reasonable

for such websites since they involve little system administration overhead. Thecomplex object

concept, which packages the resource and metadata together, could be adapted for use on quotidian

sites without involving significant expense or effort.

26

CHAPTER III

THE CURRENT ROLE OF THE WEB SERVER IN DIGITAL PRESERVATION

1 INCIDENTAL WEB PRESERVATION: USENET

In 1997, Hauben and Hauben [54] extolled the value and virtues of Usenet, a collaborative in-

ternational system of online services accessible via telephone line and modem from virtually any

computer in the world. This “net” had been already available for two decades at that point (since

1979), but it pales in comparison to the Web we have today. Oncethe Netbecamethe Web, many

of the servers that had providedBBS(Bulletin Board) services went dark, i.e., they were no longer

available. With them went many notable Net items, like the announcement of the World Wide Web

from Tim Berners-Lee [44] and the first posting mentioning “MS-DOS.” [43]

Remarkably, much of this was recovered thanks to a concerted effort byGoogle to restore these

postings and to make them accessible to the Web community [42]. What makes this remarkable is

that these files were not recovered from a preservation archive butfrom the archived copies made

by everyday userswhen Usenet was in its prime. In some cases, the data came from the Exabyte

and DAT tape archives of users; in other cases, the data was restoredfrom backup CDs in personal

collections; and a large set came from the archives of a group purchased by Google (Deja News).

There were many factors contributing to the success of the Usenet project. One was that the

timeline was reatively short and the hardware needed to extract informationfrom things like DAT

tapes could still be found, although with difficulty. But perhaps the biggestreason that it was

possible to restore so much of the former Usenet is that the data was primarily inplain ASCII

text rather than in specialized character sets or in a proprietary binary format. ASCII, the Ameri-

can Standard Code for Information Interchange, was developed in the 1960’s to represent standard

English-language characters and selected control codes for machine-processing instructions [113].

ASCII or an extended variant of ASCII is still used worldwide. Just as Greek was the decipher-

ing key provided on the Rosetta Stone (Figure 11 on the following page), ASCII was they key to

deciphering the bits on the various media.

This example stands as a kind of exception to the rule that preservation is done by preservation-

ists, but it also serves as a hint of future opportunities if preservation is democratized. In addition, it

suggests thatsimpleformats and clear encoding could increase the likelihood of long-term preser-

vation of digital information.

27

(A) Languages on the Rosetta Stone (B) Rosetta Stone metadata as Dublin Core

FIG. 11: Three languages appear on the Rosetta Stone. While all were in common use when the
stone was made, by the time of archeological discovery only ancient Greekwas still understandable.
Just as ancient Greek succeeded as an international language of scholarship, ASCII has succeeded
as the basis of computerized character encoding. The metadata of the Stonewas a key to the repre-
sentation and understanding of other ancient languages. (A) is from [132]; (B) is from [34]

2 INTENTIONAL WEB PRESERVATION: INTERNET ARCHIVE

In the United States, the task of website preservation has been largely assumed by the Internet

Archive (IA). Although it receives some funding from the Library of Congress, Internet Archive is

a private, philanthropic endeavor funded primarily by Brewster Kahle which collects snapshots of

web sites [146], not just once but several times over the course of years. The IA hosts a site called

the Wayback Machine1 where historical snapshots of sites can be viewed. As of this writing, the

Wayback Machine has historical views of the Old Dominion University Computer Science Depart-

ment website dating back to 1997 (Figure 12 on the next page). The snapshot for a particular date

can range from only a few pages to nearly complete, depending on what the crawler was able to

access at the time the site was visited by IA.

As a typical web crawler, IA has many of the same limitations that other search engines have,

i.e., it depends on the web server for information [18, 24]. Getting a completelisting of possibleand

accessibleURLs at a site is no easy task [16, 55]. For web preservation this means that refreshing

is a problem: unfound resources are unrefreshed resources; uncrawled resources are unpreserved

resources. Even those thatare refreshed lack sufficient forensic metadata for preservation.

There are often long delays between Internet Archive crawls and the posting of a site snapshot,

1http://www.archive.org/web/web.php

28

FIG. 12: The Internet Archive’s Wayback Machine (http://web.archive.org/web/ * /
http://www.cs.odu.edu) has taken numerous snapshots of the CS Department website over
the years. Not all those shown can actually be accessed, and links within snapshots may also be
broken.

and sites that have frequent changes are unlikely to have all possible snapshots captured. Sites

that have been crawled and archived at the IA may nonetheless prove inaccessible, or be missing

key elements and images that were part of the original site. TheURLs taken from the Wayback

Machine in Table 2 on the following page demonstrate some of the problems users can experience

when attempting to access snapshots. These example URLs reflect historical information that is

only a few years’ old, but which is already incomplete. Despite the InternetArchive mission of

web preservation, it is a primarily philanthropic endeavor funded by Brewster Kahle with some

additional funding from organizations like the Library of Congress. As such, its income is much

lower than Google’s billions of dollars in capitalization. It is therefore unrealistic to expect the IA

to succeed in archiving more than a small fraction of web content.

Many web sites have been replicated by users around the web, sometimes intentionally (the

Comprehensive TeX Archive Network – CTAN – mirrors, for instance);sometimes illegally (the

Russia-based clone of O’Reilly resources at the former sitehttp://www.orelly.com , for ex-

ample) [27]. Search engines have been known to cache large portions of a site, but our experiments

showed that usually such a cache is purely temporary: if the site disappears, the cached copy on the

search engine usually follows soon after [87]. Site mirroring is not a solution for long-term web

29

TABLE 5: Problematic snapshots on the Wayback Machine

Path index error:
http://web.archive.org/web/19971010201632/http://ww w.cs.odu.edu/
Missing content:
http://web.archive.org/web/20030419163818/http://ww w.cs.odu.edu/
Not in archive:
http://web.archive.org/web/19970606105039/http://ww w.cs.odu.edu/

preservation, in part because it plays a backup role rather than a historical archive role [12]. Once

site components are changed, the mirror typically reflects the change (else itis not amirror), so

the evolution of a file through its various incarnations would usually also be lost. Site mirroring

probably has limited utility as a preservation tool for the long haul. Even if a mirrored site was

preserved in its bit-wise splendor, figuring out how to interpret it at some distant future point would

be a challenge. Preservation demands keeping enough related informationto enable sensible future

access.

The Internet Archive stores crawled sites in a file format calledARC [74], shown in Figure 14

on page 31-(A), with a command-line example shown in Figure 14 on page 31-(B). Except for the

protocol headers, web crawling using HTTP, FTP, and NNTP typically generates little or no explicit

descriptive metadata. A web site merely needs to be crawled by the Alexa robot for the ARC file to

be created, or it could use IA’s Heritrix [91] to self crawl, creating an archival-quality snapshot of

the site.

Such an approach does not provide much in the way of future forensic information, so the In-

ternet Archive also offers an expanded preservation-oriented crawling service,Archive-It. [2] The

service is on a fee-based subscription, and allows the subscribing site to provide Dublin Core meta-

data, multiple “seed” URLs, varying schedules for each seed, and otherarchiving details. For our

sample site, we would need to manually introduce the Dublin Core information for each resource,

via the Archive-It catalog form. Even though this is an improvement forensically over plain HTTP

metadata, expressing technical information in these fields is awkward, at best. Consider the Jhove

analysis of our JPEG resource, shown in part in Figure 13 on the next page. What parts of the analy-

sis should be entered into Dublin Core fields? What kind of consequencesarise from discrepancies

in the output from other utilities if we do choose to include some or all of the information?

ARC files are plain ASCII text, and any characters outside that range mustbe “escaped”.

Whether we use the expanded, Dublin Core-based version or the original, the archived file con-

forms to the ARC format: file header with version information followed by the URLrecord which

30

<?xml version="1.0" encoding="UTF-8"?>
<jhove xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
xmlns="http://hul.harvard.edu/ois/xml
/ns/jhove"
release="1.1" date="2006-06-05">
<date>2007-04-19T12:20:23-04:00</date>
<repInfo uri="/var/www/Barfoo.jpeg">
<reportingModule release="1.2"
date="2005-08-22">JPEG-hul
</reportingModule>
<lastModified>2007-02-03
T18:22:23-05:00</lastModified>
<size>25474</size>
<format>JPEG</format>
<version>1.01</version>
<status>Well-Formed and valid</status>
<sigMatch><module>JPEG-hul</module>
</sigMatch>
<mimeType>image/jpeg</mimeType>
<profiles><profile>JFIF</profile>
</profiles>
<properties>
<property>
<name>JPEGMetadata</name>
<values arity="List" type="Property">
<property>
<name>CompressionType</name>
<values arity="Scalar" type="String">
<value>Huffman coding,
Baseline DCT</value>
</values>
</property>
<property>
<name>Images</name>
<values arity="List" type="Property">
<property>
<name>Number</name>
<values arity="Scalar" type="Integer">
<value>1</value>
</values>
</property>
<property>
<name>Image</name>
<values arity="List" type="Property">
<property>
<name>NisoImageMetadata</name>

<values arity="Scalar"
type="NISOImageMetadata">
<value> <mix:mix xmlns:mix=
"http://www.loc.gov/mix/"
xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance"
xsi:schemaLocation=
"http://www.loc.gov/mix/
http://www.loc.gov/mix/mix.xsd">
<mix:BasicImageParameters>
<mix:Format> <mix:MIMEType>
image/jpeg</mix:MIMEType>
<mix:ByteOrder>
big-endian</mix:ByteOrder>
<mix:Compression>
<mix:CompressionScheme>6
</mix:CompressionScheme>
</mix:Compression>
<mix:PhotometricInterpretation>
<mix:ColorSpace>6</mix:ColorSpace>
</mix:PhotometricInterpretation>
</mix:Format>
</mix:BasicImageParameters>
<mix:ImageCreation>
</mix:ImageCreation>
<mix:ImagingPerformanceAssessment>
<mix:SpatialMetrics>
<mix:SamplingFrequencyUnit>3
</mix:SamplingFrequencyUnit>
<mix:XSamplingFrequency>0
</mix:XSamplingFrequency>
<mix:YSamplingFrequency>0
</mix:YSamplingFrequency>
<mix:ImageWidth>459</mix:ImageWidth>
<mix:ImageLength>253</mix:ImageLength>
</mix:SpatialMetrics>boxedminipage
<mix:Energetics>
<mix:BitsPerSample>
8,8,8</mix:BitsPerSample>
<mix:SamplesPerPixel>
3</mix:SamplesPerPixel>
</mix:Energetics>
</mix:ImagingPerformanceAssessment>
</mix:mix> </value> </values>
</property> <property> </repInfo>
</jhove>

FIG. 13: Part of the metadata derived from Barfoo.jpeg using Jhove’sJPEG-HUL module. See
Appendix C on page 164 for other Jhove sample output.

31

filedesc://IA-001102.arc 0 19960923142103
text/plain 76 1 0 Alexa Internet
URL IP-address Archive-date
Content-type Archive-length

http://www.dryswamp.edu:80/index.html
127.10.100.2 19961104142103 text/html 202
HTTP/1.0 200 Document follows
Date: Mon, 04 Nov 1996 14:21:06 GMT
Server: NCSA/1.4.1
Content-type: text/html
Last-modified:
Sat,10 Aug 1996 22:33:11 GMT
Content-length: 30
<HTML>
Hello World!!!
</HTML>

(A) (B)

FIG. 14: Figure (A) shows the conceptual view of an ARC object and its components. Text in
(B) shows ARC file example data (sample content fromhttp://www.archive.org/web/
researcher/ArcFileFormat.php).

begins with a list of metadata fields included with this particular record, and ends with the actual

content returned from the HTTP method (e.g., GET). ARC files are compressed at both the URL-

record level and at the file level, for improved storage. Although not written in XML, an ARC file

is mostly human-readable, once uncompressed, as shown in Figure 14.

The International Internet Preservation Consortium (IIPC) has developed an extended revision

of the ARC format called “WARC” (for “Web ARChive”) which lets harvesting organizations ag-

gregate large amounts of web resources into specific collections with locally-assigned metadata such

as “subject” or unique record ID. The proposed WARC format has numerous sections to clearly de-

lineate “records” in the file. A record, in WARC terms, can be the “response,” the “request”, file

structure (“warcinfo”), or other descriptive information. Like other managed collection models,

WARC expects the repository to provide any metadata outside of the HTTP request-response event

information. This can be a challenge for the average web master.

3 OTHER WEB ARCHIVING EFFORTS

Web site preservation is the mission of organizations like Japan’s National Diet Library [142] and

the National Library of Australia Digital Services Project. [94] The U.S. has funded the National

32

Digital Information Infrastructure Preservation Program (NDIIPP) in an effort to preserve as much

of the web as possible [95]. The mission of the Henry A. Murray archiveat Harvard University [52]

is to “preserve in perpetuity all types of data of interest to the research community”, much of which

is now web based. Both Holland [66] and the United Kingdom [93] have national programs that are

attemtping to preserve their national digital heritage, and include at least someportion of the Web in

the program’s scope. In addition, the European Archive is a relatively recent endeavor whose goal is

to “[lay] down the foundation of a global Web archive based in Europe.” [33] The primary focus at

this point is European heritage, including non-web-based materials. Despite these efforts, as noted

in Chapter II on page 9, there is no effectiveglobal web-preservation strategy in place, nor is there

likely to be, given the wide variation in goals and the expense involved in suchan undertaking. Like

the Usenet experience, the casual, quotidian website is more likely to be preserved by accident than

by design.

4 THE WEB SERVER AS AGENT OF MIGRATION

Fashions come and go in digital file format just as they do in hardware design. Postscript files,

once the only way to achieve a truly “typeset” look for a printed digital document, have since

been almost completely replaced by Adobe’s Portable Document Format (PDF). Amazon’s e-book

reader, the Kindle [1], can enable text and images to be resized, linked, bookmarked and annotated.

These features, plus the Kindle’s form-factor have resulted in the creation of yet another file type

specific to the Kindle. Will this become the next “PDF” – that is, will documents transition to an

interactive format used by e-book readers? This format is very new, but it is currently supported

by popular magazines (Forbes, Newsweek, and Time for example), a selection of national and

international newspapers (Le Monde, Shanghai Daily, and the New York Times, among others), and

over 100,000 book titles with more being added daily. Despite its relative newness, the new format

is gaining rapid acceptance.

As an experiment, the author used the Amazon conversion service to transcribe an early draft of

this dissertation, accomplished by sending the PDF file to a special Amazon emailaddress where

it is reformatted and then sent wirelessly to the owner’s Kindle. Amazon statesthat the service

is still experimental at this time, and in fact the conversion did not produce a fully “Kindle-ized”

document: Clicking on an entry in the table of contents brings the reader to thatpoint in the doc-

ument, but bibliographic references and footnotes are not linked, for example. Nonetheless, this

conversion/migration is an intriguing example of a nearly interactive migration process for digital

documents arising directly from web services.

On the web itself, HTML appears to be giving way to XHTML and SHTML alongwith

Javascript and other dynamic content generation techniques. [35, 78]Throughout these changes,

both web servers and browsers have aided migration by the use of MIME-typing to define thekind

33

of file sent in the response. Consider the example in Figure 15. Browsers, the main users of web

content, have also acted as agents of migration by having plugin modules which can understand a

wide variety of file types. Interpretation of content is limited only by the availabilityof a plugin,

and sufficient interest in the file type is likely to push for the development of such a plugin. In other

cases, interest is incompatible types, such as the Virtual Model file type of Figure 15 may generate

tools to convert the content into something understandable, thus enabling content types both new

and old to be accessible to users. The author’s recently installed Apache web server has over 700

MIME types, which is more than 10 times the number that were defined in the Apache version

installed in the year 2000. Again, the democratization of web services and tools has improved the

likelihood of digital content preservation.

FIG. 15: Unhandled MIME Type & Resource Migration. On the top is the error message generated
by the author’s web browser when attempting to get the original VRML file,nistlogo.wrl. The web
server knows the MIME type, but the browser has no plugin to handle it. Itdefaults to a decision
box asking what to do with the resource. On the bottom is another web server [39] where the file
has been converted into something currently understandable by the browser. The received MIME
type in this case is image/jpeg.

34

5 SUMMARY

The benefits of “preservation by popular demand” have already been seen in the Usenet restoration

undertaken by Google. Internet Archive’s efforts have proved important to many people, and have

helped restore websites around the globe [87]. More importantly, they have brought the issue of

preservation of web content into the popular domain. Still, a single organization, whether national

or international cannot match the sheer volume of web content awaiting an archiver. In the end,

grass-roots preservation efforts and popular personal archive collections may be what provides the

future with insight into this generation’s digital heritage.

35

CHAPTER IV

THE CURRENT ROLE OF SEARCH ENGINES IN DIGITAL PRESERVATION

1 THE SEARCH ENGINE AS AGENT OF DISCOVERY

Both Digital Libraries and websites have a vested interest in encouraging search engine robots to

thoroughly crawl their sites, even if the content requires a subscription oraccess fee. Many repos-

itories such as those of the IEEE and The New York Times allow selected crawlers full site access

so that the information will be indexed and listed in search results, potentially bringing new sub-

scribers or item-purchasers to the sites [16, 120, 85]. The information is thus made visible even

to non-subscribers, who typically get directed to an abstract or summary page, from which point

they have an option to purchase the item or subscribe in full. Such users maynot take advantage of

facilities like local university libraries but instead rely completely upon Google, Yahoo, and MSN

(the "Big Three") to find this information, whether it is free or fee-based [105]. For competitive rea-

sons, search engines want to find content, and they provide guidelines towebmasters for improving

“findability” of site resources. Google, for example, makes specific recommendations with regard

to site organization, number of links per page, and the use of a Sitemap, [48]but it will nonetheless

crawl sites that do not follow their guidelines.

1.1 Observations of Web Crawler Behavior

How do crawlers approach an everyday, not-so-famous site? Are theyequally thorough in their

crawls? Does the design of the site – deep or wide – affect robot behavior? Are there strategies that

increase crawler penetration? These are important questions because crawler penetration equates to

accessibility and therefore to likelihood ofreplication(as in the Usenet example), and from there to

eventual preservation. Research into crawler behavior has usually focused on either building smarter

crawlers [55, 24, 27], or on improving site performance and accessibilityto crawlers [16, 110]. In

contrast, the author designed a series of experiments to ask:Given certain website designs, how

do crawlers perform?The first set of experiments monitored the impact of site content removal

on crawler behavior. The second set of experiments looked at the role site depth, breadth, and link

structure played in crawler penetration and rate of coverage. Each of these is reviewed in detail in

the sections that follow.

36

1.2 Crawler Behavior on Websites with Disappearing Content

The “Sliding Directories” experiments began with a 30-directory wide websitecontaining both

HTML and PDF files as well as a collection of images (PNG, JPEG, and GIF).Four of these exper-

imental websites were created, each hosted at a separate website. The four sites are labelled FMC,

JAS, MLN, and OBR. In part the goal was to simply monitor the request patterns by the crawlers

as content on the site disappeared gradually over a 90-day period. Another goal was to evaluate the

persistence of website content in the cache of each of the three search engines. This requirement

meant that the site should be less than 1000 resources overall, because some search engines restrict

queries against the cache to less than 1000 per day.

Each website was organized into a series ofupdate bins(directories) which contained a number

of HTML pages referencing the same three inline images (GIF, JPG and PNG) and a number of PDF

files. An index.html file (with a single inline image) in the root of the website pointed toeach of

the bins. An index.html file in each bin pointed to the HTML pages and PDF files soa web crawler

could easily find all the resources. All these files were static and did not change throughout the 90

day period except for the index.html files in each bin, which were modified when links to deleted

web pages were removed.

The number of resources in each website was determined by the number of update binsB, the

last day that resources were deleted from the collectionT (the terminal day), and the binI which

contained 3 images per HTML page. Update bins were numbered from 1 toB, and resources within

each binb were numbered from 1 to⌊T/b⌋. Resources were deleted from the web server according

to the bin number. Everyn days one HTML page would be deleted (and associated images for pages

in bin I) and one PDF file from binn. For example, resources in bin 1 were deleted daily, resources

in bin 2 were deleted every other day, etc. We also removed the links to the deleted HTML and PDF

files from binn’s index.html file.

At any given dayd during the experiment (whered = 0 is the starting day andd ≤ T), the total

number of resources in the website is defined as:

Totalc(d) = 2+
B

∑
i=1

Totalb(i,d) (1)

The total number of HTML, PDF and image files in binb on any dayd is defined as:

Totalb(b,d) = HTML(b,d)+PDF(b,d)+ IMG(b,d) (2)

The total number of resources in each update bin decreases with the bin’speriodicity as show in

Figure 16. The number of HTML, PDF and image files in each binb on any dayd is defined as:

HTML(b,d) = ⌊T/b⌋−⌊d/b⌋+1 (3)

37

FIG. 16: Number of resources in the test website

PDF(b,d) = ⌊T/b⌋−⌊d/b⌋ (4)

IMG(b,d) =

3(HTML(b,d)−1) if b = I

0 if HTML(b,d) = 1

3 otherwise

(5)

In each website, 30 update bins were created (B = 30) that completely decayed by day 90

(T = 90), with bin 2 (I = 2) containing the supplemental images. So the total number of files in

each collection on day 0 wasTotal(0) = 954. Each of the websites was limited to less than 1000

resources in order to control the number of daily queries to Search Engine (SE) caches, based on

restrictions imposed by those SEs.

Website Design & Implementation

To ensure that each site woud have unique information content, the author designed a set of HTML

and PDF files using a randomized English dictionary. Although individual words might repeat be-

tween pages, word phrases of 5 or more words remained unique. The subdirectories linked directly

to their own content, which consisted of up to 226 files (a combination of HTML,PDF, and images).

Figure 17 on the following page illustrates the website structure; Table 6 on thenext page lists the

distribution of content by type and byte size. In all, 4 unique websites were created and published

on the same day and within a few minutes of each other using a suite of site authoring and launching

tools created by the author.

The experiment was planned to last 120 days, with the content on the each site designed to last

only 90 days. The Time-To-Live (TTLws) for each resource in the website is determined by its bin

38

FIG. 17: The number of resources in each subdirectory varied. In subdirectory 1, a resource was
deleted every day; in subdirectory 15, a resource was deleted every 15 days, etc. By the end of the
90-day experiment, all of the directories are empty.

TABLE 6: Website content of the Sliding Directories experiment

Qty Description Avg Size
31 index pages 48 KB

350 random-content HTML pages 735 KB
350 random-content PDF files 41650 KB
74 PNG images 4662 KB
75 JPG images 1063 KB
74 GIF images 518 KB

954 URIs per site 48,676 KB

39

numberb, page numberp, and the website terminal dayT:

TTLws = b(⌊T/b⌋− p+1) (6)

After the 90-day point, only the index pages in each of the directories wouldremain and all other

content would have been removed. Crawler behavior was monitored for afull 30 days beyond the

removal of the last subdirectory. To accomplish resource management and accurate update, the

author wrote a script to automatically remove one or more resources from thesite every day. The

total content of the directories thus “slides” downhill over the course of the experiment, as shown

in Figure 18 on the following page. The removal process included erasingall links to those pages

from other parts of the site, ensuring that all link references were up to date. Each of the sites was

installed within an existing website (technically making the directory set a “subsite” of the host

website [140]). Website “discovery” was not a direct factor, because each of the sites had been

visited by Google, MSN, and Yahoo at least once before the experiment began.

Data Collection

Logs for all of the sites were harvested for a six-month period, starting 2 months before initialization

with the new content and ending one month after the last experimental resource was removed. From

this monitoring, the author was able to confirm that Google, Yahoo, and MSN had visited the host

websites at least once before the experiment began. It was not therefore necessary to inform the

crawlers of the existence of these sites, since each would find the new linksupon their next crawl of

the host website main page.

The author wrote a series of utilities to harvest the logs specifically for crawls of the experimen-

tal resources. The data from each crawl was mapped to an X,Y data point,where X represented the

subdirectory number (from 1 to 30, with 0 begin experiment root) and Y represented the resource

number. The visits from each of the crawlers could be mapped onto a graphof site resources, visu-

ally communicating the process of crawling the site. Similarly, the presence of any site resource in

a search engine cache could also be mapped onto the same graph.

Profiling the search engines was complicated by the limited data collected by the siteweb logs,

which were not directly owned by the author. Only the OBR site tracked user-agent information,

which is how Google, MSN, and Yahoo identify themselves to the web server.The lowest-common-

denominator of metadata available in the logs was remote host IP address, time stamp of the request,

the request itself (which contains the HTTP verb, URL, and HTTP versionused), the status response

returned to the requestor, and the number of bytes sent in the response.The difference can clearly

be seen in the two examples from the JAS and OBR web logs shown in Table 7 onpage 41. For

this experiment, the important “uagent” field is only tracked at the OBR site. As aresult, extra

processing had to be done to the logs to lookup the host IP address and determine which visitor had

40

FIG. 18: Resources are removed gradually over a 90-day period. Green represents “live” resources,
while red indicates those that have been removed. Note the downhill sliding pattern as the experi-
ment day number increases. The crawl data is mapped on top of the disappearing resource picture
(MLN Website) as blue “snowflakes”. An interesting animation of the crawl while the site disap-
pears can be seen in [128].

JAS Website Day 01 JAS Website Day 36

MLN Website Day 54 MLN Website Day 90

41

TABLE 7: Log data from two of the Sliding Directories sites clearly show how the amount of
information available from a web server log can vary. Dash in the column indicates the field is
tracked but empty for this record. For an explanation of the fields, see [133].

Log Field OBR Site Log Entry JAS Site Log Entry
host (IP) access.log.25:66.249.66.69 207.46.98.59
ident - -
Authuser - -
date [26/Jun/2005:17:44:42 -0400] [05/Jul/2005:00:14:06 -0400]
request "GET /dgrp12/index.html HTTP/1.1" "GET / jsmit/dgrp16/index.html HTTP/1.0"
status 200 200
bytes 1237 815
server name www.owenbrau.com not used
uagent "Mozilla/5.0 not used

(compatible; Googlebot/2.1;
+http://www.google.com/bot.html)"

crawled each resource. Why the difference in data logged by the servers? Web logging takes both

processing time and disk space. For busy sites, reducing the fields tracked in the web logs can save

them time and money.

One characteristic common to experiments performed on live websites is that errors will occur.

On occasion, logging at one or more of the sites would fail, or a firewall parameter would be reset

leaving the site temporarily inaccessible. These issues particularly affect the OBR site, to the point

that data from the site was so scant as to be useless. Another problem thatarises when visitors are

not identified (the uagent field is not tracked) is determining authoritatively who owns the visitor

IP address. In some cases, the “log-resolve” and “whois” databases(which are used to determine

the identity of the visitor) do not match precisely. For example, the IP address207.68.61.254 is

attributed to Verizon in log-resolve, but whois says that Microsoft owns the IP. This is not unusual,

since resale of IPs to other business units is well-documented. The author opted to use the DNS

entries of record as the final arbiter.

Other identification problems were harder to resolve. Yahoo acquired Inktomi in December

2002, well before this experiment began. Presumably, Yahoo kept the Inktomi-named robots, since

no Yahoo-named robot crawled any of the test collections, but the visited pages showed up on

Yahoo’s site. The author treated Inktomi robots as Yahoo robots. Google, Inktomi/Yahoo, and

MSN comprise the bulk of log records (nearly 80%) for non-spam search engines. Traffic was

minimal from other popular engines like “Picsearch” and “Internet Archive”, with only 157 total

requests from Internet Archive; 315 from Picsearch. Table 8 on thefollowing page summarizes the

crawls by search engine.

42

TABLE 8: Crawler Statistics from the Sliding Directories experiment.

Total Requests by Site
Crawler FMC JAS MLN OBR
Google 2813 3384 3654 162
MSN 768 780 808 0
Inktomi 991 1735 1569 49
Picsearch 29 152 134 0

Crawler Characteristics

Search engines employ a large number of systems to make their crawls througha site. Some,

like Google, identify unique remote host names per IP address. Others (notably MSN) may use

numerous IPs but still resolve to only one remote host name. For purposesof this experiment, it

was sufficient to aggregate the requests by search engine rather than IP. What happens at the remote

host site is unknown, of course, but the point of these experiments was towatch a search engine’s

pattern as a whole, rather than the pattern of each individual robot. The patterns for all three of

the primary crawlers were similar: Request one or two index pages on the first day, then traverse

a majority of the site on the following day(s). This was termed a “toe dip” since it was similar to

a swimmer testing the water before plunging in. This behavior can be seen foreach of the sites in

animated graphs in [128]. A summary view of the coverage for the MLN site is shown in Figure 19.

The relative request rate for each of the major search engines appears nearly constant, compared

with the graph of ODU’s own robot. It requested more resources, more often, than any of the major

search engine robots. An hourly overview of the request patterns forGoogle, MSN, Yahoo and

ODU can be seen in Figure 20 on page 44.

Experiment Results

All of the crawlers showed a preference for HTML resources. Veryfew of the images were ever

crawled, even by image-specialists like PicSearch. PDF files were crawledmore than images, but

still significantly less often than HTML. As of 2005, then, the search engines appeared to be par-

ticularly focused on HTML resources. They were very persistent in repeating requests for HTML

resources that had been deleted (see the animations in [128] for a dynamicview of the behav-

ior). These resources also persisted longer in cache [87], making HTML files a better candidate for

emergency restoration from cache which could potentially translate into having better preservation

prospects.

The breadth of the website had no impact on the crawlers. Arrival time appears to depend on

43

FIG. 19: Crawling patterns of Google, MSN, Inktomi/Yahoo & the ODU Crawlers on site MLN.
The ODU robot was the heaviest user of the site, as the graph shows. The red line indicates the
original limit of source content. Robots sometimes attempted to access (guess?)URLs that did not
exist.

44

FIG. 20: Crawling patterns by time of day for Google, MSN, Inktomi/Yahoo & the ODU Crawlers
on site MLN. ODU’s robot limited its crawls to the early morning hours, whereasthe major search
engines maintained a relatively steady pace of requests throughout the day.

the cycle of the particular web crawler rather than on the site’s page rank,for example. Whether or

not depth would matter was not clear from this experiment. The author devised a much larger and

longer-duration experiment to explore this aspect of crawler behavior.

1.3 Crawler Behavior on Wide and Deep Websites

A year-long “Deep Website” experiment conducted at multiple sites providedmore insight into

crawler behavior and limitations. At only 3 levels, the Sliding Directories experiment of Section 1.2

on page 36 in this chapter did not have sufficient depth to test the willingnessof crawlers to explore

beyond the topmost levels of a website. Conventional wisdom holds that search engines “prefer”

sites that are wide rather than deep, and that having a site index will result inmore thorough crawling

by the Big Three crawlers – Google, Yahoo, and MSN. The author created a series of live websites,

two dot-com sites and two dot-edu sites, that were very wide and very deepto see if structure

appeared to impact crawlers.

Part of the goal of the “Deep Website” experiment was to compare crawlingtactics employed

by the three major crawlers, Google, Yahoo, and MSN: did site design appear to affect crawling

patterns? Another goal was to see if the crawlers would explore the full depth and breadth of the

45

sites, which were both very wide (100 directories wide) and very deep (100 directories deep). Would

crawlers reach every resource?

Website Design & Implementation

Reviewers of the Sliding Directories experiment wondered whether the artificial content of those

sites influenced crawler behavior. Given the persistent behavior of crawlers on the Sliding Direc-

tories sites, the author felt that crawlers were not “aware” of the random content and therefore

not affected by it. Nonetheless, when designing the follow-on experimenta different text-building

approach was taken for each of the site resources.

An extensive subset of English-language texts was extracted from Project Gutenberg1 to pop-

ulate the text portion of the websites. The text was processed where necessary to convert it from

UTF-8 or other character set, to plain ASCII. In addition, every text waslinked to the appropriate

title and author; each page had at least 200 words; and each ended in a complete sentence or poetic

stanza. The total number of URIs on each site exceeded 20,000: 100 groups of 100 directories, each

containing 2 pages (100 x 100 x 2 = 20,000), plus index pages for the various directories, and an

assortment of images. Figure 21 on the next page shows the structure of the website.

Each site haduniquecontent to ensure that no pages would be seen as “mirror sites” since that

might impact a crawler’s willingness to explore the site further. The author’sscripts created a very

user-friendly website, complete with links and descriptive information on each page. In sum, the

sites have the overall look and feel of "real" websites, attested to by the occasional visitor who

arrived via a Google search for that author or quotation.

Two types of website were created, one that provided a view into the full siteresource set via a

series of index pages, and another that forced page-by-page crawls to reach every resource on the

site. At root level there were 100 directories called “groups” (g1 through g100). The test site had

a single root page (index.html) which contained a link to each of 30 subdirectories, as shown in

Figure 22.

Each of these in turn had a set of nested directories called below them that were 100-levels deep

(d1 through d100). The paths to the resources could be shallow or deep:

• http://blanche-00.cs.odu.edu/g25/d1/d2/d3/5.html

• http://blanche-00.cs.odu.edu/g13/d1/d2/d3/d4/d5/d6/d7/d8/d9/17.html

• http://blanche-00.cs.odu.edu/g95/d1/d2/d3/d4/d5/d6/d7/d8/d9/d10/. . . /d15/30.html

The two types of sites differed primarily in link organization. The first type, the author termed

a “Buffet Site” since it is similar to having everything available and visible in justa few, easily

accessed locations like the Salad Bar and Dessert Center at a self-serve restaurant. The other type

of site, a “Bread Crumb Site,” only exposes a few new pages at a time. The search engine (or user)

1http://www.gutenberg.org

46

FIG. 21: Both Bread Crumb and Buffet sites were very deep as far as directory structure depth. The
main difference was in the location of links to each of the site’s pages.

FIG. 22: The entry page to the test website linked to the top page in each of the100 subdirectories.

47

FIG. 23: Wide & Deep Sites differ by the “size” of the links, as counted by the number of slashes
in the URI. The path to resource J in (A) would behttp://foo.edu/I/J whereas the link to J
in (B) would behttp://foo.edu/A/B/C/D/E/F/G/H/I/J – a deep link. For Buffet sites,
a list of each link was provided near the top of the website, effectively giving a short-cut route to
the deepest point. Bread Crumb sites had only one link per page and so the full depth had to be
explored one link at a time before reaching the bottom.

must delve into the site one page at a time in order to discover all of the content. This approach is

more like following a trail of bread crumbs through the forest. Figure 23 illustrates the difference

between these two design approaches.

Two Buffet sites were installed and two Bread Crumb sites, one each in the dot-com domain

and the dot-edu domain:

1. http://crate.gotdns.com (Buffet)

2. http://blanche-00.cs.odu.edu (Buffet)

3. http://oducrate.gotdns.com (Bread Crumb)

4. http://blanche-02.cs.odu.edu (Bread Crumb)

The HTML structure of each site was very similar, except for the subdirectory linking method.

Buffet Sites had a high-level index, as shown in Figure 24-(A). The Bread Crumb sites provided

only one link per page as shown in Figure 24-(B). Since search enginesharvest content rather than

design, and since pre-designed web templates are replicated all over the web, it seemed extremely

unlikely that common design would have any effect on search engine crawler patterns at the sites.

Each site has about 15 MB of text content, and a few hundred Kilobytes of images culled from

48

public domain sources. There is no hidden content, and since the text was extracted from classic

literature, it "makes sense" grammatically.

Data Collection

All four sites were installed simultaneously in February 2007. From that point forward, the logs

were harvested daily for crawler activity by Google, Yahoo, and MSN (only). The author’s utilities

from the Sliding Directories experiment were adapted to collect data from theDeep Website experi-

ment and map into vectors for graphing. For this experiment, the sites remainedstatic. No resource

was moved or changed during the year-long experiment (through March2008).

A variety of system administration problems occured during the more than 12 months of the

experiment. Most of these affected the dot-edu sites, reducing the numberof consecutive log-days

available for analysis from 365 to 289. A short, 2-day availability gap occured early at the dot-com

sites when the host provider changed IP addresses, but this did not appear to affect the crawlers.

Such events are relatively common on the web. In all, more than a million requestsby Google,

Yahoo, and MSN were processed during the experiment.

Crawler Characteristics

Each crawler exhibited different access and persistence patterns, and these patterns varied by domain

(dot-com or dot-edu). In general, width was crawled more thoroughly and quickly than depth.

Upper-level "index" pages like those on the Buffet sites improved crawler penetration. Google was

quick to reach and explore the new sites, whereas MSN and Yahoo were slow to arrive, and the

percentage of site coverage varied by site structure and by top-level domain.

The logs show some interesting site access patterns by the Google, Yahoo and MSN crawlers.

Figure 25 is a series of snapshots of the Googlebot’s progress throughthe Bread Crumb site, “odu-

crate.gotdns.com”. These are best seen in an animation of the activity, available in [131], where

Google’s robots advance through the Bread Crumb dot-com site like a formation of soldiers on pa-

rade. Other robots were not quite as systematic on the Bread Crumb sites. For the Buffet Sites, the

access patterns was considerably more random, as Figure 26 shows.

Experiment Results

The design of the site impacted depth, breadth and time that the search enginesspent exploring

the sites. This difference is clearly seen in Figures 27 on page 53 and 28 on page 54. The main

concern is the lengthy timetable to reach full crawl status by more than one crawler. Depth and

speed to coverage was quite different between the two higher-level domains. The Dot-Com Buffet

Site had faster and more complete coverage than the Dot-Edu Buffet Site. The opposite was true for

the Bread Crumb sites. Is this an issue of trust? Sites called “spider traps” [106] certainly exist in

49

(A) Buffet site subdirectories had an index page linking to each resource below.

(B) Bread Crumb site pages linked only to one resource at a time.

FIG. 24: Examples of the entry page to subdirectories for the Buffet andBread Crumb sites

50

(1) (2)

(3) (4)

FIG. 25: Crawling patterns of Googlebot on the Bread Crumb site (oducrate.gotdns.com). Note the
almost regimented progress through the links. Gray color indicates links thathave been crawled
on a prior day, and blue indicates the active request of the moment. Google and the other search
engines have numerous individual robots that may visit a site simultaneously toharvest the data.

51

(1) (2)

(3) (4)

FIG. 26: Googlebot crawling patterns on the Buffet site (crate.gotdns.com) are very different from
the Bread Crumb site. Here, the robots take advantage of the top-level list of resources and simulta-
neously harvest pages scattered throughout the site. Google also usesits request patterns judiciously.
Red indicates a Conditional Get, blue is a regular get, and gray is a page thathas been visited on a
prior day.

52

the Dot-Com domain, and the continually-linking-down structure of the BreadCrumb site could be

interpreted as such a trap. If search engines believe that this spider-trap activity is not prevalent in

the Dot-Edu domain, they might be more willing to explore the Bread Crumb site more fully there.

In any case, preservation requires discovery, ideally by more than oneagent; design therefore needs

to be a consideration. If data had been removed on a random or even specific schedule (as in the

Sliding Directories experiment), many pages on the sites would not have beendiscovered at all.

1.4 Summary of Crawler Observations

Crawlers exhibit a preference for “wide” rather than “deep” sites, and for sites which provide high-

level indexing of site contents. Some search engines are more thorough than others for sites that do

not meet this criteria, but preservation is best served by maximum exposure of site resources. Coop-

erating with the crawlers by providing easily-accessed content can improve the website’s likelihood

of exposing all of its resources for general accessibility and future preservation.

2 THE SEARCH ENGINE AS AGENT OF REFRESHING

An important preservation task isrefreshingthe bits. Search engines assist with this task through

their continuous crawls of websites, which are then accessible to the general public. A user could,

at any point, store a copy of all or part of a website thus acting as an incidental preservation agent.

In the meantime, the search engine continues to revisit the site and update or validate its record of

the site. The refreshing of bits continues for as long as the site is available.

One aspect that can affect refreshing is the frequency that the crawler visits the website. The

animated views of search engine activity on the experimental sites in [128] and [131] show an ap-

parent change in the access frequency of crawlers between the firstSliding Directories experiment

(2005) and the Deep Website experiment (2007-2008). All three have improved their speed and

depth of coverage, but Google still has better coverage metrics. In particular, Google is more con-

stant and methodical when refreshing its crawl of a site. Yahoo and MSN are both less thorough,

less methodical, and take much longer to fully refresh whatever portion of thesite they did visit.

The top-most levels appear to be refreshed very frequently, but that isnot the case for levels below

that. Google may be better than the others, but for preservation purposeswebsites need improved

coverage and refreshing by all of the search engines.

Another difference between Google and the other search engines is in theuse of the conditional

request, i.e., requesting the resource only if it is newer than the timestamp of Google’s last visit

(Google supplies that timestamp). Both Yahoo and MSN use this feature rarely; each time they

request a resource it is as though they have never seen it. In this respect, Google is failing to refresh

the bits, instead relying on its cache in the expectation that the cached copy is still intact. MSN and

Yahoo are refreshing their copies of the resource with each visit.

53

(A) Dot-Com Domain Buffet Site

(B) Dot-Edu Domain Buffet Site

FIG. 27: Buffet Site crawling pattern by the Big Three search engines. The percent coverage and
time to explore a site appear to be affected byboth site design and high-level domain. On these
sites, every resource is accessible via a high-level set of indexes, or“map” of the site.

54

(A) Dot-Com Domain Bread Crumb Site

(B) Dot-Edu Domain Bread Crumb Site

FIG. 28: Bread Crumb site crawling pattern. Although all of the site’s links are accessible,every
pagemust be individually crawled to find them all. The crawl patterns here differconsiderably from
those in Figure 27 on the preceding page, implying that site design does affect crawlers.

55

3 THE SEARCH ENGINE AS AGENT OF PRESERVATION

3.1 The Web Infrastructure

Beyond simply revisiting and refreshing the bits of data, search engines also keep copies of many

of the pages that they visit. This cache, orweb infrastructure, is accessible even if the source site is

temporarily off-line. In some cases, the cache contains an exact duplicate(this is particularly true of

HTML pages). In other cases, the resource is a reconstructed version, for “standard browsability.”

That is, if the resource format typically requires a special browser pluginor third-party program (MS

Word, Acrobat Reader), the search engine may convert the content into text and possibly images so

that it is viewable in the search engine’s cache without visiting the original siteitself. Outside of

the competitive benefits it confers on the search engine, the existence of this cache and a client’s

ability to examine its contents adds another dimension to the search engine’s roleas an agent of

preservation.

3.2 Lazy Preservation

The termLazy Preservationwas coined by Michael Nelson, and adopted by Frank McCown and

the author [98, 87] to describe the ability to recover websites from the web infrastructure (WI). In

some cases, a complete website could be reconstructed using only the content from search engine

caches [65]. A set of tools developed by McCown [83, 84] has been used by numerous sites world-

wide to restore lost websites. The WI can act both as an emergency backup and as a true preservation

source, since it refreshes and migrates content continually. The ability to restore something that no

longer exists in its own right is closely associated with the intent of preservation. Search engines

are therefore important to preservation on many levels ranging from discovery to recovery.

4 SUMMARY

Search engines and archives have several goals in common, including content freshness, site cov-

erage, and accessibility. But the focus of a search engine is today, whereas the focus of an archive

is both past and future. Information must be found to be preserved, andsearch engines contribute

by making informationdiscoverable. In some cases search engines help by converting or migrat-

ing resources to another format, if only for display simplicity. Search engines are constrained by

their ability to locate and crawl web content, which puts much of the burden of discovery upon the

webmaster or web designer to facilitate this process. Search engines needhelp “counting” (finding)

site resources, but will often keep a cached copy of those resourcesthat they do find. They may re-

fresh their copies with each visit or instead rely on the integrity of the cachedcopy. In sum, search

engines act as agents of discovery, refreshing, and near-term preservation for websites.

56

CHAPTER V

RESOURCE ENUMERATION: THE COUNTING PROBLEM

1 THE COUNTING PROBLEM DEFINED

Websites consist of resources which may be files, dynamic content, or a combination of different

types of content. The collection of resources is what defines the site:

W = {w1,w2, · · · ,wn} (7)

This is true whether or not the members ofW are discreet entities on a file system, and whether

or not the file system contains entities that are not part of the website. Regardless of the mapping

from w to virtual or actual resource, website preservation expects a list of each w ∈ W so that all

accessible resources which make up web siteW are identified and preserved. This is the basic

counting problem: How to confidently enumerate each member of the setW, i.e., each resource of

the website.

2 WHY THE COUNTING PROBLEM EXISTS

The ability to findanythingon the web does not meaneverythingcan be found on the web, nor

thatsomethingin particular can be found, even if it does in fact exist on the web in an accessible

location. Site content is typically indexed eitherexternallyby crawlers which follow links found

on websites; orinternally by sites which provide specific lists of site resources. Both strategies

are link-based, in that the internally-generated list is simply a more efficient and – ideally – more

complete index of the site’s links. There is still uncertainty about how completelythe links cover

the site: some, most, all? There is no mechanism that can definitively answer that question. This

inability to confidently enumerate all of a site’s resources is why there is a counting problem.

One reason the problem exists is that website file space does not always map directly to website

URLs. Figure 29 on the next page shows how different parts of a website intersect with the website’s

host file system. Another reason that the problem exists lies with the underlying protocol, HTTP,

and the limitations of crawling related to that. These two issues are explored in more detail in the

following two sections.

2.1 The Limitations of HTTP

The HyperText Transfer Protocol, HTTP, is the basis for most website-client interaction, whether

that client is abrowser(Internet Explorer, Firefox, Safari) or acrawler (Googlebot, Yahoo!Slurp,

57

(A) Website Map

(B) File System Map to Website

FIG. 29: A Website and its Apache Server File System. The file system and thewebsite are not
identical. Resources may be aliased from other directories, or called by scripts which live outside
of the web root. Mapping from the file system to the website URLs is not a one-to-one process.

58

msnbot). In its minimal invocation (HTTP 1.1), initiating a request is simple:

1. Open a connection to the server

2. Send the 3 parts of the request –

(a) specify themethod(GET)

(b) name theresource(file/path/name.html)

(c) declare theprotocol/versionused (HTTP/1.1)

(d) specify the hostHost Header(Host: www.foo.edu)

3. End the request (use Carriage-Return, Line-Feed)

A response can be similarly minimal:HTTP/1.1 404 Not Found , consisting of the proto-

col/version (HTTP/1.1), the response code (in this case, 404), and areason phraseexplaining the

response code (here, “Not Found”). Although HTTP defines many differentmethods, including

GET, POST, PUT, and OPTIONS, HTTP’s methods do not have SQL-like syntax. The protocol

is designed to request a single resource and to get a response to that request. HTTP 1.1 has more

headers than those shown in this simple example. Responses can provide more information in the

form of headers such asContent-Length(size of response in bytes) andContent-Type(MIME type

of the resource). As helpful and varied as the optional headers are,there is still no header for the

client to ask for “wherever name.html is now stored”; the “404” responsein the example has left us

without the requested resource.

2.2 The Limitations of Crawling

Much of the web’s usability depends on the efficiency of search enginesand their crawlers. The

indexable “surface” web has grown from about 200 million pages in 1997to over 11 billion pages

in 2005 [50], and the “deep web” is estimated to be 550 times larger [11]. Considerable attention

has therefore been given to increasing the efficiency and scope of web crawlers. A number of

techniques to more accurately estimate web page creation and updates [102,25] and to improve

crawling strategies [26, 24] have been proposed. Techniques such as probing search engines with

keyword queries and extracting the results are used to increase the scope of web crawls and obtain

more of the deep web [60, 104, 110, 75, 19]. Extending the scope of a web crawl has implications

on the coverage of search engines and in web preservation [58, 77].

These tactics are necessary because web servers do not have the capability to answer questions

of the form “what resources do you have?” and “what resources have changed since 2004-12-27?”

A number of approaches have been suggested to add update semantics to HTTP servers, including

conventions about how to store indexes as well-known URLs for crawlers [16], and a combination

of indexes and HTTP extensions [138]. WebDAV [41] provides some update semantics through

59

HTTP extensions, but has yet to find wide-spread adoption. The RSS syndication formats [112]

are widely implemented, but they are designed to expose “new” content rather than a complete set

of site resources. Some search engines, notably Google and MSN [45, 149], have taken advantage

of sites that operate the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH),

but they do not provide an open-source, broadly applicable solution. MSN, for example, merely

states it is committed to supporting industry standard protocols, of which OAI-PMH is one [149].

Sites with OAI-PMH servers can register with MSN’s “AcademicLive” search service for enhanced

content harvesting. Google, however, has recently announced its intention to drop support for the

protocol [92].

The top three search engines, Google, Yahoo and MSN, recently agreed to support theSitemap

protocol which provides a very specific means to provide search engine crawlerswith a list of

crawlable resources [126]. These search engines also give webmasters a means to “register” their

sites, a short-cut to eventual discovery by Domain Name Server update notifications, for example.

However, registering sites and creating Sitemaps do not replace the crawling process. Search en-

gines do not take web content descriptions for granted, but process each page that they crawl before

it will show up in search results. They also conduct their own crawls of other sites which show up

during crawls. For example, the Old Dominion University site (http://www.odu.edu/) has a

link Although many optimization techniques have been proposed [24, 57], thetask is still processor-

and time-intensive.

One of the reasons that crawling is not efficient is that web resources are accessed by following

links, typically starting from the web root. Each requested URL may contain a list of other URLs

(links), which are appended to a list of resources to be requested by thecrawler. The queue of pages

to be crawled is thus built from the seed page. Super-efficient crawlers, like Google and Yahoo!,

can split the crawling task list among many servers and aggregate the resultslater. The author

noted many servers from both of these search engines acting in parallel during the web crawling

experiments described in [128]. Crawlers also keep track of the pages they have visited before. On

subsequent crawls, they can issue a status request and choose to notupdate a page if the returned

status is “304” (not modified). Table 9 on the following page presents a transcript from an actual

response-request sequence.

Obviously, this is markedly less efficient than an equivalent request fora list of pages thathave

been modified since that date. If a web site consists of 100 pages, then the crawler would have to

issue 100 requests asking it if page N was modified, followed by a requestfor the modified page(s).

Typical websites do not support a request for a list of pages that have been modified since a particular

date, but this would clearly be significantly more efficient for both server and crawler. Figure 30 on

the next page shows a typical website and the parts of it that are both crawlable and inaccessible. It

is true that some crawlers will not respect the “robots.txt” file which asks them tonotcrawl selected

pages, but even badly-behaved crawlers may not be able to find unadvertised links.

60

TABLE 9: HTTP Request-Response Example

Request: GET /index.html HTTP/1.1
Host: www.modoai.org
Accept-Language: en-us, en;q=0.5
Accept-Encoding: gzip, deflate
If-Modified-Since: Sun, 22 Oct 2006 08:00:00 GMT
If-None-Match: “15b9b090-152c-51c72700”

Response: HTTP/1.1 304 Not Modified
Date: Thu, 09 Nov 2006 21:44:35 GMT
Server: Apache/2.2.0
Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
Etag: “15b9b090-152c-51c72700”

FIG. 30: Crawler’s view of a website. The crawler does not “see” anyof the content within the
dashed box areas. The robots.txt file tells the crawler not to visit certain pages, even though they
are accessible. Other pages require user authentication, and still othersare dynamically generated
(CGI, e.g.). A portion of the site may not be linked internally at all. Some of the latter resources
couldbe found if they were linked from external sites.

61

Various attempts to “SQL-ize” the crawling process have been made by the IETF and other

research teams, but getting new protocols launched can be difficult. The DASL was greeted en-

thusiastically in 1998 and had all but disappeared by 2002 [30]. DASL’sgoal was a lightweight

server-side query capability which would enable clients to search for specific data directly on the

remote site server. It specified a minimum basic search grammar that added verbs to HTTP like

“search” and “propfind.” The verbs are placed directly into the request string, similar to the OAI-

PMH examples given earlier. It has been revived recently, but it is too early to know if it will be

widely adopted or not.

Another approach is the Harvest Software System, with its indexing tools and“Essence” sum-

marizing algorithm [13]. Harvest also communicates over HTTP and can extract a variety of meta-

data from a URL, even if the URL is a compressed tar file or a PDF document. Participating sites

run “gatherers” which can perform sophisticated tasks like content summary and index generation.

Manually-generated metadata can also be incorporated by the tools. Once the resources have been

gathered and analyzed, an overall index of the collection is built which canbe accessed from a web

browser, for example. In addition to gatherers, there are “brokers” who talk to “gatherers” as well as

(or instead of) talking to sites directly; the idea is similar to the OAI-PMH “aggregator” mentioned

earlier. Harvest has only had limited success, in large part because the individual development team

members transfered to “start-ups” during the dot-com boom. The softwarenever reached full ma-

turity, and several of the dependent libraries are no longer available even though the Harvest source

code can be downloaded from Sourceforge [53]. The author made several attempts on various Linux

platforms to install a working Harvest system, but the required libraries either could not be found at

all or the versions available were not compatible with the Harvest source code. Attempts to setup a

stand-alone Essence extraction system were equally unsuccessful and for the same reasons.

The crawling problem has produced recommendations for web servers on how to improve their

“crawlability”, and on the effective use of “robots.txt” files to prevent orrestrict crawling [16, 109]

(to either protect documents or to spare the server needless processingcycles). A crawler which

issues requests in the form “has resource X changed?” does not reduce the number of queries that

must be issued; it merely reduces the number of pages that must ultimately be refreshed via a new

crawl. The author’s research showed a fairly high percentage of this type of request across all of the

experimental web sites [128]. This behavior implies that crawlers expect the ratio of updates to be

low relative to the total number of conditional requests issued.

3 THE SITEMAP PROTOCOL

To date, much of the research in the web community has focused on efficientlyestimating updates

and additions of remote, uncooperative web servers. Now, there is interest in shifting some (if not

most) of the responsibility for resource discovery to the web servers themselves, via theSitemap

62

<urlset>
<url>

<loc>http://www.foo.edu/index.html</loc>
<lastmod>2008-05-22T14:25:21Z</lastmod>
<priority>1.000</priority>
<changefreq>weekly</changefreq>

</url>
<url>

<loc>http://www.foo.edu/images/foo2.jpg</loc>
<lastmod>2008-01-01T04:05:01Z</lastmod>
<priority>0.600</priority>
<changefreq>rarely</changefreq>

</url>
</urlset>

FIG. 31: Website URLs in a Sitemap file

protocol. Technically a file format rather than a true protocol, it was originally developed and

promoted by Google [107, 45] as a means for webmasters to provide a listing of crawlable site

resources. Although Google had supported OAI-PMH, and a webmastercould submit abaseURL,

few websites took advantage of it. The Sitemap protocol [126] specifies thecontents and organi-

zation of an eponymously-named XML-format file. The file contains a uniqueresource list for the

website. In minimal format, it must contain the following:

(1) XML declaration line

(2) The<urlset> tag with XML namespace location attribute

(3) URL information tag set<url> </url> (one set per URL)

(4) One URL location tag set<loc> </loc> within the URL information tags

(5) The closing</urlset> tag.

The file is expected to be located at web root, as, for example,http://www.foo.edu/

Sitemap.xml . Additional tags are recommend but are not required. They include information

helpful to crawlers such as how frequently the resource is updated, and the last modification date.

Figure 31 gives a brief example of a the urlset section of a Sitemap file. Appendix E on page 183

discusses the protocol in more detail and provides an example of a complete Sitemap file.

Despite the specific guidelines and many tools for building Sitemaps, it does notsolve the

Counting Problem. People, tools, and websites are not error-free and aSitemap will inherit the

errors of any and all of these. A particular website could have a perfect Sitemap, but it seems

unlikely that this would be the case for most websites. The Sitemap is a custom-built file; any

change to the website must be reflected by a corresponding change to the Sitemap file. The two

63

events do not happen in tandem but in sequence; crawlers could end uprequesting non-existent

resources or failing to crawl new resources. In sum, there is always arace conditionbetween link

updates and crawls, allowing for many opportunities to have site and crawlerout of synchronization.

At best, the website can make a best effort at providing an up-to-date listof resources with varying

degrees of success depending on site content and frequency of change.

4 SUMMARY

Enumerating all of a site’s resources is a challenge for both crawler and webmaster. The HTTP

protocol does not provide a method for asking a site to “give me everythingyou’ve got.” Page links,

the common method for resource discovery, may not point to all of a site’s resources. Sitemaps,

created locally by the webmaster, are subject to the race condition between site changes and Sitemap

file updates. In short, the counting problem is not solved by these approaches, it is only ameliorated.

64

CHAPTER VI

EVALUATION OF RESOURCE ENUMERATION METHODS

1 A COUNTING PROBLEM EXPERIMENT

1.1 The CS Department Website Snapshot

Live websites have characteristics that can be hard to duplicate in a test environment where the

website is often generated by a script. For example, humans are prone to make typographic errors

when making links: onPage A.htmla link that should point toPage B.htmlinstead was mistyped as

Page bB.html, which does not exist. Websites also experience outages, periods whenlogging fails,

files overwritten accidentally with older copies, and a host of other events that make live websites a

more realistic place to test ideas about websites themselves.

To examine the Counting Problem and evaluate solutions for developing a canonical list of all

URIs at a given site, the author used a copy of the ODU Computer Science Department (CS) website.

A single snapshot of the CS website was provided for this experiment whichwas recovered from

a backup tape by the website’s system administrators. Several files have zero byte size, such as

“maly3.jpg” and “New Text Document.txt”. Errors like these in backup files are not uncommon.

The snapshot has a datestamp of 06 June 2006. It appears that most ofthe original file timestamps

were not preserved, since nearly all of the files have that same date. Considering that much of the

department’s website content is naturally static – departmental and universitypolicies; application

forms and guidelines; degrees offered, etc – timestamps from one or two years earlier would be

expected for many of the files. Instead, most of the resources bear the timestamp of the backup even

though they were posted much earlier and remained unchanged. For example, the Master’s project

for T. Lutkenhouse, which was presented in 2004, has the June 06, 2006 datestamp indicating that

the original file timestamp was not preserved for the snapshot. This particular file also fits into the

“cruft” category (see Section 1.5 on page 75), since Master’s projectsare no longer posted in that

area of the website. The site also contains many backup files — i.e., files appended with “.bak”,

“.bkup”, “_old”, etc.

1.2 The Website Structure

A graphic layout of the website is shown in Figure 32 on page 67. The website itself is neither

very wide (only 16 directories at root level), nor very deep (5 levels, not including the obsolete

Master’s projects). There are only 1807 resources in the file system tree, although several others are

generated through various CGI scripts. Also, approximately 256 files arecompletely missing from

the snapshot, in addition to an entire directory. (The word “approximate” is used because, as will

65

TABLE 10: Composition of the CS Website according to the snapshot file tree.In fact, several
hundred resources were missing from the snapshot (restored from abackup tape). Their existence
can be confirmed by examining the web server logs. In this case, though, the site administrators
were able to restore a directory missing from the snapshot.

Original Revised
Dir Level Files Dirs Files Dirs
Root (1) 102 16 102 17
Level 2 459 21 605 25
Level 3 423 61 705 70
Level 4 823 5 857 5
Level 5 4 19 4 19

Total 1807 122 2273 136

be seen in the following sections, absolute resource count cannot be established). The existence of

these resources is inferred from web server log entries having a “200” HTTP response code.

The file system organization as it appears in the snapshot is given in Table10. As shown

in Figure 32 on page 67, there are many resources (files and/or directories) that areaccessible

but which are notlinked, that is, none of the department’s pages in the snapshot pointed to those

resources. Most of the resources in the unlinked directories can be viewed simply by navigating root

of that directory. In general, the directory-listing feature of Apache is turned on for the website so

a number of additional resources are actually easily reached even without web page links. Another

directory of files, “ advising” was remapped to the directory “/advising/” using an Apache location

directive (see Chapter X on page 123 for more a discussion of such directives). An initial crawl and

look at the web server logs from the period made it obvious that this part ofthe tree needed to be

restored.

Within each of the directories a wide variety of file types can be found. The site contains over a

dozen MIME types, as shown in Table 11 on the next page. Like many websites, some portions of

the site contain only HTML files, and some areas are nearly exclusively imagecontent. In general,

though, the various MIME types are scattered throughout the site. Many of the HTML files contain

server-side includes (i.e., scripts), and have the “.SHTML” extension. Some of the referenced scripts

are available in the snapshot, but others are not. In many cases, scripts with the same name exist

in the current website, but the file sizes have changed, so they cannot be simply substituted in the

snapshot. These statistics are similar to those reported in [71, 78, 23]. Thedepartment website

appears to be an average site in terms of size, width, depth, and content. Assuch, the website is a

reasonable subject for an evaluation of resource enumeration methods.

66

TABLE 11: Resource distribution by MIME Type of accessible resources in the CS Department
website snapshot. These figures are based on a self-crawl of the site,rather than the filesystem.
There are 17 Distinct MIME types on the website, some of them visible because directory view is
enabled for some portions of the site.†Apache designates .bak, .old, and .sik files as type x-trash.

MIME Type SubType Count %-Site Total Bytes
1 application msword 65 3.15% 2211328
2 application pdf 112 5.43% 16795557
3 application vnd.ms-excel 31 1.50% 1461248
4 application vnd.ms-powerpoint 2 0.10% 1584128
5 application x-httpd-php 20 0.97% 35393
6 application x-javascript 3 0.15% 11473
7 application x-trash† 136 6.59% 953641
8 application xml 9 0.44% 4332
9 image gif 713 34.56% 6566834

10 image jpeg 60 2.91% 1191976
11 image png 16 0.78% 477209
12 image x-ms-bmp 2 0.10% 43448
13 image x-xbitmap 3 0.15% 9250
14 text css 11 0.53% 86701
15 text html 860 41.69% 7556614
16 text plain 18 0.87% 6505419
17 video mpeg 2 0.10% 848614

Total: 2063 100.00% 46343165

67

FIG. 32: Graphical View of the CS Department Website. The depth of the siteis 5, and not all
directories are linked even though they may be accessible if the path is known. There are some
PHP and Perl scripts used to generate some pages and certain elements on other pages, as well
as Javascript (which is run by the client’s browser). Portions of the site require user login with a
password. Overall the site structure is like many other websites: not too wide, not too deep, not too
complicated.

1.3 Characteristics of the Website Logs

Log Availability

Web server logs are an important part of site maintenance as well as site information. Except for

situations where logging has been turned off, or some limiting factor like file sizehas been reached,

web server logs (web logs) contain a record ofeveryrequest made to the server. This information

lets the webmaster know about failures as well as successes. The “404:Not Found” message that

shows up in a browser when a link does not resolve successfully is also recorded in the web log,

along with the successful requests. Web logs are thus a rich source of information about resource

availability and potential problems on a website.

Sitemaps can use logs as a source of information for building the list of available resources. The

department provided all of the available logs for the 2006 and 2007 calendar years. Because of the

data size, the logs were parsed into a MySQL database. In addition, a series of scripts was used to

“canonicalize” the requests so that requests would map to the appropriate file system resource (if

one existed). Dynamic URLs were mapped to their CGI scripts. The record volume was very large,

over 50 million requests covering the two year period.

68

FIG. 33: Log coverage during the 2006 calendar year was very low, only 26%. In some cases, only
a single hour of activity was logged on a calendar day.

Log Coverage

For the 2006 calendar year, over 58 million requests were logged by the server; for the 2007 cal-

endar year, nearly 42 million requests were logged. Despite having almost 100 million log entries,

the Apache logging facility was operational less than 50% of the time, and coverage gaps appear

throughout both calendar years. In the case of the CS Department website snapshot, website enu-

meration analysis was severely impacted by the numerous gaps in the available logs. For the 2006

calendar year, the logs cover only 26% of the clock (2297/8760 hours). 2007 is somewhat better,

with 3271/8760 of the year’s hours (37%). See Figures 33 and 34 on thenext page for a graph of

coverage during 2006 and 2007.

Despite these gaps, there are over 15 millionsuccessfulrequests in the 2-year period of the

logs (unsuccessful requests were ignored, since they do not point toa valid resource). 3233 distinct

resources (files, plus open directories, plus scripts by filename) occurduring this timeframe, which

is about 50% more than the number found at the time of the snapshot. The website underwent several

major redesigns, which may account for the difference. Some files only appear in the early months

of 2006, while others only appear in the later months of 2007: more evidencethat the department

website, like most others, is continually changing. Despite this poor showing,15,585,100 successful

69

FIG. 34: Log coverage during the 2007 calendar year was better than for 2006, but still only 37%.

requests were extracted from the logs. Comparing the logged requests withthe known file system

resource list, 68% are logged. Figure 35 on the following page graphs a timeline of the coverage.

That figure should be adjusted, however, to account for files that arenot normally accessed at

all, even though they exist in the file system and are available to anyone. Such files would include

backup files or earlier versions of current files renamed to distinguish thetwo. If the files that

would not normally be accessed – such as these bakcup files – are removed from the list, the total

coverage improves considerably. Figure 36 on page 71 shows that the coverage rate reaches 98%,

significantly better than the 68% shown in Figure 35 on the following page.

Request String Content

Web server log files contain a single line entry for every request that comes to the server. Depend-

ing on the local configuration, the amount of information that is tracked in such a request can be

substantial, and additional fields can be specified using custom logging utilities. Many sites use a

standard subset of the log field options called “CLF” or Common Log Format. The fields and their

explanation are listed in Table 12 on the next page. These are the data elements used by the author

to evaluate site coverage by crawlers and overall site coverage by all visitors.

Request strings in the logs range from simple “GET/” to sinister “GET../../../../../..

70

FIG. 35: This graph shows the proportion ofall accessiblewebsite resources that were visited,
either by a robot or by a user with a browser. Here “100%” includes items like backup files which,
though accessible, are rarely if ever visited.

TABLE 12: Web server log fields in the commonly-used “CLF” format of Apache. The department
website used this format, although some of the fields were not recorded (thisis configurable by the
webmaster).

Field Usage (at cs.odu.edu)
host IP address of requester
ident (not used)
date timestamp of request – dd/mm/yyyy:hh:mm:ss tzoffset
request the request line (URI)
status 3-digit code (see Table 13 on page 73
bytes size of response in bytes

71

FIG. 36: This graph shows the percent ofexpectedwebsite resources that were visited, either by a
robot or by a user with a browser. Here “100%” only includes “normal” files – those in publicly
accessible directories that are not backup files.

72

/../etc/passwd ”; the latter is an example of someone trying to navigate to the file system root.

There are a number of query strings (/search_user.shtml?q=ThamesFrank&h=i) and

in-page anchors (/ODUCS/brochure/rcnr.html#rr) which occur as well. There is dynamic

as well as static content, including script-containing HTML or “SHTML” files.In some cases,

the URL may contain view-order parameters (/images/?S=A) or specify a specific sub-page

(/news.shtml?id=Assefaw). Neither of these last two examples maps precisely to a static

resource in the file system. Resolving these and various combinations of “/./././xxxx”, “/////././xxxx”,

“/.///./.?/xxxx”, etc. involve a series of text-processing and path resolution, followed by visual-

inspection and further processing for some files. The author had to use hand-pruning to clear up a

number of log items that were not categorized by the scripts. This is one of theproblems that makes

it a challenge to use logs as a resource enumeration tool.

HTTP Response Codes

There are a number of response codes defined for HTTP. These indicate whether or not a request

was successful, only partially successful, not found, etc. Table 13 onthe next page lists the codes,

count, and definitions for the logs used in this evaluation. Generally, the 304response indicates a

status-request usually from a crawler. The robot is saying “only sendthe resource if it has changed

since date X.” A response of 304 tells the crawler that the resource has not changed since that date.

While it does not save the crawler a request, it does save both web server and crawler the extra time

to process a resource that the crawler probably already has in cache or on disk. A 206 response

usually occurs when the request has specified it wants only a limited number of bytes in return.

This is another technique to limit the amount of bandwidth required to process aresource. The

other two responses, 301 and 302, are codes indicating partial success. In the case of 301, the client

should “fix” the URL it asked for and instead point to the new URL returnedwith the 301 response.

For the 302 case, the original URL is only being temporarily redirected so nochange is required.

In both cases, the requested resource is in fact sent to the client. Since the evaluation focused on

finding resources, logs with response codes of 404 (Not Found) and 403 (Access Forbidden) were

not analyzed.

1.4 Website Usage Metrics from the Logs

There are two kinds of entries in web server logs, those from users andthose from crawlers. Some

entries are not easily mapped to either of these categories because the entry itself was only partially

written. In selected entries, which could have been requested by a user from a terminal window

(i.e., via command-line entry), the request is automatically categorized “crawler” because of the

type of command. Requests with “HEAD” or “OPTIONS” as the HTTP Method fall into this set.

Table 14 on the following page shows the request distribution in the logs for each Method, grouped

73

TABLE 13: HTTP Response Codes in the CS Web Logs, with an explanation and the frequency
count. Absolute counts for “404” and “403” were not tracked for this evaluation since they do not
point to valid resources.

Code Count Percent Explanation
200 9,886,899 63.44% OK
206 21,322 0.14% Partial Response
301 12,821 0.08% Permanently Relocated
302 19,511 0.13% Temporarily Relocated
304 5,644,547 36.22% Not Modified

TABLE 14: Request distribution on the CS Website by type of visitor and the HTTP Method used
to request the resource.

Method Robots Users All
GET 6,910,069 8,486,030 15,396,099

HEAD 95,560 – 95,560
OPTIONS 90,265 – 90,265

POST 2,897 279 3,176

by type of visitor. The main goal for the author was to separate normal browser usage of the site

from everything else. In general, “everything else” is safely put in the “crawler” category since

(a) browsers do not issue such commands and (b) the number of such requests is less than 1% of all

requests.

The distribution of requests between crawlers and users is shown in Table15 on the next page

and in Table 16 on the following page. Crawlers are significantly more activeon the site than users

for certain categories. Considering the goal of crawlers to thoroughly explore a site, compared with

the user goal of accessing a particular resource, this distribution is expected. Crawlers, for example,

will ask for every resource in an open directory whereas users will typically only request one or two

items. This is one reason that crawler requests for Word “DOC” files outnumber user requests by

a factor of nearly 40 to 1 (Table 16 on the next page). In contrast, the number of images requested

by users is nearly 35% higher. Here, one explanation is that the “favicon” image is only sometimes

requested by crawlers but it is automatically sent to browsers in associationwith many other pages

from the site.

74

TABLE 15: Request distribution on the CS Website by type of visitor and the MIME type of the
requested resource. Users target specific resources whereas crawlers try to reach every resource.

MIME Type Robots Users All
Application 78,765 11,669 90,434

Backup 3,904 324 4,228
Directory 276,243 902,434 1,178,677
Dynamic 1,073,716 863,634 1,937,350

Image 4,833,326 6,408,875 11,242,201
TXT/HTML/XHTML 832,837 299,373 13,179,551

TABLE 16: Request distribution on the CS Website by type of visitor and application type of
requested resource.

Application Robots Users All
DOC 39,722 1.193 40,915
PDF 25,953 9,209 35,162
PPT 228 378 606
XLS 9,338 398 9,736
PS 14 4 18

MPG 115 61 176
MSO 2,681 27 2,708

75

TABLE 17: Resource duplication on a site can occur when directories arecopied to another part
of the resource tree. Or the duplication may not be physical but rather indicate a new redirection
instruction by the server.

URL 1st Access Date
(1) /final/advising/syllabi/cs411s05.html 12/14/2005
(2) /advising/syllabi/cs411s05.html 07/18/2006

1.5 Cruft and DUST on the Website

Cruft in a website can be defined as resources, particularly files, that continue to reside in the

website but which have been superseded by newer files. Although theseresources might also be

the equivalent of backup files, in many cases it is likely an oversight by thewebmaster who did not

erase the earlier files. There are several files that appear to be “cruft” on the website, probably from

when the site was reorganized and the older files were not cleaned up. Some files are obviously

“test” files, and even have the word “test” as part of the name. Others have apparently viable names

but have content that is clearly being used as a test page. As an example,“content.htm” appears

to be a draft for a new department home page, with placeholder content and images but containing

text which is obviously “made up” and not designed for general public consumption. The resource

would be accessible if the path to it were known.

Several resources appear to have been moved at some point. Consider, for example, the URLs

in Table 17. The two URLs appear to be the same resource, having the same basic filename and

byte size, but located in different directories. The “final” directory no longer exists as of our website

snapshot timestamp.

Resources like those in Table 17 fit the description of “DUST,” DifferentURLs with Similar

Text [7]. In this case, though, the log entries reflect the transition of the resources from location A to

B in the website tree. The resources themselves do not actually exist in duplicate. Such evolution is

normal in a website, which may undergo many such small restructurings during its normal lifetime.

A similar transition in structure can be inferred from files like these three:

(1) http://localhost/advising/program_decision.html

(2) http://localhost/advising/program_decision.html.bak

(3) http://localhost/advising/program_decision.shtml

In this case, the files show the migration of the department’s website from static HTML content

(html) to dynamically-generated content (shtml), which is primarily Javascript. The main problem

arising from cruft and DUST is whether to include it as part of the website or not. If it is included,

76

then site coverage will remain artificially low, regardless of the enumeration method used because

these files are not normally meant to appear in the website. The author chose, therefore, to treat

such resources as though they were “restricted” items which would not appear in a full account of

the website’s resources. This decision is reflected in the difference between Figure 35 on page 70

and Figure 36 on page 71.

2 A COMPARISON OF ENUMERATION METHODS

2.1 File Tree VS Logs

A simple walk of the webroot file system produces 2273 named resources available at the time of

the snapshot. This figure includes the contents of a “php” directory, butnot the cgi-bin directory,

because these scripts were not archived. Two files not archived, “robots.txt” and “favicon.ico”,

were recreated as empty files. Both of these have been a part of the website continuously from 2005

through today. The logs produce nearly 6700 unique resource requests, but many of these either no

longer exist (i.e., they predate the snapshot) or they were created after the snapshot. Others, as noted

in Section 1.3 on page 69, are duplicates at the resource level but distinctby virtue of the anchor

tag. Still others are resource duplicates but have, for example, extra “slash” characters at various

points in the request string.

A superficial comparison of the two lists, log requests and known resources, shows over 4000 of

thevalid log requests are not found in the snapshot. According to the website system administrators,

Rewrite rules are applied to some requests, but the original configuration isno longer available so

it can only be inferred. The rules undergo continual change and current rules do not apply to the

snapshot period. In any case, the number of resources retrieved compared with the known list

shows a significant discrepancy – nearly double (4000 retrieved vs. 2273 files on disk). By manual

inspection of the discrepancy list, many of these were reduced to minor variations of the same URL

– the “extra” slash usage mentioned earlier, for example. Additional post-processing using a path

resolve utility helped clear up some of the remaining discrepancies. Figure 37on the next page

shows the relationship between all resources found in the logs, the snapshot resources, and those in

the logs during the timeframe of the snapshot.

2.2 File Tree VS Self-Crawl

Installing the snapshot on a new server, the author performed a self-crawl of the site, iterating

through the links starting from the home page. These results imitate the resources that a crawler

like Google would find if it explored the site. Any links that pointed to an external site, as well

as those that went into the “tilde” subsites, were discarded. Occasionally,links on the site return a

404 response, including one on the main page (“Student Goals”,student_goals.html) which

77

URLs in Logs 2005-2007

E
Year = 2006

D
Not In

SnapshotF
All Log URLs

FIG. 37: F represents all unique resources from the 2006-2007 logs(which actually include part of
2005);F = 3233. E contains all the resources from the snapshot, dated 6 June 2006. E = 2742.
Since the logs cover a wide period surrounding the snapshot, many resources appear in the logs that
are not part of the snapshot;D = 1230. There are some resources that are not in the snapshot but
are in the logs for the same time period;E∩D = 469.

the logs show as successful for the timeframe of the snapshot. Even an archived snapshot can have

unexpected errors. In all, 878 broken links are found during the self-crawl. The CS Department

internal web links are not canonicalized, except for the CS Site Search link which points to Google

to execute a restricted query on the “cs.odu.edu” domain (rather than on thewhole web). The local

URLs found under “ A HREF= ” tags on the site are shown in Table 18.

The links listed in Table 18 do not have the webroot portion of the URL; they exist in

the page source simply as, for example,HREF=``Michael_Nelson.shtml'' rather than

as HREF=‘‘http://www.cs.odu.edu/Michael_Nelson.shtml’’ . This is common

practice; usually only external URLs are fully qualified. However, some fully qualified internal

URLs are found during a self-crawl, such as the examples in Table 19 on page 79.

Various “mailto:” links are also scattered throughout the web, but these arenot tracked here

since they do not point to a preservable resource (although the link itself could be forensically useful

information). Some rewrite rules can be inferred from the logs and the file system resources. For

example, the “ advisor” links rewritten as “/advising/” work properly, and the system administrators

confirmed that, for a time at least, such a rule existed.

A self-crawl produces directory hints, such as the “images/” and “files/”directories, which a

78

TABLE 18: Links on CS Website Main Page

URL Response
index.shtml 200
search_user.shtml?q=xxx 200
Michael_Nelson.shtml 404
tharriso.shtml 404
chairs_welcome.shtml 200
mission_statement.shtml 200
student_goals.shtml 404
by_laws.shtml 200
organization.shtml 200
facilities.shtml 200
faq.shtml 200
locations.shtml 200
StudentSpace-Fall2006.htm 404
encs_f3.png 200
faculty.shtml 200
faculty_show.shtml?p=2 200
facilities_space.shtml 200
staff.shtml 404
program_info_ug.shtml 200

crawler can use to see if it produces a directory listing. Crawling utilities (“wget”, for example) can

often be configured to recursively traverse such directories. In the case of the “images/” directory,

the full set of 72 files and 5 subdirectories is exposed to the crawler. Thisis not the case with the

“files/” directory, however, because an empty “index.html” page hides the file listing while providing

no insight into the contents of that portion of the website tree. Results of the self-crawl were poor:

538 distinct URLs which resolved to only 406 snapshot resources. Compare these numbers with

Figure 38 on the next page which shows the relationship between the snapshot resources and those

that were crawled at some point by users or robots.

2.3 File Tree VS Sitemaps Tools

Many sitemap tools that are installed on the host computer base their initial resource list on the

website file system, and so the two profiles are often closely synchronized.Such tools also have

options that allow specific dynamic URLs to be included, so they can also include some of the

elements in the Log files that are not found in the standard file system tree. Some sitemap tools

can be configured to produce only resources found through a self-crawl, which can be useful for

finding links that have typographical errors or no longer exist. On-line utilities are limited to a

79

TABLE 19: Fully-qualified internal links on the CS Website.

Request Response
http://www.google.com/search?q=xxx&operation=1 200
&domains=cs.odu.edu&(etc) 200
http://web.odu.edu/home/secondary/class_schedule.ht ml 200
http://localhost/www.odu.edu/ao/cmc/index.html 200
http://web.odu.edu/webroot/orgs/AF/FIN/fin.nsf 200
/pages/Current+Tuition+Rates 200
http://web.odu.edu/af/finaid/finaid.htm 200
http://www.cs.odu.edu/~ibl/courseschedpage.html 200
http://www.cs.odu.edu/~advisor/ 200
http://system.cs.odu.edu/ 200
http://www.cs.odu.edu/cspage/phdstudents.html 403
http://www.cs.odu.edu/~advisor/program.html 200
http://www.cs.odu.edu/~advisor/advising.html 200
http://www.cs.odu.edu/~advisor/program/seniorexit.html 403
http://www.cs.odu.edu/~advisor/program/minor.html 403
http://www.cs.odu.edu/~acm/ 200
http://www.cs.odu.edu/~home_g/prosp_grad_home/home.html 403
http://www.cs.odu.edu/~home_g/grad_home/grad_info

/things_to_do_to_graduate.html 403
http://www.cs.odu.edu/~wahab 200
http://www.odu.edu/ 200

A

Not Accessible

B

Not Crawled

C

All Files

Snapshot 2006

FIG. 38: The snapshot contains 2273 resources,C = 2273. Of these,B = 722 do not appear in any
of the logs. The snapshot has some protected resources which are notaccessible,A = 577, leaving
A−B = 145 resources that were accessible but never crawled.

80

FIG. 39: Some sitemap tools provide sophisticated, GUI-based reports. This graphical website
representation was produced by the Webmaster Tool on auditmypc.com

site-crawl, although sometimes a specific directory tree can be designated aslong as it is directly

web-accessible. For example, Webmaster Tool [4] is a Java-based utility which starts from a given

web page and lists all links found from that point forward. It producesa very detailed graphical

view of the site (see Figure 39) and creates reports in plain XML, sitemap-compliant XML, and

HTML. Webmaster Tool cannot traverse the site file system itself, however, nor can it examine logs

for additional links. Those features are limited to utilities which are operated bya privileged user

on the local system. Other sitemap tools impose artificial limits on the size of the site. For example,

theXMLSITEMAPutility [150] will not create a sitemap larger than 300 items.

One feature that some sitemap tools offer is the ability to comb logs for additional URLs. In

this case, the author found this strategy to be less helpful than expected, inlarge part because of the

quality of the logs and their content. The gaps mentioned in Figure 33 on page 68 and in Figure 34

on page 69 are a contributing factor to the very low rate of URL discovery via the logs. In some

cases, log entries appear to have been interrupted before completion. Both of these defects created

harvesting problems and required numerous “special case” handling to push the entries into the

author’s MySQL database. Such special handling was not configurable in the third-party tools, but

81

FIG. 40: Site Coverage from Web Logs

it was instrumental in achieving good coverage of the website snapshot. Utilities will have similar

difficulties and can “crash” when badly-formed log entries are encountered. The author experienced

this situation with a version of Google’s Python script for building a Sitemap. Sites that are simple

may find the process easy, but complicated sites can require review of the results to ensure a usable

Sitemap is produced.

2.4 Relying on Logs Alone

The CS Department website is very busy, with millions of requests coming in eachmonth. With

crawlers actively trying to reach as much of the site as possible, and usersaccessing resources that

might be unadvertised, the logs can quickly approach, if not reach, fullwebsite coverage. Figure 40

shows how the CS Department website logs come close to accessing all knownsnapshot resources.

The department’s website also has many dynamically-generated resourceswhich will not be

found in the file system. These resourcesdoappear in logs, requested by both crawlers and users as

Table 20 on the following page shows.

82

TABLE 20: Request distribution on the CS Website by visitor and dynamic resource type. Type
“Other” includes Java, Ruby On Rails, and Python.

Type Robots Users All
PHP 8,525 37,261 45,786

PERL 3,313 7,834 11,147
CGI (other) 83 114 197

Other 264,949 287,709 552,658

All Website URLs

A
Not

Accessible

B
Not Crawled

C
All Files

E
Year = 2006

F
All Log URLs

D
Not In Snapshot

Years 2005-2007Snapshot 2006

FIG. 41: Website Coverage from Integrated Counting Techniques. It isnot possible to guarantee
that all website resources will be counted, but more are likely to be found using this method than
any single approach.

3 SUMMARY OF EXPERIMENT RESULTS

Self-crawls, file-system traversal, and log harvesting produce different lists of website resources.

In Figure 41, a comparison of the results from these different enumeration methods shows the

advantages of integrating all three approaches into a single solution. The universe of all website

resources may be more than the sum of that the counting utilities produce.

4 RESOURCE ENUMERATION & THE RACE CONDITION PROBLEM

One characteristic of websites is that they undergo change. Each time a resource is added or deleted

to the website, the existing sitemap file is no longer synchronized with the actual condition of

the site. There is a necessary delay that occurs betweenresource updateandsitemap update: a

race condition between what is on the site and what is listed as being on the site.The time delta

83

between the site change and the sitemap update opens up opportunities for incomplete or otherwise

erroneous site harvest. There is no way to overcome this problem. Taking asite off-line does not

solve it, because an earlier sitemap request could still be used as the basis for a later harvest. To

some degree, there will always be a degree of uncertainty regarding thecontent of a site and the

accuracy of its sitemap.

5 STRATEGIES FOR OPTIMIZING RESOURCE ENUMERATION

The three methods examined for counting all of the website’s resources produced very different

results. Insofar as the CS website was a reasonable example of a typical website complete with in-

correct links, changed filenames, and resources that appear and disappear quickly, no single method

will produce a complete sitemap. The best strategy, then, is to combine all of themethods: (1) self-

crawl to generate a list of links on the website; (2) traverse the file system toget a list of disk-based

resources and the names of CGI scripts; (3) harvest the logs for a list of successful requests. The

union of these lists, properly canonicalized, will produce the most complete enumeration of re-

sources.

This is not a one-time event, however. The process should be repeated periodically to capture

new resources. Ideally, a script would monitor the logs for new entries, but this may not be practical.

There are logging options that can write to a MySQL database, in which casea nightly script could

quickly determine the presence of new resources which could be added tothe sitemap. Resource

obsolescence needs to be similarly monitored or the sitemap will be inaccurate in that respect, as

well. In short, confident enumeration of site resources is an intensive task that never ends. The

Counting Problem does not have an easy solution.

6 SUMMARY

There are three basic routes to solving the Counting Problem for a website:(1) self crawl; (2) file

system traversal; and (3) log harvesting. The result is stored in a special XML-format file called

Sitemap.xml. This file lists all of the resources that are considered a part of the site. The accuracy of

this list depends on the technique used. Each technique finds a differentpart of the whole. Except

for a static, perfectly-linked and file-system-based website, none of these will find everyresource.

The most complete picture appears to come from the union of all three techniques. Even then,

some resources might be missed. With new additions and various deletions, a race condition exists

between what is there and what was there, and what is listed in the Sitemap. The Sitemap file must

be continually refreshed in order to remain as complete as possible, but it cannot guarantee that all

resources are properly counted.

84

CHAPTER VII

RESOURCE DESCRIPTION: THE REPRESENTATION PROBLEM

’When I use a word,’ Humpty Dumpty said in rather a scornful tone,

’it means just what I choose it to mean–neither more nor less.’

— Through The Looking Glass (Lewis Carroll)

1 THE REPRESENTATION PROBLEM DEFINED

The representation problem asks whether enough informationabout the resource is known. In

this case, “enough” means sufficient metadata to present it to the requester (user) correctly. In

the OAIS Model, the digital object is interpreted by virtue of the representation information and

knowledge base (i.e., the sum of metadata). These combine to produce the information object. In

Figure 42, the digital object is the body of the HTTP response (JPEG content, for example). The

representation information comes from the MIME type and other HTTP response headers, and the

knowledge base (rendering tool) for presenting the object is built into the browser. The result is

what OAIS terms aninformatio object. Most browsers can appropriately display or describe today’s

resources at the point of request. HTML, various image types, and manyvideo and audio formats

are readily “understood” by browsers (and crawlers), thanks primarily to MIME typing and other

headers communicated through HTTP. Browsers have “plugins” designed to interpret the content for

display to users. The relationship between OAIS and the browsing experience is shown in Figure 42.

data representation knowledge information
object + information + base = object

(A) (B)1 (C)2 (D)

FIG. 42: Resource representation in the OAIS Model and from a browser’s perspective.
1http://jimmac.musichall.cz/images/logo/connector.png2http://mozilla.org

85

The Representation Problem is the need to have sufficient information to correctly understand

the resource at some future point in time. Can a set of functions be definedthat will preserve web

siteW in a format that makes it possible to reproduce the restored resources when needed at a future

date? “Restoration” could mean either exact reproduction of the original inan environment that

emulatesthe source system; or it could mean themigration of the resource into a format that is

understandable by the future system. The goal is to define aPreservationfunction (P) that archives

the resource together with essential metatadata; aRestorationfunction, Re, which can reproduce

the original via emulation, or which restores it via the migration of the content to the newer format

(Rm):

P(W)
archive
−−−−→ W

Re(W)
emulation
−−−−−→ W

Rm(W)
migration
−−−−−→W∆

In brief, the Representation Problem is the problem of collecting sufficientdescriptive information

for each resource on a website so that it can be properly representedin the future.

2 WHY THE REPRESENTATION PROBLEM EXISTS

Formats change over time, and some fall into disuse. “Live” sites gradually implement various

software upgrades, change hardware platforms, and perhaps evenadopt new protocols. Consider

gopher, ftp, and telnet which have mostly been replaced by http/https, scp,and ssh. HTML 1.0 has

evolved to SHTML and XHTML, and a number of early HTML tags have beendeprecated. The net

result is that a faithful bit-level copy of an old resource (w) might not be usable at all on the new

system (W∆). For a resource that continues to live during the changes,w becomesw∆ by manual

intervention, by automated updates, and perhaps through repeated interventions of both types. A

preserved resource would need to be similarly adapted to the updated environment in order to be

viable. The adaptation could happen by emulation of the older system, translation to a newer format,

or by some other method, ideally one that is automated.

For preservation, the metadata customarily available from an HTTP request-response event is

insufficient. If web crawling and browsing occur through HTTP, how can more metadata obtained?

In part, archivists actively coordinate with the website owner to manually store additional infor-

mation about the website and its resources, or to post-process the item usingvarious utilities. For

example, Dublin Core metadata may be derived through a series of conversations and form-filling

between the archivist and the site owner.

In the technical metadata arena, a variety of utilities exist to aid the archivist inmetadata pro-

duction once the website has been crawled. Jhove and Exif Tool are two well-known examples of

86

metadata-production utilities which are applied to image files. Typically, the host web server does

not operate such utilities. Instead, they are applied by archivists to resources at the time of ingest.

A common preservation model, then, is for the archivist to employ a web crawler which iterates

through a site’s resources, storing them at the archiving site for later analysis and formal ingestion.

While some metadata utilities depend on supplemental manual input from an archivist, others are

fully automated and capable of being used by the originating server as well as by the archiving

client. Regardless of the approach, the key is to maintainenoughinformation (metadata) about

the resource to enable its future understanding. The insufficient metadataaccompanying an HTTP

response is behind the Representation Problem.

3 SEARCH ENGINES & REPRESENTATION

Before Google revolutionized web searching with its PageRank algorithm, finding resources on the

web was difficult, and many authorities believed it could only be solved by somehow incorporating

metadata into websites [121, 134, 148]. Google’s approach was to weightlinks on web pages

to produce a hierarchy of results, circumventing the supposed metadata dilemma. One aspect of

metadata remains a factor for search engines, regardless of the indexingstrategy used: trust in

content representation. Consider Figure 43 on the next page, which shows the HTML content

(A) and the browser-view of the content (B). Therepresentationof content on this page differs

depending on whether it is crawled or browsed. The crawler “sees” thetext content (Britney Spears)

repeated numerous times. The browser doesn’t display that content; onlythe image is shown. Such

pages are considered a kind of “spam” because their content cannot be trusted by the crawler to

accurately reflect content the user will see. The issue of trust is important [80]. If this page was in

the top-10 links for a user’s “Britney Spears” query, the user would bevery unhappy with the results

since it has nothing to do with the request. Although there have been many improvements, search

and rank algorithms have not yet eliminated the ability of such “spam” pages to populate search

results [103, 90]. On the other hand, sometimes the intent of text is to communicate a picture, as in

Figure 44 on page 88. How can this representation be distinguished from the spam-like content of

Figure 43 on the next page? How does the content of ASCII art relate to the image drawn? Is it spam

or is it informational or is it nothing but pixel-rendering? In OAIS terms, theknowledge baseis as

important as the other two components (the data object itself and the representation information) in

order to produce a valid information object.

Search engines also alter content representation when they transform the site resource in the

cached copy they keep. Consider Figure 45, where the original PDF resource (A) has been cached

and modified (B). Yahoo’s cached copy has only the essential text and none of the imagery. Whether

or not informationhas been lost by the transformation depends on the resource and on the intent

of the original document. If the client’s search includes an expectation of an image – perhaps as

87

(A) Crawler-Viewed Content (B) Browser-Viewed Content

FIG. 43: Representing content. The dominant content varies by the type of access, that is, the
emphasis may not be the same to the crawler as it is to the user with a browser. The HTML in (A),
which repeats “Britney Spears” a few hundred times, produces the pagein (B) – but that is not a
photo of Britney Spears. All the “Britney Spears” are seen by the crawler but not displayed by the
user’s browser, who may never realize that they are there, and who willnot understand why the page
is in the Britney Spears query result set.

88

(A) Coffee Shop Zombies1 (B) Turmoil2

FIG. 44: ASCII Art was popular during the days of Usenet. In some cases the text had both view-
able art and meaningful content. In other cases, the text merely served toturn monitor pixels
on and off, effectively drawing the image on the screen,if the screen is a monochrome 800x600
pixel device. Future representation of this will depend on having sufficient informationabout
its content and expression.1http://www.penguinpetes.com/images/BBS_art/thumbs/Coffeeshop_Zombies.jpg
2http://www.penguinpetes.com/images/BBS_art/ASCII/Turmoil.jpg

the “recognition” factor for the client – this cached copy is less likely to be useful. Representation

issues impact search engines as well as preservationists.

4 WEB SERVERS, BROWSERS, & REPRESENTATION

4.1 MIME

Once mostly plain ASCII text or Hypertext (HTML), many World Wide Web sitesnow contain

application-specific files (Flash, Video, multimedia), non-hypertext documents (Adobe PDF, Word

files, XML files) and enhanced hypertext content (XHTML, CSS). Successful access to this variety

of resources is accomplished in part thanks to MIME typing, which identifiesa resource as belong-

ing to one of 8 major types, each of which has a variety of subtypes. Servers and browsers are

individually configured to recognize various MIME types as defined by IANA. Apache, for exam-

ple, has an extensive list of default MIME types that are installed with the server, including many

that are seldom used (as in the example in Figure 15 on page 33).

The MIME specification (Multipurpose Internet Mail Extensions) and MIMEtypes are one

method for encoding binary data in an ASCII format so that files can be transferred using simple

text-based protocols like HTTP and SMTP [37]. The MIME specification has enjoyed a nearly

universal implementation, but it differentiates file content types on only a very simple level, and

89

(A) The original PDF1 (B) Yahoo’s transformed cached copy2

FIG. 45: Search engines sometimes transform resources that will be stored in cache. In the
process, images and other information may be lost.1http://www.erpanet.org/guidance/docs/
ERPANETPolicyTool.pdf 2http://cache.search.yahoo-ht2.akadns.net/search/cac he?ei=
UTF-8&p=digital+preservation&y=Search&fr=yfp-t-501& u=www.erpanet.org/guidance/
docs/ERPANETPolicyTool.pdf&w=digital+preservation&d =Q1PzJpzfQw6A&icp=1&.intl=us

one which is insufficient for archiving purposes. RFC 2046 defined 5basic content types [38], and

two composite types. The 7 categories are listed in Table 21, with example files given for each

type. There are some unexpected category assignments mixed in with the usual suspects. Most of

us probably would guess correctly that the content type assignment for voice messages is multipart

media, but it is a bit surprising to find that encrypted resources such as message digests are also

assigned to this category.

In most cases, both the server and client rely on the file extension for type identification, and

problems can arise if the typing and content are mismatched. For example, the file http://

beatitude.cs.odu.edu:9999/falsePdf.pdf is a UTF-8 encoded resource which has

been renamed with the “dot-pdf” extension. Both the server and the client misidentify this file.

Browsers attempting to access this file can generate an error if the file is not examined more closely.

But if falsePdf.pdf is downloaded and examined with a more capable tool like the Unixfile

command, the “real” file format is recognized as “UTF-8 Unicode English Text”. The automatic

MIME typing process was misled by the “pdf” extension.

90

MIME Type Selected Subtypes

Basic (Discrete) Types
(1) text plain, HTML, XML, richtext
(2) application pdf, octet-stream, zip, msword
(3) audio basic, wave
(4) image jpeg, tiff, gif
(5) video mpeg, quicktime

Composite Types
(6) multipart header-set, digest, mixed
(7) message external-body, news, partial

TABLE 21: The MIME Content Type Categories

In some cases, not enough information is given to access the resource once it is received. For ex-

ample, a Content-Type ofapplication/octet-stream could be an Open Office document,

an Excel spreadsheet, or some other file format not recognized by the server. Another frequent

scenario is where the server understands the type, but the client does not, as the previous example

of Figure 15 on page 33 illustrated. The web server has correctly identified the MIME type, but

the browser has no representation method. VRML files, popular in the 1990s, are just one of many

formats that have fallen into disuse. Travelling back in time, it might be possible toget more useful

metadata on the file: the best time to get information about a VRML file was about 10 years ago.

Certainly, the minimal metadata generated by crawling the site for this resource isunlikely to prove

sufficient for historians in the year 2100. Despite “knowing” what the fileis, representing it is a

problem for the browser.

4.2 HTTP

The MIME Content-Type entity header sent over HTTP by the server provides only bare-bones

information about the resource. Version 1.1 of the HTTP protocol has 47defined Headers which are

grouped into 4 general categories: (1) Entity (2) General (3) Request and (4) Response. Table 22

lists the headers by category. Few of these are routinely used by web servers, and even fewer provide

insight into the resource. The Request and Response categories together contain more than 50% of

all HTTP headers. This distribution of fields makes it plain that most HTTP exists to facilitate the

transfer of data rather than interpretation of data.

91

TABLE 22: HTTP Headers, grouped by category. Those that were intended to provide resource
metadata fall into the Entity category, but useful data can be found in the other categories as well.

Category
Entity General Request Response
Allow Cache-Control Accept Accept-Ranges

Content-Encoding Connection Accept-Charset Age
Content-Language Date Accept-Encoding ETag
Content-Length Pragma Accept-Language Location

Content-Location Trailer Authorization Proxy-Authenticate
Content-MD5 Transfer-Encoding Expect Retry-After
Content-Range Upgrade From Server
Content-Type Via Host Vary

Expires Warning If-Match WWW-Authenticate
Last-Modified If-Modified-Since

If-None-Match
If-Range

If-Unmodified-Since
Max-Forwards

Proxy-Authorization
Range
Referer

TE
User-Agent

4.3 Web Presentation Technologies

It is axiomatic that the Web is a presentation-oriented technology. HTML, Flash, Silverlight, and

other technologies are designed to provide a specific experience to the user. This experience is

grounded intoday rather than in long-term viability of the content. In some cases, metadata can

be embedded (HTML META tags, for example), but in most cases the resource is the metadata.

By themselves, these resources do not have enough information to ensure long-term preservation.

Website archivists usually use special metadata-generation utilities to gather details about a specific

resource. They may also use manual-entry techniques like forms to recorddata about the resource’s

origins such as authorship or purpose. Without these efforts, though,any of these resources is

subject to the natural obsolescence of digital evolution.

5 REPRESENTATION MODELS, METADATA, AND INTEROPERABILITY

In 2005, as part of the Archive Ingest and Handling Test (AIHT), the Library of Congress tested

“the feasibility of transferring digital archives in toto from one institution to another” [122]. Several

issues arising during the test, and conclusions resulting from it, have influenced the development of

this proposal. The first is that metadata which is characterized asrequired for resource ingestion

92

often turns out, instead, to merely bedesired. Some resources are valuable enough to warrant inges-

tion with whatever metadata is available for them, even if it doesn’t fulfill repository “requirements.”

Another observation from the AIHT is that metadata markup, like ontologies, willnever evolve into

a universally-accepted approach [123]. Two repositories storing thesame resource may record and

map metadata very differently. This means that interoperability or even simple resource exchange

between the repositories may involve very complex operations, even if both used, say, METS. As a

result, a key conclusion of the test is that data-centric strategies are more useful than those based on

implementing a particular environment or model.

6 SUMMARY

The Representation Problem addresses the need for sufficient metadatato be stored with an object

so that its function and expression is possible in the future. In OAIS terms,

DataOb ject+RepresentationIn f ormation+KnowledgeBase= In f ormationOb ject

Websites have many data objects, but little metadata, and both HTTP and MIME provide only

enough information for interpretation today, not tomorrow. Intervention byArchivists, used by

professional digital libraries, is not practical for the everyday website. Search engines provide little

metadata, and sometimes website resource content incorrectly influences thesearch engine’s results

set. Representation depends on knowledge base and representation information. MIME and HTTP

provide the representation information as part of the file transfer, and thebrowser typically provides

the knowledge base for presentation of the information object. In some cases, there is insufficient

metadata to produce the information object. Complex Object models integrate the resource with an

essentially unlimited amount of metadata, making them an attractive solution for packaging website

resources for preservation. Metadata in the complex object can be generated both manually and

automatically. Organization of the metadata can prove to be problematic, however, particularly

when repositories exchange information.

93

CHAPTER VIII

EVALUATION OF METADATA UTILITIES ON THE WEB SERVER

1 A REPRESENTATION PROBLEM EXPERIMENT

1.1 Characterizing A Typical Website

To evaluate the performance of metadata utilities it was important to create a website where all of

the resources are well-defined, i.e., the exact content and quantity of every resource is precisely

known. This information is needed in order to have a baseline against whichthe metadata utility

processing could be compared. At the same time, such a test website needs tohave a variety of

MIME type content that will be applicable to these utilities. External activity andlogs are not a

factor in this experiment, which must have as much control over the computing environment as

possible. An artificial site, with realistic content, would meet these requirements.

It was important to have the test web mimic, as closely as possible, a “typical” website in

terms of content and structure. But what, exactly, is a typical website and what does a typical web

page contain? As [6] notes, research on average website content is biased by the sampling method

used, which is often either too random (sampling from search engines) ortoo focused (a single

known site). An extensive survey of web content was published by Berkeley in 2003 [78]. At that

point, surface web composition was roughly 23.2% images, 17.8% HTML, and13% PHP, with the

rest a collection of other formats ranging from PDFs to animations. More recent studies support

this rough proportion, noting that most web pages have one or more images embedded in them

thus contributing to a higher ratio of images to HTML resources but still supporting the intuitive

impression that the web is largely HTML [6].

1.2 Metrics of Website Composition

With regard to website size, a 2004 report on the composition of various national domains [6]

showed a wide range of average number of pages per site, with a low of 52(Spain) to a high of

549 (Indochina). That same study also indicated a preponderance of HTML over other document

types, with PDF and plain text files accounting for up to 85% of the remainder (these figures do

not include image files). In 2006, Levering and Cutler [71] conducted anextensive examination of

actual web page content using a pseudo-random sample of pages gleaned from Yahoo, Google, and

the Open Directory Project. They found that most HTML documents contain less than 300 words,

with a per-page average of 281 HTML tags and a 221x221 pixel image (usually GIF or JPEG) that

acted as a document header, much like the banner name of a newspaper. These results are similar to

those found in a study done in 2002-2003 [35].

94

A relatively recent (2004) examination of e-commerce sites at a large server farm [10] found

an average object size of 9 KB and a much higher percentage of image use than seen in other stud-

ies. The authors of that paper attribute the variation to the nature of e-commerce sites. Additional

configuration information can be found in several studies done on the evolution of website con-

tent [102, 23], which support earlier findings indicating an increasing use of dynamic presentation

technologies like Javascript, PHP, and Active Server pages.

Despite the many website studies available, no clear characterization of a “typical” website

emerges, except perhaps at the extremes: single-page sites (often at “spam farms”) and infinite

sites, which use dynamic-generation to create infinite pages such as a meeting-schedule site with a

limitless value for future date. The author was therefore left to “guesstimate”the composition of

a small departmental or community website in terms of size and types of resources. The general

tendency seems to be a small website of a few hundred files, with the HTML pages roughly 5 KB to

25 KB in size, having approximately 3 or more images embedded per HTML page, and containing

links to various internal resources distributed throughout the site, and a variety of external links on

selected pages.

1.3 Preparing a Typical Website

Statistics from the research discussed in the previous section provided guidelines for the design of

the test website. Average web page size in these studies ranged from 5 to 25KB (a figure which

includes the size of embedded images), with shopping sites often having a higher size because of a

large number of embedded images. The overall website content was basedprimarily on character-

istics found in [71] and [78].

Figure 46 on the following page shows an example of a web page from the test site. These

were built using a script the author developed for other research projects. Content was extracted

from Project Gutenberg e-text files, and images came from a variety of sources including Project

Gutenberg and the author’s personal creations. The PDF files were created using a template which

produced results similar to Figure 47 on the next page. A collection of Word “DOC” files and Pow-

erpoint “PPT” files were created using Microsoft Office. These and the other files were randomly

assigned to HTML pages throughout the site. If the random resource was an image, it was “embed-

ded” in the page; otherwise, it was represented as a linked resource. Each resource was unique in

content. Figure 48 on page 96 is a visual mapping of the test website. Linkingis not shown so that

the overall directory structure can be more clearly seen. However, the pages all contain links which

can be mined to find all of the website’s resources, much as a regular visitorto the site might navi-

gate. In addition, a Sitemap.xml file is provided for use by both the web servermodule,MODOAI,

as well as the hypothetical crawler from Google, Yahoo, or MSN. The final layout and content is a

reasonable facsimile of a quotidian academic or community website. Table 23 on page 97 describes

95

FIG. 46: An example page from the test website, showing a randomly-assigned resource (in this
case, an embedded image).

FIG. 47: An example PDF from the test website. PDFs were generally 1-2 pages in length.

96

FIG. 48: Visual map of the test website. Resources of all types were distributed at all levels of the
site.

the overall content of the site by file type and hierarchy. Table 24 on the following page shows the

resource distribution by type and size for the test website.

1.4 Selecting Metadata Utilities

The target environment for this test is the small to mid-size website where theremay be interest in

preservation but no budget to support it in terms of manpower or software investment. For example,

a small-town citizen information website, or a university department-level website with perhaps

only one professional webmaster and/or a group of students who act aswebmaster support. With

this is mind, four elements were defined as the primary selection factors for themetadata utilities to

be included in the test:

(1) Price

(2) Operating System

(3) Invocation Method and

(4) Ease of Installation

Many, if not most, small departments and community web servers operate under an extremely

constrained budget. The author felt that cost should therefore be a factor in selecting the test utilities.

Each utility also had to be installable under the test server’s operating system(Red Hat). The

utilities all provide a command-line invocation method. This is necessary because the web server

97

TABLE 23: Content and layout of the test website. There are 12 top-level directories each of which
has 4 subdirectories below it. These subdirectories contain the bulk of the website content. [a]
Resources were randomly chosen from the list, without repetition. [b] “Other” File types include
SVG, MP3, WMV, and ASCII text.

File Type Grp (1-12) Dir (1-4) Count

“Home” n/a n/a 1 HTML
n/a n/a 3 GIF

HTML 1 10 492 HTML

Image ≥ 3 ≥ 3 195 GIF
≤ 2a ≤ 1a 51 JPEG
≤ 2a ≤ 1a 51 PNG

Application ≥ 3a ≤ 1a 144 PDF
≤ 1a ≤ 1a 48 .DOC
≤ 1a ≤ 1a 50 .PPT

Otherb ≤ 1a ≤ 1a 49 (Total)

Total Files: 1084

TABLE 24: Distribution of resources in the test website by MIME type and size.

Ext (type) Bytes (B) Count Avg B/File
mp3 1365819 11 124165
png 510863 51 10016
pdf 33491409 144 232579
ppt 37232640 50 744652
txt 104838 14 7488
wmv 648142 11 58922
html 1237937 493 2511
jpeg 308698 51 6052
doc 1541120 47 32789
svg 341239 14 24374
gif 1196579 198 6043

Total: 77,979,284 Bytes

98

module used to enable metadata-utility integration (MODOAI) issues the equivalent of a command-

line request to each utility. It also enables us to automate the process of passing a single resource

through each of the utilities via the Apache configuration file (cf. Appendix Don page 178). Finally,

ease-of-installation is important if the average webmaster is to be responsiblefor installing and

configuring such utilities. External dependencies like software libraries should already be installed

or should come packaged with the utility and be automatically included in the installation process.

1.5 Utilities Considered for Inclusion

There are many utilities that offer attractive analytical capabilities but which are not practical can-

didates. Some (e.g., Oxford’s WordSmith tools [119]) are purely Windows-based products and/or

have also migrated away from command-line usage to graphical, user-interactive usage. Others such

as Harvest and Essence ([51, 14]) are frameworks rather than utilities, requiring a level of restructur-

ing and/or complex installation and configuration that is unrealistic to expect ofmost webmasters.

The Essence subsystem of the Harvest software package exists as a separate utility, but installation

is complicated by the need to port much of the software to more recent versions of Linux (the last re-

lease dates from the early 1990’s) and by its dependence on libraries (SCCS, e.g.) which have been

obsolete for many years. The author was unable to successfully install thissoftware and believe that

most webmasters will also give up before success is achieved.

Another popular utility the author was not able to include is Kea ([64, 22]), which performs

sophisticated key phrase analysis of extracted text. This was a disappointment since Open Text

Summarizer’s “keywords” option has been disabled in the latest release. Again, the issue here

is installation feasibility for the everyday webmaster. Kea has to be “trained” for each document

collection with a set of candidate texts and author-designated index terms. Few, if any, of the files on

target population web servers will meet such requirements. Most websitesare highly heterogeneous

in content and not easily reorganized into categories that will fit Kea. On the other hand, keyword

analysis is computationally intensive and would most likely incur a significant performance penalty

which webmasters might find unreasonable.

There is some duplication of analysis among the utilities considered. Exif, a utility for analyz-

ing digital photo files, overlaps with Jhove’s JPEG HULs, for example. Such duplication can be

informative. Analysis results do not always agree between any two utilities,so input from multiple

sources may help the archivist. For instance, the two sites:

(a) http://www.library.kr.ua/cgi-bin/lookatdce.cgi and

(b) http://www.ukoln.ac.uk/cgi-bin/dcdot.pl

produce different Dublin Core field content forhttp://www.joanasmith.com/index.

html . This page has a half-dozen properly defined Dublin Core fields, but the two tools extract

and assign the Dublin Core content in different ways. Automated Dublin Core metadata extraction

99

<META http-equiv="Content-Type" content="text/html" ch arset="UTF-8">
<META content="Villette by Charlotte Bronte" name="DC.so urce" >
<META content="Excerpt from Crate Utility Performance Tes t"

name="DC.title" >
<META content="Author: Charlotte Bronte" name="DC.creat or" >
<META content="2008-1-24" name="DC.date" >
<META content="/home/jsmit/testWeb/group7/dir2/pg2.h tml"

name="DC.identifier" >
<META content="no copyright in USA" name="DC.rights" >
<META content="research file" name="DC.description" >

FIG. 49: Example of the META tag content extracted from one of the test web’s HTML pages using
the author’s own “home-grown” utility, dcTag.

proved to be a bigger problem than expected. The two Dublin Core analysisutilities at the sites

mentioned above are not designed for the automated, batch-style processing required by this kind

of experiment, where the utility is integrated with the web server. The author obtained an early

Perl-based version of UKOLN’s DCdot utility and successfully modified it torun in a home web-

server environment. Yet it simply could not be installed on the commercial server, even by the local

webmasters.

As a last resort, the author wrote a short Perl script which simply extracts the <META>tags

from the <HEAD>section of HTML documents. These tags include data like theactual example

shown in Figure 49. Such a simple extraction tool does not derive true Dublin Core metadata. It

does show, however, that even simple, locally-developed scripts can provide interesting metadata

for the harvester.

1.6 Utilities Selected for the Experiment

Several utilities were clear candidates for selection, easily meeting criteria 1 through 3. A couple of

utilities posed more installation issues than are likely to be tolerated by most webmasters (criterion

4), but they offer useful metadata and were included despite these difficulties. There is some du-

plication of analysis; both Jhove and Exif are applied to JPEG resources,for example. The utilities

represent a range of implementations, from tools like “file” and the hashes (MD5, SHA, SHA-1)

which are installed by default with the operating system; to open source products written in C (Open

Text Summarizer) which have to be compiled and installed on the target web server; to Perl-based

scripts (dcTag) and Java utilities (Jhove, Metadata Extractor, and Pronom-Droid). Those selected

for this experiment are listed in Table 25 on the next page. Each of these not only meets the selection

criteria but it also provides useful preservation-relevant metadata.

100

TABLE 25: Metadata utilities used during performance testing, all are command-line based. In-
stallation difficulty ratings range from 0 (natively installed with OS) to 5 (requires locating and
installing numerous external libraries not packaged with the utility).

Utility Source MIME
Key Installation Difficulty (0-5) Comment Usage

Jhove Jhove http://hul.harvard.edu/jhove/ */*
2 Java-based utility,

command-line version
Exif Exif Tool Linux utility (/usr/bin/exif) image/jpeg

0 Compiled version.
Digital photo analysis

WC Word Count Linux utility (/usr/bin/wc) text/*
0 Counts words, lines, total bytes

in any text-based document
OTS Open Text Summarizer (OTS) Libots, on Sourceforge.net text/*

4 Compiled and installed.
Use “-a” to summarize any text file

File File Magic Linux utility (/usr/bin/file) */*
0 Examines file for

“type” characteristics
Droid Pronom-Droid http://droid.sourceforge.net/ */*

5 Java-based utility,
command-line version

MD5 MD5-Hash Linux utility (/usr/bin/md5sum) */*
0 Digital file signature

based on MD5 hash
SHA SHA-Hash Linux utility (/usr/bin/shasum) */*

0 Digital file signature
based on SHA hash

SHA-1 SHA1-Hash Linux utility (/usr/bin/sha1sum) */*
0 Digital file signature

based on SHA-1 hash
MetaX Metadata Extraction Tool Meta-Extractor

3 Java-based utility, command-line version
on Sourceforge.net text/*

DC dcTag Simple Perl script (home grown) text/html
1 “dcTag” extracts Dublin Core and

other <META>tags from the HEAD
section of an HTML document.

101

TABLE 26: Components of a plugin specification in the Apache configurationfile.

modoai_plugin md5sum ’/usr/bin/file %s’ ’usr/bin/file -v’ */*
new plugin label command to run the utility command to generate MIME types

(any text) the %s substitutes the file version information affected

1.7 Configuring The Web Server

As the most-installed web server brand in the world [101], the Apache web server is a realistic

choice to host the experiment. An added advantage in selecting Apache is that a module exists which

will enable the metadata utilities to be integrated into the web server. The module isMODOAI [99],

an OAI-PMH enabled Apache web server module. WithMODOAI, Apache can issue responses in

a complex object format where the resource and metadata appear togetherin the response. For this

experiment,MODOAI was used to provide responses in a variant of the MPEG-21 DIDL format(see

Chapter II) called a CRATE.

Like other Apache modules,MODOAI activity is controlled through the web server configuration

file (httpd.conf). A snippet from theMODOAI section is shown in Figure 50 on the following page,

and the components of a “plugin” specification are shown in Figure 26. In other respects, the Apache

configuration options were left in the default state. No rewrite rules, aliases, or customizations were

configured, except for the installation and initialization ofMODOAI.

The test website was installed in /var/www/ (the default location), together withthe Sitemap.xml

file which contained the list of every website resource.MODOAI uses this file to iterate through each

of the resources on the website, just as many crawlers do. Only resources listed in the Sitemap are

processed. From theMODOAI perspective, the Sitemapis the website since links within pages are

not followed byMODOAI. The final step in preparing the website is installation of the metadata

utilities and verification that the parameters found in the modoai.conf file correctly invoke each

utility.

1.8 Configuring Website Traffic (Load)

Defining Typical Website Traffic

It is intuitively obvious that any given website will have variation in its usage pattern, from “high”

periods to “low” periods. Even the Internet as a whole exhibits diurnal traits, visible on Akamai’s

live Internet traffic website, pictured in Figure 51 on page 103. The patterns of dense traffic can be

seen moving across the globe more-or-less in time with the normal daylight-oriented workday.

Alexa Traffic Rankings (http://www.alexa.com/site/ds/top_500) provides statis-

tics on the top 500 sites worldwide, including page views and “reach”, a measure of the number

of visitors to the site. They also measure the time it takes for a page to load, ratingsites from

102

Alias /modoai "/var/www/"
<Location /modoai>
SetHandler modoai-handler
modoai_sitemap /var/www/sitemap.xml
modoai_admin smith
modoai_email admin@foo.edu
modoai_gateway_email mail@foo.edu
modoai_oai_active ON
modoai_max_response_size 10000
modoai_max_response_items 10000
modoai_plugin wc '/usr/bin/wc %s'

'/usr/bin/wc -v' text/ *
modoai_plugin file '/usr/bin/file %s'

'/usr/bin/file -v' * / *
modoai_plugin md5sum '/usr/bin/md5sum %s'

'/usr/bin/md5sum -v' * / *
modoai_plugin jhove "/opt/jhove/jhove -c

/opt/jhove/conf/jhove.conf
-m jpeg-hul -h xml %s"
"/opt/jhove/jhove -c
/opt/jhove/conf/jhove.conf
-h xml -v" "image/jpeg"

modoai_plugin pronom_droid "/opt/jdk1.5.0_07/bin/java -jar
/opt/droid/DROID.jar -L%s
-S/opt/droid/DROID_SignatureFile_V12.xml"
"/opt/jdk1.5.0_07/bin/java -jar
/opt/droid/DROID.jar -V" " * / * "

modoai_plugin exifTool "/usr/bin/exiftool -a -u %s"
"/usr/bin/exiftool -ver" "image/jp * "

</Location>

FIG. 50: Apache configuration ofMODOAI. Although the Jhove example shows only the JPEG
HUL being called (“-m jpeg-hul”), the experiments called Jhove for everyMIME type, specifying
the appropriate HUL. Many utilities can be customized using similar variations in theconfig file.

103

(A) Active Traffic

(B) Active Attacks

FIG. 51: Akamai maintains a live view of web traffic, including overall traffic (A) and areas expe-
riencing attacks (B). See http://www.akamai.com/visualize

104

“Very Slow” (97% are faster) to “Very Fast” (97% are slower). Speedratings are recalculated every

month. The average speed in January 2007 was 1.7 seconds per page.This figure, however, reflects

the visitor’s viewpoint and does not indicate the number of pages per second that any given site is

able to deliver. Page size, type of content, and other factors play an unavoidable role in rating a

site’s speed, as Alexa notes.

Research On Live Web Server Traffic

An important question to ask when evaluating the impact of metadata utilities is how it affects

performance under normal server load, i.e., the traffic volume typically expected at the website.

What is a “normal” server load? The answer of course is, “it depends.” Servers which host busy

websites (amazon.com, eBay) will have a much higher load than sites which getonly occasional hits

(the majority of blogs, e.g.). Still, any site can become very busy. Spam-bot harvesting, community

tax deadlines, and end-of-semester exams may put sudden, heavy loadson a server. Some sites are

simply busy all the time.

Two studies which examined the access logs at live commercial sites [10, 23]were done with

an eye toward improving delivery services via CDNs and Application Servers. An unexpected

result of [10] was the discovery that improper cookie use created unnecessary work for the servers.

Other website traffic studies [35, 26] have focused on improving search-engine-crawler efficiency.

Because crawlers access all of a site’s resources, server performance can suffer as it swaps seldom-

used pages in and out of memory (a locality of reference problem). Research into active website

traffic patterns, commercial and otherwise, show a Pareto distribution of requests to the server. That

is, the majority of the requests (80% to 90%) typically cover only 10% to 20% of the site’s total

resources [23, 10, 6]. As a result, the server often has the majority of incoming requests already

available in cache, improving overall response time.

Network bandwidth and server load capacity also impact web server performance. A number

of elements play into the network bandwidth available for a site, including overall Internet usage,

events like denial of service attacks, and bottlenecks occurring at the local service provider. One

study [10] characterized the work load of 3000 of the busiest commercialsites at a large server-farm

which hosts more than 34 thousand sites. The average request rate was 282 per hour (less than 1

request/second), but the range was as high as 25 requests per second (over 91,000/hour) for the most

popular site. Clearly, “typical” traffic rates vary greatly and depend on many factors which are hard

to model. Webmasters frequently use their own site’s logs to determine where bottlenecks exist and

to decide what steps to take to clear them. Spam bots, for instance, may be handled by blocking a

range of incoming IP addresses or by redirecting those bots to “spider traps.”

105

2 PERFORMING THE EXPERIMENTS

2.1 Performance Testing Tool

The primary tool used to monitor web server performance was Apache’s JMeter software package.1

A Java-based tool, it is designed to provide detailed information on Apache performance under

varying load conditions. It also provides a means to simulate various levels oftraffic at the website.

This tool was selected for three reasons. First, it is the native Apache performance evaluation tool.

Second, it is the tool used by the commercial testbed where the author conducted these experiments.

Third, it is widely used in industry to benchmark performance of web server based applications.

2.2 Simulating Web Traffic

Server load testing is normally performed in an environment that duplicates thetarget live server,

along with utilities that are designed to “stress” the machine and record performance data. The

author’s association with colleagues in industry enabled the test website to beinstalled and tested

in a commercial test environment. Like many web servers, the hardware wasoptimized for network

speed rather than for processing speed. Using Apache’s JMeter tools, the the traffic baseline was

configured for the maximum possible traffic that server would support, which ranged from 88-93

requests per second. This number is significantly higher than that reported in [10] for the busiest

commercial site, which experienced a maximum request rate of 25 per second. The idea here was to

create a “worst case” scenario, i.e., when a server is constantly overwhelmed. The request patterns

were modeled to mimic the normal Pareto distribution seen in website traffic logs, i.e.,the majority

of the requests (80% to 90%) typically are for only 10% to 20% of the site’s total resources.

2.3 Website Harvesting

For most web crawling experiments it is necessary to write a detailed crawling script which ensures

interation through all of a site’s resources. With an OAI-PMH-enabled web server – as is the case

for this series of tests – the protocol obviates the need for such detailed scripting. The OAI-PMH

was created to facilitate interoperability among repositories [68], and it offers certain advantages

for website harvesting. Developed with digital libraries in mind, most librariansknow this protocol

as a means to obtain metadataaboutobjects in a repository – Dublin Core or MARC records, for

example (see Chapter II on page 9 for a discussion of the model). This command would produce a

list of repository items and the MARC metadata for each of them:

http://www.foo.edu/modoai
?verb=ListRecords&metadataPrefix=oai_marc

1http://jakarta.apache.org/jmeter/

106

<crateplugin>
<crateplugin:name>file</crateplugin:name>
<crateplugin:version>
<![CDATA[1.0.5]]>
</crateplugin:version>
<crateplugin:content>
<![CDATA[
/var/www/testWeb/group8/pdf120.pdf:
PDF document, version 1.3]]>
</crateplugin:content>
</crateplugin>
<crateplugin>
<crateplugin:name>

md5sum
</crateplugin:name>

<crateplugin:version>
<![CDATA[md5sum (GNU coreutils) 5.93
Copyright (C) 2005 Free Software
Foundation, Inc. This is free software.
You may redistribute copies of it under
the terms of the GNU General Public License
<http://www.gnu.org/licenses/gpl.html>.
There is NO WARRANTY, to the extent
permitted by law. Written by Ulrich Drepper
and Scott Miller.]]>

</crateplugin:version>
<crateplugin:content>
<![CDATA[e1f66cd707c2df36dafe8557d82536a1]]>
</crateplugin:content>
</crateplugin>

FIG. 52: A sample section of CRATE XML generated by modoai.

OAI-PMH also offers the ability toharvest the resources themselvesand not just the meta-

data [136]. For utility evaluation purposes, this means it is possible to harvestall of the site’s

resources and their metadata with a single request:

http://www.foo.edu/modoai/
?verb=ListRecords&metadataPrefix=odu_crate

Here, “metadataPrefix=odu_crate” indicates that the response will contain both the metadata

about each changed resourceand the resource itself. This metadata format, “odu_crate”, is based

on LANL’s implementatio of the MPEG-21 DIDL complex object format [8]. Theobject - image,

PDF, text file, etc. - is encoded in Base64 and encapsulated in the response. Any metadata utilities

that were applied to the resource are included as well. The output is plain ASCII, in an XML-format.

An excerpt is seen in Figure 52. To mimic non-OAI-PMH harvesters, the “wget” utility was used.

3 A QUANTITATIVE COMPARISON OF UTILITY PERFORMANCE

3.1 Baseline Establishment

The experiments reported on here followed the standard practice used atthe commercial site to test

server performance. This included setting up PC clients to make demands on the server and “warm-

ing up” the server for at least one hour prior to initiating OAI-PMH harvesting. Servers collect other

tasks that must be done in the course of the day, such as flushing logs, and it is important to have

the normal queue of background tasking in place at the time stress testing starts. Finally, there is no

easy way to specifically adjust these servers to postpone all of these routine maintenance operations

which can impact performance by their unexpected initiation or conclusion. Such activities are a

normal factor in tuning web applications.

107

TABLE 27: Average distribution of hits per test run.

Type Average Hit Count
mp3 312
png 24296
pdf 3479
ppt 1648
txt 307

wmv 240
html 238085
jpeg 24316
doc 717
svg 456
gif 792618

Total Hits (per test): 1,086,474

Using JMeter, multiple “baseline” requests were run to establish the response range of the server

without any CRATE requests active. The general resource distribution as a portion of overall web

traffic is shown in Table 27. HTML and GIF files formed the core 85% of the requests. For the

remaining 15%, the author used a random-selection factor that is configurable in the JMeter ap-

plication, which chooses one of the non-core resources at random from a list. Because of this

random-resource selection, the throughput during each test varied slightly, from a high of 92.7 re-

quests per second to a low of 80.1 requests per second. If the random resource was a large video

(“wmv” file), the request rate would drop to the lower value, for example.

The “Response Time” columns do not show a consistent growth rate from 0% through 100%

across all rows. From a performance testing perspective, the variationis essentially “in the noise.”

Differences of a few milliseconds or even seconds between columns may bedue to any number

of factors other than load alone. For example, the server may have been doing swap clean up or

flushing logs. In some ways, having a busier server is more efficient because it is more likely that a

resource which is about to be put through the metadata utility “wringer” will already be available in

cache.

Web servers are more likely to be I/O bound than CPU bound, unless the server is also acting

as an application or database server (Oracle or MySQL, for example); the throughput reflects this

I/O limitation. Even whenMODOAI was building a full CRATE using all utilities, the server was

able to provide 90% of the responses to regular web requests within 16 milliseconds. One reason is

RAM: Even though the test website was very large (74 MB) for a “community”website, the entire

site fits easily into RAM. Another reason is that the average file size for the 90%-resource group is

relatively low (25 KB). This, however, fits the pattern of normal web traffic. Another reason for the

108

TABLE 28: Web server performance for full crawl using a standard crawler (wget) versus OAI-
PMH. The impact of each utility can be seen in the various ListRecords response times and sizes.
The Active Utilities column cross references Table 25 on page 100.

Response Time in Min:Sec Response
Request Active By Server Load Size
Parameters Utilities 0 % 50 % 100% (Bytes)
wget (full crawl) None 00:27.16s 00:28.55s 00:28.89s 77,982,064
ListIdentifiers:oai_dc None 00:00.14s 00:00.46s 00:00.20s 130,357
ListRecords:oai_dc None 00:00.34s 00:00.37s 00:00.37s 756,555
ListRecords:oai_crate None 00:02.47s 00:08.34s 00:03.38s 106,148,676
ListRecords:oai_crate File 00:09.56s 00:09.72s 00:09.50s 106,429,668
ListRecords:oai_crate MD5sum 00:04.55s 00:04.52s 00:04.40s 106,278,907
ListRecords:oai_crate SHA 00:19.36s 00:19.70s 00:19.96s 106,190,722
ListRecords:oai_crate SHA-1 00:04.57s 00:04.49s 00:05.37s 106,316,236
ListRecords:oai_crate WC 00:06.14s 00:06.11s 00:05.92s 106,419,750
ListRecords:oai_crate Exif 00:04.60s 00:04.79s 00:04.51s 106,163,645
ListRecords:oai_crate DC 00:31.13s 00:29.47s 00:28.66s 106,612,082
ListRecords:oai_crate OTS 00:35.81s 00:36.43s 00:35.83s 106,285,422
ListRecords:oai_crate MetaX 01:13.71s 01:15.99s 01:13.96s 106,257,162
ListRecords:oai_crate Jhove 00:54.74s 00:54.99s 00:54.84s 106,297,738
ListRecords:oai_crate Droid 44:14.01s 45:29.76s 47:23.29s 106,649,382
ListRecords:oai_crate Allbut Droid 03:34.58s 03:38.84s 03:42.60s 107,906,032
ListRecords:oai_crate All 47:42.45s 48:53.97s 50:09.76s 108,407,266

consistent performance on the “regular” traffic side is that little CPU time is needed to serve up a

web page. So even if a metadata utility is demanding a lot of CPU time, the web server can continue

to deliver resources at a rapid rate to other users.

3.2 Performance Data

The test results in Table 28 show that even a modest web server can provide CRATE-type output

without significantly impacting responsiveness. Table 28 compares the performance of the server

in building the CRATE response when the various utilities are turned on or off. The fastest are

the “native” utilities such as the Hashes and File. All of these have been in wide use and heavily

optimized over the years, so this result is as expected. The Java utilities also performed well, despite

not being server-based programs (JVM startup adds significant overhead to such a utility). Utilities

are essentially additive, with processing time and file size growing in proportion to the number of

utilities called.

As noted in Table 28, performance under most utilities was acceptably fast. The CPU power of

109

the test web server is not particularly remarkable, but it never bogged down during the tests. With

one exception, that is: The Pronom- Droid utility increased the harvest time over 1,000%! The

author is unable to explain this phenomenon. The utility does not make externalcalls (no traffic

went out of the server to any other site during this time). The cause may be that it is Java-based, but

another Java utility (Jhove) was fairly quick to analyze resources.

4 SUMMARY OF EXPERIMENT RESULTS

This experiment attempted to evaluate the practicality of integrating metadata utility analysis into

the web server. From that perspective, two questions arise:

(1) Is it safe to generate metadata directly from the web server?

(2) Is it safe to ask for such metadata?

In the first case, the question looks at whether or not a web server’s performance would be negatively

impacted by the extra demands coming from metadata utilities. The second questionrelates to the

harvester and the practicality of requesting and receiving such large complex-object responses.

The data indicates that it is safe to generate the metadata on the web server. One caveat, though,

is that the configuration should be tested before deployment. A slow utility might adversely impact

the site’s overall performance if there is other high CPU demand. The author would not recommend

using utilities that dramatically increase the total harvest time when compared with the time of a

simple harvest. Webmasters should configure and test the response time foreach utility and monitor

system performance to see if problems occur.

Is it safe to ask for the metadata? A full CRATE harvest of a site producesa large response. The

final size of the CRATE was nearly 50% larger than the site itself. Utilities which produce more

descriptive output than those used in the tests would obviously produce a larger result (and take

longer to build). From the server’s perspective, it is more efficient to create a single large response

than to split the response up into multiple, smaller sub-responses (a feature enabled through the

“Resumption Token” of OAI-PMH).

On the harvester end, a 108 MB file is a large block of data to parse, and many archiving repos-

itories could have problems handling so much data in one file. Still, a SAX parser-harvester could

break up the incoming CRATE into individual records (i.e., files) which wouldbe much more man-

ageable for the archivist. Each file-record would be one of the website’s resources packaged with

its metadata. This solution is not radically different in concept from the plain “wget -r” approach of

a regular website harvest.

The harvest method used in the experiment is termed “By Value” because it retrieves the re-

sources and the metadata. As such, it represents a worst-case approach. An alternative approach

is to harvest the information “By Reference” which returns only the URI to the resource, not the

110

Base64 encoding of the resource. In this case, the preservation metadata is still included by value

in the CRATE with a pointer or web address to indicate the location of the resource. (This can be

accomplished by setting the “modoai_encode_size” value to “0” in the configuration file. Cf. Ap-

pendix D on page 178). The resulting file, using the example test website, willbe only about 8 MB

instead of 108 MB. The harvester can combine this response with the resultsof a standard crawl,

which may be a more efficient solution for both sides although it does not provide replication of the

resource at the repository.

5 STRATEGIES FOR SELECTING METADATA UTILITIES

Earlier in this chapter, four criteria were specified for metadata utility selectionfor this experiment.

Two additional criteria could be added to the list:

(1) Price

(2) Operating System Compatibility

(3) Invocation Method

(4) Ease of Installation

(5) Metadata Value

(6) Processing Cost

Of these, only Operating System Compatibility and Invocation Method have specific parameters

that must be met. Price and ease of installation will vary, respectively, by a site’s funding and the

skills of its webmaster. The last two items, Metadata Value and Processing Cost,are important fac-

tors for which there is more than one right answer. Minimal metadata at maximum CPU cycles may

be impractical or it may be a critical piece of information, like a license key. From a preservation

perspective, the best solution is to have as much metadata from as many sources as possible.

6 SUMMARY

Five major components were employed in an experiment to evaluate the practicality of integrating

metadata utilities into the web server:

(1) A set of tools to perform the website harvest

(2) A test web that reasonably reflects the size and composition of targetedwebsites

(3) A variety of metadata utlities that are in common use and which apply to the kind of content

available on the test website

111

(4) A realistic test bed that can simulate on-going, live web traffic while the siteis harvested

(5) A tool for monitoring changes in the web server’s performance during the test

It appears safe to both generate such metadata and to ask the web serverfor it, within certain

parameters. Anything that can run automatically is likely to be compatible, althoughutility speed

and CPU demands may make a utility infeasible. Scripts that further customize plugin usage can

simplify installation without adding significant overhead. The process isfully automated– the

metadata is not validated by the web server nor by any other administrative action. The metadata is

generatedat time of dissemination; it is not pre-processed nor canned. The metadata thus reflects

the best-information available at that point in time. This approach harnessesthe web server itself to

support preservation, moving the burden from a single web-wide preservation master to individual

web servers, where detailed information about the resource is most likely toreside. It also moves

preservation metadata fromstrict validation at ingestto best-effort description at dissemination.

In other words, the web server acts as its own agent of preservation byproviding the crawler with

sufficient information to assist the preservation process at the time the site is crawled.

112

CHAPTER IX

CRATE: A MODEL FOR SELF-DESCRIBING WEB RESOURCES

This dissertation has presented two problems which must be addressed by any website preservation

model:

(1) The Counting Problem (Resource Enumeration)

(2) The Representation Problem (Resource Description)

The first problem, resource enumeration, depends in large measure on webmaster cooperation

and expertise. This is due both to the nature of website structure as much as tothe inherent limita-

tions of HTTP. Where a simple SQL-like query may suffice to bring the full scope of a database’s

resources to view, HTTP does not have an equivalent form. There is no GET */* in the HTTP pro-

tocol; it is designed to request a single resource. Full site resource enumeration has to be achieved

by other means, and a metadata-rich description of any one website resource must be obtained by

HTTP-workarounds.

The CRATE model addresses the enumeration problem by specifying aSitemapdocument as

the source of valid resources for a website. Any implementation of the CRATEmodel depends on

the existence of a Sitemap to effect a full crawl of a website. To meet the enumeration requirements

of the CRATE model,

(1) A Sitemap (Sitemap.xml) must exist

(2) The Sitemap must contain a canonical form for each valid, accessible site resource

(3) The Sitemap must be available either directly (via an HTTP GET Sitemap.xml request) or indi-

rectly (such as via an OAI-PMH ListIdentifiers request).

The research presented by this author addresses the representation problem by defining a web-

preservation object model which is built on OAIS and the OAI-PMH. Using the OAIS model, we can

map the three primary OAIS packages to the web preservation problem, as shown in Figure 53 on the

following page. Ideally, the preservation function will incorporate into the preserved web resource

as much metadata as possible. Applying the MPEG-21 DIDL concept to OAI-PMH, a single query

could conceivably return the resource prepackaged with all related metadata and with a Base64-

encoded representation of the object. This proposal outlines amodel definitioncalled “CRATE”

and areference implementationfor automated, metadata-rich preservation-oriented harvesting of

web resources.

113

FIG. 53: CRATE Process in OAIS Context

• automated: CRATE uses the features and capabilities of the web server to perform thework

automatically with each OAI-PMH response via theMODOAI module

• metadata-rich: Output from metadata extraction tools incorporated as plugins toMODOAI

are encapsulated in the CRATE response object

• preservation-oriented: CRATE provides human-readable XML-tagged responses from the

web server with clearly-labelled metadata content which fits the OAIS model for preparing

resources for preservation

Building on both the OAIS reference model and the OAI-PMH, the proposed architecture places

most of the work of preservation preparation onto the originating web servers.

1 CRATE: A DATA-CENTRIC PRESERVATION MODEL

Stewart Brand’s comment that we need data to be “born archival”, not just digital [15] refers to the

paucity of information about a digital resource. As a purely digital phenomenon, the Web is no

exception; archival-quality information is not part of the typical website. Even the basic descriptor,

MIME Type, can be missing, incorrect, or unknown. Institutions attempting to record our digital

web heritage, like the Internet Archive and the European Archive, can merely store and refresh

the bits, trusting descriptors like the “.pdf” file extension to be accurate whenthey are available.

Analyzing even a portion of the resources for confirmation of type or formore informative metadata

has so far been impractical.

On the other hand, itis practical and feasible for the web server to provide a variety of supporting

metadata together with the resource. The author demonstrated this concept in[129], where the web

114

server itself analyzes the resourceat time of disseminationand includes both the resource and the

analysis within the response. The routine transfer of complex objects like MPEG-21 DIDs over

HTTP further supports the author’s view that web crawls can be used effectively to acquire both

resources and forensic metadata [97, 136, 127]. The resource may not beborn archival, but its

adoptive parents are naturally archival.

The resulting complex object can be molded into a repository-specific model, such as those

discussed in Chapter II– 2 on page 12. Where models like METS would organize the metadata

according to a profile, and LANL DIDs would organize it by container-items, we suggest a sim-

pler model called CRATE. Instead of categorizing and ordering, CRATE containsundifferentiated

metadata packaged together with the resource in a complex-object HTTP response.

An advantage with this simple approach is that it isdata-centricrather than ontology-based. For

example, web servers would not need to choose between, say, METS and MPEG-21 archiving ser-

vices. Similarly, the archiving repository would not need to worry about non-librarian webmasters

misusing METS headers or MPEG-21 descriptors. Instead, the archiving repository could harvest

the site and transform the information according to its own model, or it could adopt a ’store-and-

wait’ philosophy, like the file purgatory mentioned in [123]. Another advantage with the CRATE

model is that it readily expands to include new types of metadata without requiring an adaptation, re-

evaluation or reassignment of current metadata fields. The new informationsimply becomes part of

the CRATE complex object, available for use or disuse by the archiving repository. In OAIS terms,

this means a CRATE is simultaneously the DIP, AIP, and SIP. A conceptual mapping of CRATE

onto the OAIS model is shown in Figure 54 on the following page. The web server acts, to some

degree, as the archive manager since it is responsible for running the analysis utilities and generat-

ing the CRATE complex objects. Archiving repositories also partially fulfill that role by refreshing

the bits and organizing the content. Archive management becomes somewhatdecentralized, with

the various tasks of preservation distributed between originating sites and archiving institutions.

2 COMPLEX OBJECTS AS ARCHIVAL INFORMATION PACKAGES (AIPS)

Looking at a web site from the viewpoint of the OAIS [20, 79] model, a web siteis a collection

of Archival Information Packages (AIPs) which can be accessed through the web server. The web

server disseminates its content in reply to a GET, but that content is viewed indifferent ways depend-

ing on the file being served up and the browser in use: an HTML document with embedded Flash

imagery displays differently than a PDF, for example. Content that is too old (a required “plugin”

or format reader no longer exists), content that is too new (a document inthe latest, just-released

Microsoft Word format, for example), and content that is platform-specific are problems that oc-

cur in today’s WWW. It is easy to see that current files may be undecipherable in a not-too-distant

future. Even the PDF format can be unviewable by a PDF reader if the Acrobat Distiller product

115

OAIS Model Knowledge

Base
Content

Information

Preservation

Description

Information

Descriptive

Information

Packaging

Information

Data

Object

Physical

Object

Digital

Object

Information

Object

Archive

Information

Package

Submission

Information

Package

Information

Package

Dissemination

Information

Package

Representation

Information

Metadata from plug-ins:

Summary, index, format

analysis...

MIME / GDFR Type

Copyright Originator

Base64 Encoded

Resource

OAI-PMH MPEG-21 DIDL

Metadata Format

CRATE

S
IP

D
IP

A
IP

FIG. 54: CRATE in the OAIS Model

116

and the viewer are several versions apart. For such “portable” documents the solution is usually

as simple as updating the viewer software, but for other file types it can be acomplicated process

without guarantee of success. How can this be mitigated, particularly for itemsthat may lie unused

and therefore not migrated as our systems advance, or which undergo significant implementation

changes as time goes by? Images are a good example of the variations that can occur even today.

The ability to decipher JPEG and PNG images depends largely on browsers and what features have

been implemented. Figure 55 on the next page shows a Mozilla browser correctly interpreting a

web resource that consists simply of a JPEG image.

One way to facilitate migration is to provide as much forensic information as possible, packaged

together with the file content. By encoding that content as a complex object rich in metadata, we

can create a Dissemination Information Package (DIP) that is an architecturally neutral representa-

tion of the archive’s stored object (AIP), and which may give future restoration efforts the critical

elements needed to reconstruct the item, whether by emulation or by migration. This resource-as-

complex object is similar to the “Smart Objects” described in [81], but the methodfor harvesting

and packaging the object is different.

In Figure 55 on the following page the GetRecord response has returnedthe web page wrapped

in XML containing metadata about the page, and the page itself is represented(encoded) as MPEG-

21 DIDL. Response content transcribed from an actual URL is in Appendix 2 on page 160. Other

encodings (METS, for example) could be used - either instead of MPEG-21 or in addition to it.

More useful metadata extraction could also be applied before the complex-object-page is sent to the

requester. If we take advantage of utilities like Jhove, or extract the lexical signature of the page

and store that with the object, we would have even more pieces of evidence that could be analyzed

in the future, making the object once again accessible. Details of an example GetRecord response

with DIDL metadata format content is in Appendix 2 on page 160.

Various models could be tested for compatibility with this concept: older approaches like Har-

vest [13], and more recent utilities such as RSS [108] and Sitemaps [45].We would like to build on

the efforts of previous researchers [97, 67, 136, 9], especially OAI-PMH, while also integrating the

OAIS concept of a DIP (Dissemination Information Package) [20]. OAI-PMH is a very powerful

reification tool. Consider Figure 55 on the next page, which shows two different HTTP requests for

the same page. A standard HTTP request might be “http://foo.edu/MyFile.html”, which returns the

usual web page that a user would expect to see. WithMODOAI enabled, a “preservation crawler”

could instead make this request:

http://foo.edu/modoai/?verb=GetRecord
&identifier=/MyFile.html&metadataPrefix=oai_didl

Note how the OAI-PMH verbs are encoded in the URL. The server repliesby returning a com-

plex object consisting of the resource expressed as MPEG-21 DIDL and associated metadata about

117

(A) Resource seen in a Firefox browser window

(B) CRATE response for the picture in (A)

FIG. 55: The view of the resource depends on whether it is accessed using a browser (A) or if it
is requested as a CRATE object (B) with its metadata, in which case it is “viewed” as a complex-
object, XML document.

118

(A) (B)

FIG. 56: The CRATE model and example CRATE configurations

the resource, as depicted in Figure 55 on the preceding page.

Of course, these are browser-views of the event, but they illustrate ourconcept of providing

more comprehensive information to a crawler. In response to a search engine robot’s request for the

URL, the web server will return an OAI-PMH GetRecord request for that object. The result is a

package that is a complete Dissemination Information Package (DIP) encoding for that URL.

3 BUILDING THE CRATE

An important characteristic shared by the models discussed in Chapter II on page 9 is that they

are mostly human-readable, plain ASCII. With the exception of ARC, the modelobjects are also

expressed in XML. Fortunately, most analysis utilities that would be likely candidates for web server

installation generate their output in ASCII and/or XML. Since resources can be converted to ASCII

using Base64 encoding, this content can also be included in an XML document. CRATE adopts

this approach, using plain ASCII and XML to express CRATE contents. A conceptual view of a

CRATE is shown in 56.

Only 3 elements are defined for a CRATE:

• Identifier

• Metadata

• Resource

Figure 56 expresses the CRATE complex object as a UML diagram. For an object identifier to

be unique and viable, it must be compatible with the system storing it. Since archiving repository

characteristics can vary so widely, the CRATE Identifier is generatedby the crawling repository,

rather than by the crawled host. As the AIHT report noted, identifiers often aren’t [123]. In any case,

most repositories have their own methods for uniquely labelling each ingestedresource. Expecting

the small local web server to create an identifier that is simultaneously unique and compatible across

119

all repositories seems unrealistic. Resource disambiguation between repositories that have crawled

the same sites can be done using the metadata elements of the CRATE.

Metadata is the heart of CRATE. Our goal is to automate the resource-description process; to

have resources describe themselves in type-appropriate and sufficient detail; and to lower the barrier

to preservation by simplifying participation requirements while maximizing resource information.

Just as content types and versions vary from web site to web site, the number and type of utilities

that are practical for installation on any individual web server will also vary. Archival crawls of sites

will therefore produce a widely varying amount of resource information.This is partly because the

kind of information useful in preserving resources varies with the type ofthe resource. A color

index is useful in describing a JPEG; a key-word index is useful in describing an ASCII text file.

The Resource component of a CRATE can have one or many expressions. Each expression

contains aTYPEelement which describes the kind of content (Base64 encoding, text/html, etc.),

and aCONTENTelement with the byte stream of the original resource. If the original resource is

binary (a JPEG, e.g.) then a lossless transformation method is used (Base64encoding, e.g.). A

Resource component can be expressed in more than oneTYPE: as both text/html and as Base64,

for example, but it is otherwise idempotent. De-transformation of the contentshould produce a

duplicate of the original resource. The Metadata component can have one or moreDESCRIPTION

items. A Description item has 4 elements that categorize the source and contextof the metadata

it contains, i.e., metadata about the metadata. A Description element does not necessarily have to

hold the resource metadata. It could contain a citation to a remote utility that the harvesting crawler

could use to further analyze the resource; or it could point to a location that already contains detailed

information about the resource. The archiving crawler would determine when and whether to access

that information.

Example CRATE configurations are shown in Figure 56 on the previous page. Note that CRATE

objects can be nested both broad and deep. An archiving service can use this structure to associate

time-based variations of an archived resource; to package the full content of a web site; or to keep

an HTML resource together with its embedded multimedia content.

4 CRATE COMPARED WITH OTHER COMPLEX-OBJECT MODELS

A major difference between CRATE and other complex object models is that CRATE does not

have any minimum metadata requirements other than a unique identifier. The number and type of

metadata elements available can vary greatly from resource to resource, and from site to site. Even

the simple ARC file format calls for a URL record header that specifies the listof metadata fields

included.

Ultimately, the primary difference between a CRATE and other complex object preservation-

oriented models is the metadata component. In a CRATE, all metadata is undifferentiated. A

120

CRATE metadata component is characterized by the four description elements, label, exec,

version and data . Interpretation and categorization of a metadata component and its element

contents is left to the archiving repository. For example, a METS-based repository would categorize

each metadata component into one of the 7 METS types, such as “Administrative” or “Structural”.

In the CRATE model, thecontextin which the metadata was generated and the flexibility to have a

wide variety of metadata content, and to take advantage of leading-edge utilities, are more important

than defining CRATE-unique categories. This aspect facilitates mapping ofCRATE information to

other complex object models including METS and MPEG-21.

5 IMPLEMENTING THE CRATE MODEL

CRATE addresses both the Counting Problem and the Representation Problem. Certain require-

ments must be met for any implementation, but there is a lot of flexibility in methodology. The key

components regardless of implementation approach are:

(1) List of unique site resources

(2) Access to a site resource listing

(3) Metadata utilities appropriate to site file types

(4) Base64-encoding utility

The first two components are designed to address the Counting Problem; thesecond two address

the Representation Problem.

5.1 Implementing the Counting Problem Solution

CRATE requires a site to have a list of all its resources, uniquely itemized. “All” in this case refers to

those resources that are part of the website. Backup files, for example, may or may not be included;

the website controls its own definition of “all.” Each resource must be uniquein the list, i.e., no

duplicate URIs. This allows the response to contain the required Unique ID.

The list must beaccessible, but the means of access can depend on the site. It could bedirect,

where the file itself is exposed on the website as a resource; orindirect where a particular GET

request produces some alternative format of the listing as a response (an OAI-PMH ListIdentifiers

request, for example). The purpose of accessibility to the listing is that it clearly defines the resource

scope of the site.

5.2 Implementing the Representation Problem Solution

Metadata utilities are required by the CRATE model, but these can be of any kind. The minimum

utility is the Base64-encoding utility, which is the required resource encodingmethod. Sites can

add any number of other utilities that are compatible with the site’s operating system, architecture,

and resource types.

121

FIG. 57: Conceptual View of CRATE Object and XML Output in the MPEG-21 DID format.

5.3 Providing CRATE Responses

The CRATE model could be implemented in a number of ways, from adapting toolsin use by digital

libraries, to creating custom tools that would package and harvest the resources into CRATE objects.

The format of therequestis not specified. A server could answer every HTTPGET /resourceName

request with a CRATE object, or it could define a particular string as an indicator that the client

is asking for the CRATE form of the resource:GET /resourceName?type=crate, or whatever other

method suits the Repository, its service provider, and harvesters. The response itself can be mapped

to any number of complex object formats, provided that the three components(1) Unique identifier,

(2) Metadata, and (3) Base64-encoded resource are present in thedocument format. As an example,

in Figure 57 the CRATE response is contained within the MPEG-21 DID document format. Note

the relationship of resource and metadata in the CRATE object and its mapping toMPEG-21 DID

elements.

122

6 SUMMARY

The CRATE model addresses both the Counting Problem and the Representation Problem. It uses

the Sitemaps protocol as the sole source for enumerating all of a site’s resources. The recommended

method for creating the Sitemap.xml file is to use the union of resource lists from self-crawls, logs,

and the file system map, with the scope adjusted as needed for the site. The Representation Problem

is addressed by incorporating metadata utilities into the webserver, and applying these utilities to

each resource as appropriate. Ideally, the metadata utility analysis process occurs at time of dissem-

ination. The response is a complex object called a CRATE, written in human-readable XML, with

the resource encoded in Base64 as part of the response (by Value) or with a URI (by Reference). It

can be adapted to meet the complex object document formats of other models, including MPEG-21

DID.

123

CHAPTER X

MODOAI: AN IMPLEMENTATION OF THE CRATE REFERENCE MODEL

As part of this dissertation’s research, a full implementation of the CRATE Reference Model was

undertaken. It based on a previous Apache web server module calledMODOAI (“mod_oai.so”),

which the author completely redesigned to accomodate the CRATE model and metadata utilities.

This chapter begins with a review of the Apache web server: how it functions, what web server

modules are, and how modules are integrated into Apache functionality.

A brief history ofMODOAI follows, with a detailed discussion of modifications by the author to

enable CRATE implementation and facilitate ongoing development of the software.

This chapter also describes the architecture ofMODOAI itself, how it differs from the original

version, and the processing loop as it occurs within the Apache requestlife cycle. The author

then describes a series of experiments implementingMODOAI with a variety of metadata utilities

installed on a web server, and evaluates the performance and feasibility ofthis model under such an

implementation.

1 BACKGROUND: THE APACHE WEB SERVER

The Apache web server has been the dominant web server platform forover 10 years [101].

Apache’s success can be attributed to many things, including solid security,reliability, and a modern

plugin-based architecture which easily allows the server to be extended to provide new functional-

ity. As an Open Source product, Apache has benefited from the scrutinyof innumerable software

engineers, making it an extremely secure and reliable product.

1.1 Web Server Modules

Apache provides a well-defined method for third parties to extend the server through Apache mod-

ules and the associated Apache Portable Runtime (APR) library. The modulesarchitecture allows

developers to hook directly into the Apache request processing loop, and inspect, handle, modify or

generate the response to an HTTP request. The related APR library provides a platform-independent

set of functions which isolate the developer from inconsistencies betweenthe various underlying

operating systems which host the Apache server.

The Apache server runs as a server process, listening for new connections from web clients.

When a new request arrives, Apache spawns a new process or thread, depending on the underlying

operating systems capabilities. That process or thread is responsible forgenerating a response,

124

FIG. 58: The Apache Web Server Life Cycle.

125

which is often a HTTP 200 status with accompanying HTML content. Once the content is generated,

the thread or process terminates, and its resources are reclaimed by the mainApache process.

Each time Apache spawns a new process or thread, control is passed through the request han-

dling loop. The loop has 11 distinct phases, and modules can hook into any or all of the phases to

indicate a desire to participate in the processing of that phase. (Cf. Figure 59 on the next page).

Conceptually, these phases can be simplified into groups accomplishing five tasks:

(1) What is being requested

(2) Is it OK to serve this content to this user

(3) What handler should service this request

(4) Generate the response

(5) Write any logging statements, and cleanup resources.

Depending on their purpose, different Apache modules will need to hookinto one or more of

the above phases. Since it will be responsible for generating content for incoming OAI-PMH client

requests, theMODOAI module registers itself to participate in the content generation phase. Once

registered,MODOAI will be called for all requested URIs which have been mapped toMODOAI in

the Apache configuration file.

By convention, there is one canonical URI for theMODOAI handler, /modoai.

1.2 Platform Independence

Apache modules make heavy use of the Apache Portable Runtime to achieve platform indepen-

dence. APR is an independent Apache project started to isolate the Apache HTTP server from the

differences in the underlying operating systems. TheMODOAI module makes heavy use of the APR

functions. A few of these key functionsMODOAI relies on to maintain this platform independence

are described here.

apr_array Arrays are used to hold lists of c style void pointers in a platform independent manner.

In MODOAI, apr_arrays hold two important data structures, the list of plugin records(struct

oai_plugin_rec) and the list of resources to be processed for a givenrequest. Since apr_arrays

do not allow deletion by index number, the pointers are set to NULL to temporarily represent

deleted nodes, and then the apr_array is selectively copied to a new, dense array before being

returned to the caller.

apr_table These structures contain lists of key-value pairs. TheMODOAI code uses apr_tables

to store two important sets of data: the list of query parameters from the request URL, and

126

FIG. 59: The Apache web server request processing loop.

127

the list of parameters associated with a resumption token. For the former, the key fields

are verb, identifier, metadataPrefix, from, until, set and resumptionToken, as specified in the

OAI-PMH specification. For the latter case, the keys are the tokens used tosave a clients

state: firstUnseenRecord, metadataPrefix, from, until and set. Using apr_tables for these lists

provides a easy, platform independent data structure for managing this data.

apr_xml_parser The XML Parser function provides platform independent DOM based parsing.

TheMODOAI program uses apr_xml_parser to parse the sitemap.xml file, and walks the DOM

to generate an apr_array of the required resources.

apr_pool Memory management is cleanly handled by the Apache pool mechanism. All dynami-

cally allocated resources are tied to an Apache apr_pool structure. ForMODOAI, all resources

are tied to the pool with request scope. When servicing of the request is completed, all re-

sources which were allocated in that scope are automatically deallocated by Apache. This

frees theMODOAI code from tedious memory management tasks, and ensures leak free mem-

ory management.

2 HISTORY OF MODOAI

The originalMODOAI software was developed by several graduate students at Old Dominion Uni-

versity between 2000 and 2003. The author took over maintenance of the codebase in 2003, and

initially focused on segmenting the code into a more maintainable structure. The code was refac-

tored from a single file containing all the source code into eightteen source code files organized by

structural areas.

When taking over existing code, there is a danger of loosing existing functionality because of

lack of understanding of the more subtle aspects the previous authors have already solved. To min-

imize the risk of functional regression, the author implemented a basic functiontesting framework

written in perl, which allows rapid testing of many testcases to ensure that new refactoring does not

break any existing functionality. This regression testing framework proved to be critically important

to the work that followed.

With the regression test framework and basic refactorings in place, the author began extend-

ing MODOAI to implement the CRATE functionality. First, the plugin architecture was created,to

handle the new metadata extraction utilities. This created an unwanted inconsistency in the code.

The configurable metadata extraction utilities were handled with the new plugin architecture, while

the built-in metadata extraction utilities (HTTP-HEADER, OAI-DC etc) were handled in the old,

monolithic fashion.

This inconsistency was resolved by refactoring the legacy built-in utilities to beinternally de-

fined as plugins. Internally, they differ from the new utilities only in that they are not defined in

128

the configuration file, and that they do not depend on external utilities. They are completely imple-

mented within theMODOAI program itself. This refactoring greatly simplifies the code, allowing

reduction of duplicate functionality.

Next, the code was extended to specify the list of resources in the site through a sitemap file,

rather than by filesystem traversal at dissemination time. This has two distinct benefits. First, the

webmaster is given very precise control of the resources exposed byMODOAI through the standard-

ized sitemap format, which can be generated using a wide range of third partytools. Previously,

the webmaster depended on the internalMODOAI filesystem traversal mechanism to select the ex-

posed resources. Short of manual examination of theMODOAI source code or manual sampling of

MODOAI query results, webmasters had no visibility into the exposed resource list.

Second, reading a single sitemap file has better performance than manually traversing the

filesystem to generate the resource list. The traversal happens once, at sitemap generation time,

rather than each time aMODOAI request is serviced.

The next software extension was the excludes configuration directive.This directive gives web-

masters even more control over resources exposed viaMODOAI, allowing specific lists of excluded

resources to be enumerated in the Apache configuration file. These excludes take precedence over

resources listed in the sitemap file.

An important feature of the OAI-PMH specification is resumption token support. Resumption

tokens are issued by the server, and provide a mechanism for clients to retrieve resources in chunks,

rather than in one large transaction. This allows a client to not have to reissue the entire request in

the case of network errors, and can allow a server to throttle clients basedon current load.

The originalMODOAI implementation lacked centralized resumption token support. Each OAI-

PMH verb independently implemented resumption token support. Although functional, this made

resumption token support difficult to test and to maintain.

The above refactoring allowed the author to rework resumption token support. Resumption

token support is now centralized. Immediately after parsing the sitemap file, thelist of resource

is pruned based on the modoai_max_response_items configuration parameter. This happens in a

single code location, prior to executing the OAI-PMH verb handling routines.

The other resumption token configuration parameter, modoai_max_response_size, specifies the

maximum number of characters to issue in the response prior to triggering a resumption token. This

cannot be determined until the verb handlers generate the response. Tocleanly handle this, each

verb handler calls the check_resumption_size() function after each resource is processed, allowing

centralized logic for the size parameter. If the size threshold has been exceeded, this function returns

a resumption token, and no further resources are processed by the verb handler.

129

3 THE DESIGN & STRUCTURE OF MODOAI

TheMODOAI module is written in ANSI C, with external dependencies on the Apache HTTP server

and the Apache Portable Runtime.

The dependencies to APR are resolved through the APache eXtenSion (apxs) tool. apxs is

compiled with and distributed as a part of the Apache HTTP server. It exposes knowledge about

the compile time settings and file system paths used by the Apache HTTP server.For example, to

resolve the location of the installed Apache HTTP include files, theMODOAI Makefile queries apxs

(indirectly) using the following command line:

> apxs -q INCLUDEDIR
/usr/include/apache2

Structurally, theMODOAI codebase is segregated into 18 ANSI C files, with 18 corresponding

header files publishing the public interfaces toMODOAI functions.1

error.c Contains code for generating OAI-PMH error responses.

grammar.c Contains code for checking the grammar of incoming request. This ensuresthat

MODOAI does not attempt to handle any incoming request which does not conform tovalid

OAI-PMH grammar.

mod_oai.c This is the main entry point for allMODOAI interaction with the Apache HTTP server.

It contains the callbacks Apache calls when parsing the httpd.conf file, allowing MODOAI to

configure itself. It contains the hooksMODOAI uses to register itself with the running Apache

HTTP process. It also contains the main callback Apache calls to allowMODOAI to handle

the incoming requests during the content generation phase of the request.

response.cContains helper routines used by the six verb handling routines.

string_util.c Contains helper routines for manipulating strings.

OAI-PMH Verbs code: Contains code for handling each of the six OAI-PMH verbs. This includes

both the logic for handling the request and the code for generating the OAI-PMH XML output.

vGetRecord.c vListSets.c vListMetadataFormats.c

vIdentify.c vListRecords.c vListIdentifiers.c]

xml.c Contains code for generating XML snippets which are common to more than oneof the verb

handlers.
1All modoai responses are HTTP response code 200 because they return a response from modoai as opposed to failing

at the HTTP level.

130

xml_parse.c Contains XML parsing routines for reading the sitemap.xml file. These routines in-

ternally use the apr_xml_parser utilities provided by the APR framework.

execExternal.c Contains code to spawn new processes to run the plugin utilities specified in the

httpd.conf file.

handler.c Contains helper code used by the mainMODOAI Apache request handling utility.

plugin.c Contains code for configuring and executing external plugin utilities.

resumption.c Contains code for parsing and generating OAI-PMH resumption tokens.

timefunc.c Date and time formatting utilities.

3.1 Module Configuration

The lifetime of an Apache HTTP server is depicted in Figure 59 on page 126.At startup, Apache

parses the config file for all defined servers, which may include one or more virtual servers. For

each server, Apache executes all per-server-config callbacks registered by any configured Apache

modules. Next, for each directory specified in the httpd.conf file, Apache executes all per-directory-

config callbacks registered by any configured Apache modules. At this point, Apache is fully oper-

ational and begins accepting requests. For each request having a registered handler module, Apache

calls the registered handler callback. ForMODOAI, this ismodoai2_method_handler() . Fi-

nally, Apache shuts down and frees all resources.

The MODOAI module–3 hooks into the Apache life cycle: per-server-config, per-directory-

config and a request handler. During the per-server-config processing,MODOAI parses the config-

uration file for any modoai_plugin lines, and persistently configures them intothe Apache process

space. See lines 11–21 of Appendix D– 1 on page 178. At startup, this parsing only reads the

files for correct syntax, but does not actually verify that the utilities are present or executable. Such

checks are more appropriate at request time, as any utilities may change between startup and the

time they are called. During the per-directory config processing,MODOAI parses and configures all

features not related to theMODOAI plugins. The third callback registered with the Apache HTTP

runtime is the content handler, modoai2_method_handler(). This is the function Apache calls when

a request arrives which Apache is configured to pass on toMODOAI.

3.2 Request Handling

Apache executes theMODOAI callback modoai2_method_handler() when an OAI-PMH request ar-

rives. Figure 60 on the following page depicts the internal processingMODOAI follows to handle

the request. TheMODOAI module handles the response in seven stages.

131

FIG. 60: TheMODOAI processing loop.

132

Stage 1:First, MODOAI parses the arguments. It ensures the request is a GET request, parses

the query string, and does all appropriate unescaping of HTTP sensitive characters.

Stage 2: Next, MODOAI performs grammar checks. Grammar checks scan the request argu-

ments to ensure the conform to OAI-PMH syntax. For example, if a verb is provided, it must be

one of Identify, GetRecord, ListRecords, ListIdentifiers, ListSets or ListMetadataFormats. If any

grammatical errors are found, an error page is issued, and no furtherprocessing occurs.

Stage 3: The next stage is to check argument validity. This is related to, but distinct from

grammar checking. This stage checks the request to ensure it is logically proper. For example,

a resumption token can only be presented with ListRecords, ListSets and ListIdentifier verbs. To

present a request with a resumption token and an Identify verb is not valid. TheMODOAI module

will issue an error page and stop further processing.

All OAI-PMH requests except Identify and ListMetadataFormats operate on one or more re-

sources. The fourth, fifth and sixth stage of processing deal exclusively with constructing a list of

resources which will be included in the response to the request.

Stage 4:Generate Resource List, reads the sitemap file and generates a list of all theresources

contained in the file.

Stage 5:Prune Resource List, takes the list generated in stage four and reducesit in size based

on the following constraints: Any resources which are not on the filesystem are removed Any

resources which are excluded by a from, until, or set in the query are removed Any resources

covered by an modoai_exclude statement in the httpd.conf file are removed.

Stage 6:Reduce Resource List, is only executed if there is a resumption token included in the

incoming request. If so, any resources which have previously been sent are excluded. If there are

more resources remaining than specified in the modoai_max_request_size parameter, then those are

removed. This leaves a resource list consisting of just the resources which should be handled in this

request, and possibly an outgoing resumption token which should be appended to the end of this

request.

Stage 7: The final stage is to actually process the request. For each resource, output XML is

generated, and a running total of the number of characters generate is tallied. If after processing

a resource, the total is compared with the configuration parameter modoai_max_response_size. If

the parameter has been exceeded, then no further resources are processed. The XML response is

completed, and a new resumption token is issued.

133

4 CUSTOMIZING MODOAI

TheMODOAI program can be extended to take advantage of additional metadata extraction utilities

through the use of plugins. Plugins are configured in the httpd.conf2 file, through the modoai_plugin

directive. The plugin can be any program which can be executed from the command line. The

configuration directive, an example of which is below, takes four arguments.

modoai_plugin zipinfo “/usr/bin/zipinfo %s”

“/usr/bin/zipinfo -version” * /zip

The first argument is a label which is used to identify the plugin within the outputXML file.

The second argument is a command line to execute to generate the plugin output.The command

line is parsed for the string %s, which is replaced with the name of the filesystempath to the

resource being examined. The third argument also a command line program toexecute, but is used

to provide a version of the utility. For programs which do not have a built in version command, a

simple /usr/bin/echo can be provided to give an appropriate version command. The final argument is

a regex pattern which is compared against the MIME-type of the resourceto determine if this plugin

applies to the resource. For example, the exiftool utility examines metadata for digital photography

files. It would not be appropriate to run this against a file with a MIME-type of text/html. For

exiftool, a configuration could be created which only matches image/*, which would match both

image/jpeg and image/raw.

In some cases, wrapper scripts are needed to allow utilities to conform to the above convention.

One such example is the Jhove utility. The Jhove command line requires a specification of the

Jhove module to use for metadata extraction. For example, when processinggif files, the GIF-hul

processor is used, while the PDF-hul processor is specified on the command line for PDF files.

To allow multiple command lines be called based on the MIME type of the file being passed in,

the author wrote a simple perl wrapper which constructs the appropriate Jhove command line based

on the MIME type of the resource being examined. For jpeg resources, Jhove is called as:jhove

-m JPEG-hul %s while for GIF files Jhove is invoked as:jhove -m GIF %s . To use Jhove

for only JPEG images, theMODOAI configuration line should appear as:

modoai_plugin jhove "/opt/jhove/procJhove.pl %s" "/opt/ jhove/jhove

-c /opt/jhove/conf/jhove.conf -h xml -v" "image/jpeg"

The MODOAI plugin architecture is designed to make it easy to add additional metadata extraction

utilities, including other Jhove lines to have one for each type of hul processor desired.

2Some versions of Apache use a single httpd.conf file. Others use a combination of files, of which modoai.conf would
be one.

134

5 CRATE DEPLOYED IN MODOAI

Using MODOAI to implement the CRATE model accelerates and simplifies the process of produc-

ing preservation-ready web resources. Because it installs and is configured using methods familiar

to most webmasters, it does not impose significant additional workload. Theprimary tool which

enables CRATE is just another in a long list of Apache web server modules (MODOAI) setup by the

webmaster at site initialization. The plugin architecture is simple to customize via the standard con-

figuration files, and a variety of useful utilities (like “file” and Base64 encoding) are likely to have

been pre-installed. Many other utilities can be added, and the syntax for inclusion is straightfor-

ward. Another advantage in usingMODOAI is that webmasters are familiar with their local resource

types and can select plugin metadata extractors that are appropriate to the site. Thefeasibility of

such an implementation was demonstrated in a series of experiments which are described in the next

section.

6 SUMMARY

The MODOAI software is an Apache web server module written in ANSI C which implements the

OAI-PMH protocol. The module is compiled into a shared library, and registers itself with the

Apache server as a participant in the content generation stage of Apache request processing. Once

registered, all incoming requests to mapped URLS call theMODOAI handler to generate content for

the OAI-PMH request. TheMODOAI code performs input validation, delegates security checks to

the Apache subrequest framework, spawns processes for all configured plugins, and generates the

response XML for the client’s request. The reworkedMODOAI module now treats built-in metadata

extraction utilities in the same manner as webmaster-defined metadata extraction utilities, simplify-

ing code maintenance. The author has refactored the original code, andextended it to implement

an extensible plugin architecture. New metadata utilities can be added by webmasters through con-

figuration in the standard Apache httpd.conf configuration file. Code regressions are avoided by

execution of a new functional test suite prior to all code commits.

135

CHAPTER XI

CONCLUSIONS

It is impossible to determine unequivocally what we will need to know in orderto

manage digital preservation in the future, so our set of metadata elements necessarily

reflects assumptions about our future requirements.

Colin Webb [147]

1 CONTRIBUTIONS

This dissertation presents significant theoretical and software contributions to digital preservation,

particularly to the preservation of everyday websites. These contributions fall into two main cate-

gories, theoretical contributions and software contributions.

1.1 Theoretical Contributions

The CRATE model presented in this dissertation is based on the idea that “pretty good” preservation

is a realistic, achievable and worthwhile goal. Just as “Pretty Good Privacy” (PGP) sought to de-

mocratize cryptography [152, 151], the CRATE model seeks to democratize digital preservation by

placing it in the hands of everyday webmasters, available on web serversanywhere. The theoretical

contributions made by this dissertation are:

1) Preservation functions are integrated directly into the web server so that any resource provided

by the server can be packaged with preservation metadata.

2) Rather than relying on a formalized relationship between the webmaster andthe archivist, this

dissertation introduces a model of preservation that is available to everyone. That is, it democra-

tizes preservation tasks by letting any web server fill the role of building the OAIS information

package.

3) This dissertation introduces adata-centricapproach to preservation metadata. It moves away

from the traditional model of strict validation at ingestion tobest-effortmetadata at dissemina-

tion.

4) Metadata is moved from an ontology-dependent structure to a model where the metadata is

undifferentiated.

5) This dissertation defines and describes the CRATE Model which packages a resource and its

preservation information together as aComplex Object.A CRATE consists of 3 elements: (i) A

136

UID, (ii) Metadata, and (iii) Resource encoded in Base64. The Model specifies that all CRATE

content must be in plain text, considered the lowest-common-denominator encoding which is

likely to survive over the long-term. The CRATE Schema is also presented, and examples of a

CRATE implementation are provided.

6) As part of the CRATE investigations, this dissertation also documents the behavior of web

crawlers. It details patterns that appear to be dependent on website characteristics, and docu-

ments the impact of website structure on web crawler behavior.

1.2 Software Contributions

The theory proposed by this dissertation, i.e., that preservation functionscan be integrated into the

web server, has an applied component. This dissertation presents the first known implementation

of web server functionality integrated into the web server. A number of software contributions are

made in this dissertation:

1. A completely revised implementation of OAI-PMH was developed to implement the CRATE

Model. Based on an earlier prototype, the version ofMODOAI presented in this dissertation

has been redesigned to conform with the Apache API.

2. The dissertation introduces anextensiblearchitecture to theMODOAI module which enables

a variety of metadata utilities to serve as “plugins”. Each plugin can be applied toresources

individually utilizing a well-understood, Regular-Expressions oriented convention in the web

server configuration file.

3. MODOAI provides a foundation for additional preservation functionality to be integrated into

the web server.

4. A suite of functional-unit tests were developed together with a test websitewhich can be

used to confirm proper installation and operation of the software without affecting other sites

hosted by the server.

5. Formal software engineering processes were introduced, and the project was moved into a

version control repository, Subversion, which is the versioning control system used by the

Apache Software Foundation.

6. The software is multi-platform compatible. As an Apache 2.x built-in module,MODOAI

inherits the advantages of the Apache web server. Native Apache calls make the software

portable to more than one platform, eliminating the need to maintain multiple development

branches. Regardless of the target installation’s operating system, modules are handled in a

consistent, well-understood manner; the source code does not need insight into the specifics

137

of the target platform. In addition, issues like memory management (important for threaded

applications like Apache) are handled by the web server rather than the module.

7. Version 1.0 ofMODOAI has been released to the public under a GPL-2 license and is avail-

able through Google Code (http://code.google.com/modoai) and at theMODOAI

website (http://www.modoai.org/).

2 FUTURE WORK

This dissertation presents a number of accomplishments with regard to integrating preservation

functionality into the web server. More remains to be done, both in the realm ofthe CRATE Model

and in software engineering.

2.1 General Investigations

1. The CRATE Model describes an XML document output in plain ASCII. As UTF-8 becomes

the character-encoding of choice in the international community, the use of UTF-8 instead of

ASCII should be investigated. Since UTF-8 is backward-compatible with ASCII, a transition

will not adversely affect earlier installations where ASCII was employed.For multi-character-

set compatibility, the Unicode standard and its most prevalent implementation, UTF-8, should

be considered as the future basis for CRATE objects. Other encodings may become prevalent

or prove useful.

2. OAI-ORE resource maps should be investigated for CRATE compatibility.

3. There are other non-HTTP protocols that could participate in preservation such as the RSS

and ATOM syndication formats.

2.2 Web Server-Related Investigations

1. One feature of HTTP is the “Accept-Encoding” field. A CRATE-specific encoding could be

developed which would indicate to the server that the client is requesting the response to

consist of the resource in CRATE Model format.

2. Although testing has been performed in a commercial web test environment,further investiga-

tions using live websites would be helpful for parameterizing the performance of the CRATE

Model and for producing installation guidelines and caveats.

3. In addition to general website testing, investigations into the impact on virtualhosting envi-

ronments (many webs, 1 machine) may provide further insights into feasibility for such sites

and recommendations for improving performance.

138

4. Most metadata utilities that were available for use during this research were not developed

with this implementation in mind. Further investigations into optimization of metadata utili-

ties would be helpful if web servers are to process resources for preservation metadata.

5. The Model should be implemented in other web server environments (Microsoft’s IIS for

example) to see if it is practical for these servers.

6. Proliferation is an important component of success for this Model. The more servers that use

it, the more likely it is to succeed. Efforts should be put into assisting adoption of the model

at as many sites as possible.

2.3 Further MODOAI Development

1. The Apache API has certain limitations that impact the ability of modules to access dynamic

content. Use of undocumented features can produce problems in future versions of Apache,

so the current release ofMODOAI limits itself to elements for which it is the registered handler.

As a result, it cannot do speculative evaluation of, for example, dynamic content for which

the registered handler is the content-generating module. Alternate solutions for this problem

should be investigated.

2. A basic set of metadata utilities that are useful, practical, and efficient should be collected and

provided as an optional part of aMODOAI installation, together with a set of recommendations

regarding their applicability by MIME type.

3. Open Source projects succeed by virtue of the engineering communities that are built around

them. Encouraging development and extension by other programmers will make MODOAI

more viable as a software solution for preservation functions in the web server.

3 INTEGRATING PRESERVATION FUNCTIONS INTO THE WEB SERVER

If not for the Internet Archive’s efforts to store periodic snapshotsof the web, many websites would

not have any preservation prospects at all. The barrier to entry is too high for everyday web sites,

which may have skilled webmasters managing them, but which lack skilled archivists to preserve

them. Digital preservation is not easy. One problem is the complexity of preservation models, which

have specific metadata and structural requirements. Another problem is thetime and effort it takes

to properly prepare digital resources for preservation in the chosen model.

This dissertation presents a novel idea: that the web server which produces and delivers re-

sources can also provide preservation metadata for them. Experiments implemented as part of this

research show that such functionalitycan be incorporated at the web server, and that third-party

139

metadata utilitiescanfunction within that environment to produce a highly-descriptive complex ob-

ject consisting of the resource packagedwith its metadata: an object called a CRATE. The CRATE

Model does not require insight into preservation technologies by the webmaster nor the client, and

as such it moves preservation from the hands of specialists into the realm ofthe casual user.

The target for this model is the everyday, personal or community website where a long-term

preservation strategy does not yet exist, but the approach could also be effectively applied to

semi-formal collections like college course websites or departmental file systems. Websites would

benefit from the democratization of preservation functionality in this nearly-transparent, server-

implemented solution. The CRATE Model is the key enabling technology in making this transfor-

mation possible.

140

BIBLIOGRAPHY

[1] Amazon, Inc. Kindle official site.http://kindle.amazon.com/ .

[2] Archive it. http://www.archive-it.org/ .

[3] William Y. Arms. Key concepts in the architecture of the digital library.D-Lib Magazine, 1,

July 1995.http://www.dlib.org/dlib/July95/07arms.html .

[4] Auditmypc.com. Webmaster tool. Java servlet for sitemap generation, 2008. http://

www.auditmypc.com/xml-sitemap.asp .

[5] Autositemap.com. Online sitemap tool, 2008.http://www.autositemap.com/ .

[6] Ricardo Baeza-Yates, Carlos Castillo, and Efthimis N. Efthimiadis. Characterization of na-

tional web domains.ACM Transactions on Internet Technology TOIT, 7(2), 2007.

[7] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. Do not crawlin the DUST: Different URLs

with Similar Text. InProceedings of the 16th International World Wide Web Conference

WWW’07, pages 111–120, 2007.

[8] Jeroen Bekaert, Emiel De Kooning, and Herbert Van de Sompel. Representing digital as-

sets using MPEG-21 Digital Item Declaration.International Journal on Digital Libraries,

6(2):159–173, 2006.doi:10.1007/s00799-005-0133-0 .

[9] Jeroen Bekaert and Herbert Van de Sompel. A standards-basedsolution for the accu-

rate transfer of digital assets.D-Lib Magazine, 11(6), June 2005. doi:10.1045/

june2005-bekaert .

[10] Leeann Bent, Michael Rabinovich, Geoffrey M. Voelker, and Zhen Xiao. Characterization of

a large web site population with implications for content delivery. InWWW’04: Proceedings

of the 13th International Conference on World Wide Web, volume 9, pages 522–533. ACM,

December 2004.http://doi.acm.org/10.1145/988672.988743 .

[11] Michael K. Bergman. The deep web: Surfacing hidden value.Journal of Electronic Publish-

ing, 7(1), 2001.

[12] K. Bharat and A. Broder. Mirror, mirror on the Web: A study of host pairs with replicated

content.WWW8 Computer Networks, 31(11-16):1579–1590, 1999.

[13] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The har-

vest information discovery and access system. InProceedings of the Second International

141

WWW Conference ’94: Mosaic and the Web, October 1994.http://portal.acm.org/

citation.cfm?coll=GUIDE\&dl=GUIDE\&id=217463 .

[14] C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, and M.F. Schwartz. The harvest infor-

mation discovery and access system.Computer Networks and ISDN Systems, 28(1-2):119–

125, 1995.

[15] Stewart Brand. Far forward. Report from the RLG OCLC Annual Meeting,

2000. http://digitalarchive.oclc.org/da/ViewObjectMain.js p;

jsessionid=84ae0c5f82405355a4cd14ef4b89b948a6af86f3 bee0?

fileid=0000070504:000006276583&reqid=7 .

[16] Onn Brandman, Junghoo Cho, Hector Garcia-Molina, and Narayanan Shivakumar. Crawler-

friendly web servers.SIGMETRICS Perform. Eval. Rev., 28(2):9–14, 2000.http://doi.

acm.org/10.1145/362883.362894 .

[17] William J. Broad. Web archive is said to reveal a nuclear primer.The New

York Times Online, 3 November 2006. http://www.nytimes.com/2006/

11/03/world/middleeast/03cnd-documents.html?_r=2&bl =&ei=

5087%0A&en=e9c8b8a6f22cf4e9&ex=1163134800&adxnnl=1& adxnnlx=

1163127354-bgbDa8lKoy7L/9p1OjiGDw&oref=slogin&oref= slogin .

[18] Carlos Castillo. Cooperation schemes between a web server and a web search en-

gine. In LA-WEB, pages 212–213. IEEE CS Press, 2003.citeseer.ist.psu.edu/

castillo03cooperation.html .

[19] James Caverlee, Ling Liu, and David Buttler. Probe, cluster, and discover: Fo-

cused extraction of qa-pagelets from the deep web. InICDE, pages 103–115,

2004. http://csdl.computer.org/comp/proceedings/icde/2004 /2065/

00/20650103abs.htm .

[20] CCSDS. Reference model for an open archival information system ISO 14721:2002. Tech-

nical Report CCSDS 650.0-B-1, Consultative Committee for Space Data Systems, January

2002.

[21] Lois Mai Chan. Inter-indexer consistency in subject cataloging.Information Technology and

Libraries, 8(4):349–358, December 1989.

[22] Mo Chen, Jian-Tao Sun, Hua-Jun Zeng, and Kwok-Yan Lam. A practical system of

keyphrase extraction for web pages. InCIKM ’05: Proceedings of the 14th ACM interna-

tional conference on Information and knowledge management, pages 277–278. ACM, 2005.

http://doi.acm.org/10.1145/1099554.1099625 .

142

[23] Ludmila Cherkasova and Magnus Karlsson. Dynamics and evolution of web sites: Analysis,

metrics, and design issues. InISCC, pages 64–71. IEEE Computer Society, July 2001.

[24] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web crawlers.

ACM Trans. Database Syst., 28(4):390–426, 2003.http://doi.acm.org/10.1145/

958942.958945 .

[25] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change. ACM Transac-

tions on Internet Technology, 3(3):256–290, 2003.http://doi.acm.org/10.1145/

857166.857170 .

[26] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through url

ordering. Computer Networks and ISDN Systems, 30(1-7):161–172, 1998.http://dx.

doi.org/10.1016/S0169-7552(98)00108-1 .

[27] Junghoo Cho, Narayanan Shivakumar, and Hector Garcia-Molina. Finding replicated web

collections. InSIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International Con-

ference on Management of Data, pages 355–366. ACM Press, 2000.http://doi.acm.

org/10.1145/342009.335429 .

[28] Commission on Physical Sciences, Mathematics, and Applications.Study on the Long-term

Retention of Selected Scientific and Technical Records of the Federal Government: Working

Papers (1995), page 26. National Academies Press, 1995.http://darwin.nap.edu/

books/NI000157/html/26.html .

[29] Connexion Integrated Cataloging Service. OCLC, Online Computer Library Center.http:

//www.oclc.org/connexion/ .

[30] DASL: DAV Searching and Locating.http://www.webdav.org/dasl/ (accessed on

3/17/2006).

[31] The Dublin Core Metadata Initiative. History of the Dublin Core MetadataInitiative. http:

//dublincore.org/about/history/ .

[32] DVDXCOPY. web site.http://www.dvdxcopy.com/default.asp .

[33] European archive.http://www.europarchive.org/ .

[34] Jerry Everard. Meta tags – so 200BCE, March 2007.http://lostbiro.com/blog/

wp-content/uploads/2007/03/RosettaStone.jpg .

[35] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of

the evolution of web pages.Software: Practice & Experience, 34(2):213–237, 2004.

143

[36] flickr. Yahoo’s flickr site; a subcategory of images with OAI-PMH tags, 2006. http:

//flickr.com/photos/tags/oaipmh/ .

[37] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) Part One: Format

of Internet Message Bodies. IETF RFC 2045, November 1996.http://tools.ietf.

org/html/rfc2045 .

[38] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) Part Two:

Media Types. IETF RFC 2046, November 1996.http://tools.ietf.org/html/

rfc2046 .

[39] Frontiernet website. NIST Logo conversion, May 2008.http://www.frontiernet.

net/~imaging/sc_nist_logo_java3d.jpg .

[40] H. M. Gladney. Trustworthy 100-year digital objects: Evidence after every witness is dead.

ACMTransactions On Information Systems, 22(3):406–436, July 2004.

[41] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP extensions for distributed

authoring – WEBDAV. Technical Report Internet RFC-2518, IETF, 1999.

[42] Google, Inc. 20 year archive on google groups.http://www.google.com/

googlegroups/archive_announce_20.html .

[43] Google, Inc. First mention of MS-DOS. Posting by "Frank", June 1981.http://groups.

google.com/group/fa.info-cpm/msg/c86239309bfbdc31 .

[44] Google, Inc. World Wide Web - Executive Summary. Posting by Tim Berners-

Lee, August 1991.http://groups.google.com/group/alt.hypertext/msg/

395f282a67a1916c .

[45] Google, Inc. Creating google sitemaps files.http://www.google.com/support/

webmasters/bin/topic.py?topic=8467 , 2006.

[46] Google, Inc. Google code: Web authoring statistics.http://code.google.com/

webstats/ , 2006. Accessed on 10 Feb 2007.

[47] Google, Inc. Sitemap tool. Python tool for sitemap generation, 2008.https://www.

google.com/webmasters/tools/docs/en/sitemap-generat or.html .

[48] Google, Inc. Webmaster guidelines, February 2008.http://www.google.com/

support/webmasters/bin/answer.py?answer=35769 .

[49] James V. Grimaldi, Juliet Eilperin, and Jonathan Weisman. Some say they felt uneasy about

representative’s attention.The Washington Post, page Page A01, 4 October 2006.

144

[50] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. WWW 2005,

5, May 2005.

[51] Darren R. Hardy and Michael F. Schwartz. Customized information extraction as a basis for

resource discovery.ACM Trans. Comput. Syst., 14(2):171–199, 1996.http://doi.acm.

org/10.1145/227695.227697 .

[52] Henry A. Murray Research Archive. The Institute for Quantitative Social Science at Harvard

University. http://www.murray.harvard.edu/frontpage .

[53] Harvest: A distributed search system. Sourceforge Project.http://harvest.

sourceforge.net/ .

[54] Michael Hauben and Ronda Hauben.Netizens: On the History and Impact of Usenet and the

Internet. Wiley IEEE Computer Society Press, May 1997. ISBN 0-8186-7706-6.

[55] Kevin Hemenway and Tara Calishain.Spidering Hacks. O’Reilly Media, Inc., first edition,

November 2003.

[56] M.R. Henzinger. Hyperlink analysis for the Web.IEEE Internet Computing, 5(1):45–50,

Jan/Feb 2001.

[57] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web crawler. InWWW

’99: Proceedings of the 8th International Conference on World Wide Web, pages 219–229,

Toronto, Canada, 1999.http://dx.doi.org/10/1023/A:1019213109274 .

[58] Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and AndreasPaepcke. WebBase: a

repository of web pages.Computer Networks (Amsterdam, Netherlands: 1999), 33(1–

6):277–293, 2000.citeseer.ist.psu.edu/article/hirai99webbase.html .

[59] International Conference on Preservation of Digital Objects.http://ipres.library.

cornell.edu/ .

[60] Panagiotis G. Ipeirotis, Luis Gravano, and Mehran Sahami. Probe,count, and classify: Cat-

egorizing hidden web databases. InSIGMOD Conference, pages 100–109, 2001.http:

//doi.acm.org/10.1145/375663/375671 .

[61] S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt. Constrained mirror placement on the

Internet. INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings, 1, 2001.

[62] Robert Kahn and Robert Wilensky. A framework for distributed digital object services.

Corporation for National Research Initiatives hdl:cnri.dlib/tn95-01, May 1995. http:

//www.cnri.reston.va.us/home/cstr/arch/k-w.html .

145

[63] Robert Kahn and Robert Wilensky. A framework for distributed digital object services.In-

ternational Journal On Digital Libraries, 6(2):115–123, April 2006.

[64] KEA automatic keyphrase extraction tool. New Zealand Digital Library,University of

Waikato, 2006.http://www.nzdl.org/Kea/ .

[65] Martin Klein, Frank McCown, Joan A. Smith, and Michael L. Nelson.How Much Preserva-

tion Do I Get If I Do Absolutely Nothing?, pages 71 – 87. GITO-Verlag, Berlin, Germany,

2007.

[66] Koninklijke bibliotheek. (National Library of the Netherlands).http://www.kb.nl/ .

[67] Carl Lagoze, Herbert Van de Sompel, Michael L. Nelson, and Simeon Warner. The Open

Archives Initiative Protocol for Metadata Harvesting.http://www.openarchives.

org/OAI/openarchivesprotocol.html .

[68] Carl Lagoze and Herbert Van de Sompel. The Open Archives Initiative: building a low-

barrier interoperability framework. InJCDL ’01: Proceedings of the 1st ACM/IEEE-CS

Joint Conference on Digital Libraries, pages 54–62, New York, NY, USA, 2001. ACM Press.

http://doi.acm.org/10.1145/379437.379449 .

[69] Carl Lagoze, Herbert Van de Sompel, Michael L. Nelson, and Simeon Warner. Imple-

mentation guidelines for the Open Archives Initiative Protocol for MetadataHarvesting.

http://www.openarchives.org/OAI/2.0/guidelines.htm , 2005.

[70] Lawrence E. Leonard. Inter-indexer consistency studies, 1954-1975:a review of the literature

and summary of study results. Graduate School of Library Science, University of Illinois,

Urbana-Champaign, IL, 1977.

[71] Ryan Levering and Michal Cutler. The portrait of a common html web page. InDocEng ’06:

Proceedings of the 2006 ACM symposium on Document engineering, pages 198–204, New

York, NY, USA, October 2006. ACM.http://doi.acm.org/10.1145/1166160.

1166213 .

[72] David M. Levy. Heroic measures: reflections on the possibility and purpose of digital preser-

vation. InDL ’98: Proceedings of the Third ACM Conference on Digital Libraries, pages

152–161, New York, NY, USA, 1998. ACM Press.http://doi.acm.org/10.1145/

276675.276692 .

[73] Library of Congress.The State of Digital Preservation: An International Perspective, Wash-

ington, DC, July 2002. Council on Library Information Resources (CLIR).

146

[74] Xiaoming Liu, Lyudmila Balakireva, and Patrick Hochstenbachand Herbert Van de Sompel.

File-based storage of digital objects and constituent datastreams: XMLtapes and internet

archive ARC files. In9th European Conference on Research and Advanced Technologyfor

Digital Libraries (ECDL 2005), pages 254–265, Sept 2005.

[75] Zhenyu Liu, Chang Luo, Junghoo Cho, and Wesley W. Chu. A probabilistic approach to

metasearching with adaptive probing. InICDE, pages 547–559, 2004.http://doi.

ieeecomputersociety.org/10.1109/ICDE.2004.1320026 .

[76] Peter Lyman. Archiving the world wide web. InPreserving Our Digital Heritage: Plan for

the National Digital Information Infrastructure and Preservation Program, page Appendix

2. Library of Congress, October 2002.http://www.digitalpreservation.gov/

about/es_web.pdf .

[77] Peter Lyman. Archiving the world wide web. InBuilding a National Strategy for Preser-

vation: Issues in Digital Media Archiving. Council on Library and Information Resources,

2002.

[78] Peter Lyman, Hal R. Varian, Peter Charles, Nathan Good, LaheemLamar Jordan, and Joyo-

jeet Pal. How much information? 2003. Research Project Report, U.C. Berkeley School of In-

formation Management and Systems, October 2003.http://www2.sims.berkeley.

edu/research/projects/how-much-info-2003/ .

[79] Clifford Lynch. Metadata harvesting and the Open Archives Initiative. ARL Bi-Monthly

Report, August 2001.http://www.arl.org/newsltr/217/mhp.html .

[80] Clifford Lynch. When documents deceive: Trust and provenance as new factors for

information retrieval in a tangled web.Journal of the American Society for Informa-

tion Science and Technology, 52(1):12–17, 2001.http://dx.doi.org/10.1002/

1532-2890(2000)52:1<12::AID-ASI1062>3.3.CO;2-M .

[81] Kurt Maly, Michael L. Nelson, and Mohammed Zubair. Smart objects,dumb archives.D-Lib

Magazine, March 1999.http://www.dlib.org/dlib/march99/maly/03maly.

html .

[82] Petros Maniatis, Mema Roussopoulos, T.J.Giuli, David S. H. Rosenthal,and Mary Baker.

The LOCKSS peer-to-peer digital preservation system.ACM Transactions on computer sys-

tems, 23(1):2 – 50, February 2005.

[83] Frank McCown, Amine Benjelloun, and Michael L. Nelson. Brass: Aqueueing manager for

warrick. In7th International Web Archiving Workshop (IWAW 2007), June 2007.

147

[84] Frank McCown, Norou Diawara, and Michael L. Nelson. Factorsaffecting website recon-

struction from the web infrastructure. InJCDL’07: Proceedings of the 7th ACM/IEEE Joint

Conference on Digital Libraries, pages 39 – 48, June 2007.doi:10.1145/1255175.

1255182 .

[85] Frank McCown, Xiaoming Liu, Michael L. Nelson, and Mohammed Zubair. Search engine

coverage of the OAI-PMH corpus.IEEE Internet Computing, 10(2):66–73, March/April

2006.

[86] Frank McCown, Joan A. Smith, Michael L. Nelson, and Johan Bollen. Reconstructing web-

sites for the lazy webmaster. Technical Report arXiv:cs.IR/0512069, Old Dominion Univer-

sity, 2005.http://arxiv.org/abs/cs.IR/0512069 .

[87] Frank McCown, Joan A. Smith, Michael L. Nelson, and Johan Bollen. Reconstructing

websites for the lazy webmaster.Proceedings of the eighth ACM international work-

shop on web information and data management (WIDM), pages 67–74, November 2006.

http://doi.acm.org/10.1145/1183550.1183564 .

[88] Jerome P. McDonough. METS: Standardized encoding for digital library objects.

International Journal on Digital Libraries, 6(2):148–158, April 2006. 10.1007/

s00799-005-0132-1 .

[89] Eric Miller. An introduction to the resource description framework.D-Lib Magazine, 4(5),

1998.http://dlib.org/dlib/may98/miller/05miller.html .

[90] Gilad Mishne, David Carmel, and Ronny Lempel. Blocking blog spam with language model

disagreement. InProceedings of the First International Workshop on Adversarial Information

Retrieval on the Web AIR Web ’05, May 2005.

[91] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. Introduction to heritrix, an archival quality

web crawler. InProceedings of the 4th International Web Archiving Workshop (IWAW ’04),

Sept 2004.

[92] John Mueller. Retiring support for OAI-PMH in sitemaps. Google Webmaster Central

Blog, April 2008. http://googlewebmastercentral.blogspot.com/2008/

04/retiring-support-for-oai-pmh-in.html .

[93] The national archives digital preservation department (UK). http://www.

nationalarchives.gov.uk/preservation/digital.htm .

[94] National Library of Australia Digital Services Project.http://www.nla.gov.au/

nla/staffpaper/dw001004.html .

148

[95] NDIIPP, the National Digital Information Infrastructure and Preservation Program.http:

//www.digitalpreservation.gov/ .

[96] Michael L. Nelson, Brad Argue, Miles Efron, Sheila Denn, and Maria Cristina Pattuelli. A

survey of complex object technologies for digital libraries. Technical Report NASA/TM-

2001-211426, NASA Langley Research Center, 2001.http://techreports.larc.

nasa.gov/ltrs/PDF/2001/tm/NASA-2001-tm211426.pdf .

[97] Michael L. Nelson, Johan Bollen, Giridhar Manepalli, and Rabia Haq. Archive ingest and

handling test, the Old Dominion University approach.D-Lib Magazine, 11(12), October

2005.doi:10.1045/december2005-nelson .

[98] Michael L. Nelson, Frank McCown, Joan A. Smith, and Martin Klein. Using the web infras-

tructure to preserve web pages.International Journal on Digital Libraries, 6(4):327–349,

April 2007. doi:10.1007/s00799-007-0012-y .

[99] Michael L. Nelson, Joan A. Smith, Herbert Van de Sompel, Xiaoming Liu, and Ignacio

Garcia del Campo. Efficient, automatic web resource harvesting. InProceedings of the

seventh ACM international workshop on web information and data management, pages 43–

50, November 2006.http://doi.acm.org/10.1145/1183550.1183560 .

[100] Michael L. Nelson and Herbert Van de Sompel. IJDL special issue on complex digital objects:

Guest editors’ introduction.International Journal on Digital Libraries, 6(2):113–114, 2006.

doi:10.1007/s00799-005-0127-y.

[101] Netcraft server survey.http://news.netcraft.com/archives/web_server_

survey.html .

[102] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. What’s new on the web?: the

evolution of the web from a search engine perspective. InWWW ’04: Proceedings of the 13th

International Conference on the World Wide Web, pages 1–12, 2004.http://doi.acm.

org/10.1145/988672.988674 .

[103] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly. Detecting spam

web pages through content analysis. InWWW’06: Proceedings of the 15th International

Conference onf World Wide Web, 2006.

[104] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading textual hidden web

content through keyword queries. InJCDL ’05: Proceedings of the 5th ACM/IEEE-CS Joint

Conference on Digital Libraries, pages 100–109, 2005.http://doi.acm.org/10.

1145/1065385.1065407 .

149

[105] Edward T. O’Neill, Brian F. Lavoie, and Rick Bennett. Trends in theevolution of the

public web. D-Lib Magazine, 3(4), April 2003. http://dx.doi.org/10.1045/

april2003-lavoie .

[106] G. Pant, P. Srinivasan, and F. Menczer.Crawling the Web, chapter II, pages 153 – 178.

Springer-Verlag, 2004.

[107] Juan Carlos Perez. Google, Yahoo and Microsoft partner to help webmasters.Computer-

world, November 2006.http://www.computerworld.com/action/article.

do?command=viewArticleBasic&articleId=9005148 .

[108] Mark Pilgrim. What is rss.O’Reilly XML.com, 2002.http://www.xml.com/pub/a/

2002/12/18/dive-into-xml.html .

[109] Gary Price. Web search engines FAQS: questions, answers, and issues. Searcher, 9(9),

October 2001.http://www.infotoday.comc/searcheroct01/price.htm .

[110] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web. InProceedings of

the 27th International Conference on Very Large Data Bases, pages 129–138, 2001.http:

//dbpubs.stanford.edu/pub/2000-25 .

[111] Resource description framework. W3C Recommendation.http://www.w3.org/RDF/ .

[112] J. Reagle. Web RSS (syndication) history, 2003.http://goatee.net/2003/

rss-history.html .

[113] G.S. Robinson and C. Cargill. History and impact of computer standards. Computer,

29(10):79 – 85, October 1996.

[114] D. Rosenthal, T. Robertson, T. Lipkis, T. Reich, and S. Morabito. Requirements for digital

preservation systems. a bottom-up approach.D-Lib Magazine, 11(11), 2005. doi:10.

1045/november2005-rosenthal .

[115] The rosetta stone. Online photo by Eduardo Rocha, PhD.http://erocha.

freehosting.net/Rosetta_Stone_WEB2.jpg .

[116] Rosetta stone replica. From the Museum Store Company online catalog, 2008. http:

//museumstorecompany.com/index.php?cPath=10 .

[117] Jeff Rothenberg. Ensuring the longevity of digital information.Scientific American,

272(1):42–47, January 1995.

[118] Jeff Rothenberg. Ensuring the longevity of digital information.http:www.clir.org/

pubs/archives/ensuring.pdf , February 1999. Revision 980327.

150

[119] Mike Scott. Wordsmith software package. Oxford University Press, 2008.http://www.

lexically.net/wordsmith/ .

[120] Chris Sherman. Getting the New York Times more search engine friendly. Search En-

gine Watch, June 15 2006.http://searchenginewatch.com/showPage.html?

page=3613561 .

[121] Clay Shirky. Ontology is overrated: Categories, links, and tags. Written synthesis of two con-

ference talks. http://www.shirky.com/writings/ontology_overrated.

html .

[122] Clay Shirky. AIHT Conceptual issues from practical tests.D-Lib Magazine, 11(12), De-

cember 2005.http://www.dlib.org/dlib/december05/shirky/12shirky .

html .

[123] Clay Shirky. Library of Congress Archive Ingest and Handling Test AIHT final report. Report

by the National Digital Information Infrastruction & Preservation Program,June 2005.

[124] Jol A. Silverman. Photographic evidence, naked children, and dead celebrities: Digital

forgery and the law, April 1998.http://www.thirdamendment.com/digital.

html .

[125] Simon Singh.The Codebook: The Science of Secrecy from Ancient Egypt to QuantumCryp-

tography. Anchorbooks, September 2000.

[126] Sitemaps XML Format. Sitemaps Protocol, 2008.http://www.sitemaps.org/

protocol.php .

[127] Joan Smith and Michael Nelson. Using OAI-PMH resource harvesting and MPEG-21 DIDL

for digital preservation. 2nd International Conference on Open Repositories 2007, January

2007.

[128] Joan A. Smith, Frank McCown, and Michael L. Nelson. Observedweb robot behavior on

decaying web subsites.D-Lib Magazine, Feb 2006.http://www.dlib.org/dlib/

february06/smith/02smith.html .

[129] Joan A. Smith and Michael L. Nelson. Generating best-effort preservation metadata for

web resources at time of dissemination. InProceedings of the Joint Conference on Digital

Libraries(JCDL 2007), pages 51–52, June 2007.

[130] Joan A. Smith and Michael L. Nelson. Creating preservation-readyweb resources.D-Lib

Magazine, 14(1/2), 2008.doi:10.1045/january2008-smith .

151

[131] Joan A. Smith and Michael L. Nelson. Site design impact on robots: Anexamination of

search engine crawler behavior at deep and wide websites.D-Lib Magazine, 14(3/4), 2008.

doi:10.1045/march2008-smith .

[132] The Unica Island Team. Rosetta stone, 1997.http://library.thinkquest.org/

10005/media/photos/RosettaStone.gif .

[133] The Apache Software Foundation. Apache HTTP server version 2.0 documentation, 2008.

http://httpd.apache.org/docs/2.0/ .

[134] Charles F. Thomas and Linda S. Griffin. Who will Create The Metadata For the Internet?

First Monday, 3(12), 1998.http://www.firstmonday.dk/issues/issue3_12/

thomas/ .

[135] Herbert Van de Sompel and Carl Lagoze. The Santa Fe Convention of the Open Archives Ini-

tiative. D-Lib Magazine, 6(2), 2000.http://www.dlib.org/dlib/february00/

vandesompel-oai/02vandesompel-oai.html .

[136] Herbert Van de Sompel, Michael L. Nelson, Carl Lagoze, and Simeon Warner. Resource

harvesting within the OAI-PMH framework.D-Lib Magazine, 10(12), December 2004.

doi:10.1045/december2004-vandesompel .

[137] Herbert Van de Sompel, Jeffery A. Young, and Thomas B. Hickey. Using the OAI-

PMH ... differently. D-Lib Magazine, 9(7/8), 2003.http://dx.doi.org/10.1045/

july2003-young .

[138] Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Carter, and Milo Medin. The

HTTP distribution and replication protocol, August 1997.http://www.w3.org/TR/

NOTE-drp .

[139] Victoria Electronic Records System. The step-by-step guide: A road map to a VERS im-

plementation. http://www.prov.vic.gov.au/vers/toolkit/stepbystep/

default.htm , 2008.

[140] Web Characterization Terminology and Definition Sheet, W3C Working Draft24-May-1999,

May 1999.http://www.w3.org/1999/05/WCA-terms/ .

[141] W3C. RDFa in XHTML: syntax and processing. Technical report, W3C, February 2008.

http://www.w3.org/TR/2008/WD-rdfa-syntax-20080221/ .

[142] WARP: National Diet Library of Japan, Web Archiving Project. (A summary report in En-

glish). http://www.ndl.go.jp/en/iflapac/e_resources.html .

152

[143] Andrew Waugh. The design of the VERS encapsulated object experience with an archival

information package.International Journal on Digital Libraries, 6(2):184–191, April 2006.

[144] Andrew Waugh. The design and implementation of an ingest function toa digital archive.

D-Lib Magazine, November/December 2007.doi:10.1045/november2007-waugh .

[145] Andrew Waugh, Ross Wilkinson, Brendan Hills, and Jon Dell’oro.Preserving digital infor-

mation forever. InDL ’00: Proceedings of the Fifth ACM Conference on Digital Libraries,

pages 175–184, 2000.http://doi.acm.org/10.1145/336597.336659 .

[146] The Wayback Machine Frequently Asked Questions.http://www.archive.org/

about/faqs.php (Accessed 18 January 2006).

[147] Colin Webb. National Library of Australia preservation metadata fordigital collections.

http://www.nla.gov.au/preserve/pmeta.html , October 1999.

[148] Stuart Weibel. Metadata: The foundations of resource description. D-Lib Magazine, 1(1),

1995.http://dx.doi.org/10.1045/july95-weibel .

[149] Windows live search academic: Publishers frequently asked questions.

http://academic.live.com/Publishers_Faq.htm (Accessed on July 10, 2006), 2006.

http://academic.live.com/Publishers_Faq.htm .

[150] XMLSITEMAP.COM. Xmlsitemap. Web-based sitemap tool., 2008.http://

xmlsitemap.com/create-sitemap/ .

[151] Phil Zimmerman.The Official PGP User’s Guide. MIT Press, Cambridge, MA, May 1995.

[152] Phil Zimmerman. Why I wrote PGP, 1999.http://www.philzimmermann.com/

EN/essays/WhyIWrotePGP.html .

153

APPENDIX A

CRATE XML SCHEMA DOCUMENTS

1 THE SIMPLE CRATE SCHEMA: CRATE.XSD

1 <?xml version="1.0"?>
2 <xsd:annotation>
3 <xsd:documentation>
4 This is a schema to represent the CRATE model.
5 Schema author: Joan A. Smith
6 </xsd:documentation>
7 </xsd:annotation>
8 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSch ema"
9 xmlns="http://www.cratemodel.org/xmlns/"

10 elementFormDefault="qualified">
11 <xsd:element name="Crate" minOccurs="1" maxOccurs="unb ounded">
12 <xsd:complexType>
13 <xsd:sequence>
14 <xsd:element name="ResourceID" type="xsd:string"/>
15 <xsd:element name="MetadataUtility"
16 type="MetadataUtilityType"
17 minOccurs="1" maxOccurs="unbounded"/>
18 <xsd:element name="Resource"
19 type="ResourceType" minOccurs="1">
20 </xsd:sequence>
21 </xsd:complexType>
22 </xsd:element>
23 <xsd:complexType name="MetadataUtilityType">
24 <xsd:sequence>
25 <xsd:element name="Name" type="xsd:string"
26 minOccurs="1" maxOccurs="1"/>
27 <xsd:element name="Exec" type="xsd:string"
28 minOccurs="0" maxOccurs="1"/>
29 <xsd:element name="Version" type="xsd:string"
30 minOccurs="1" maxOccurs="1"/>
31 <xsd:element name="MimeSet" type="xsd:string"
32 minOccurs="0" maxOccurs="1"/>
33 <xsd:element name="ExecTimeStamp" type="xsd:timeInsta nt"
34 minOccurs="0"/>
35 <xsd:element name="ResourceMetadata" type="xsd:string "
36 minOccurs="0" maxOccurs="1"/>
37 <xsd:any namespace="http://www.cratemodel.org/xmlns/ "
38 minOccurs="0"/>
39 </xsd:sequence>
40 </xsd:complexType>
41 <xsd:complexType name="ResourceType">
42 <xsd:sequence>
43 <xsd:element name="Base64Encoded" minOccurs="0"/>
44 <xsd:element name="ByReferenceURI" minOccurs="0"/>

154

45 <xsd:element name="Other" minOccurs="0">
46 <xsd:complexType>
47 <xsd:sequence>
48 <any minOccurs="0"
49 maxOccurs="unbounded"
50 processContents="lax"/>
51 </xsd:sequence>
52 </xsd:complexType>
53 </xsd:element>
54 </xsd:sequence>
55 </xsd:schema>

155

2 CRATE LANL DIDL SCHEMA: OAICRATE.XSD

1 <?xml version="1.0"?>
2 <xsd:annotation>
3 <xsd:documentation>
4 This is a schema to extend the oai_didl
5 content created by mod_oai with CRATE
6 model plugin information.
7 Schema author: Joan A. Smith,
8 Old Dominion University
9 </xsd:documentation>

10 </xsd:annotation>
11 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSch ema"
12 xmlns="http://www.modoai.org/xmlns/"
13 elementFormDefault="qualified">
14 <xsd:element name="CrateUtilities"
15 minOccurs="1" maxOccurs="unbounded">
16 <xsd:complexType>
17 <xsd:element name="Plugin" type="PluginType"
18 minOccurs="1" maxOccurs="unbounded"/>
19 </xsd:complexType>
20 </xsd:element>
21 <xsd:complexType name="PluginType">
22 <xsd:sequence>
23 <xsd:element name="Name" type="xsd:string"
24 minOccurs="1" maxOccurs="1"/>
25 <xsd:element name="Exec" type="xsd:string"
26 minOccurs="0" maxOccurs="1"/>
27 <xsd:element name="Version" type="xsd:string"
28 minOccurs="1" maxOccurs="1"/>
29 <xsd:element name="MimeSet" type="xsd:string"
30 minOccurs="0" maxOccurs="1"/>
31 <xsd:any namespace="http://www.modoai.org/xmlns/"
32 minOccurs="0" maxOccurs="unbounded"/>
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:schema>

156

APPENDIX B

EXAMPLE CRATE RESPONSES

1 CRATE PLUGINS IN THE IDENTIFY RESPONSE

WhenMODOAI has been installed together with metadata utility plugins, the plugins are listed in

the response to the OAI-PMH Identify verb (line numbers 54 –174). The plugin description also

specifies the rules, i.e., which resources will be processed by the plugin. Compare line 62 (applies

to any text-based resource) and 166 (applies only to Zip-type files) in this section, for example, with

line 83 which applies to every resource.

REQUEST: http://www.foo.edu:8080/modoai?verb=Identify

RESPONSE:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/ "
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
4 xsi:schemaLocation="http://www.openarchives.org/OAI /2.0/
5 http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
6 <responseDate>2008-05-15T00:04:08Z</responseDate>
7 <request verb="Identify">
8 http://www.foo.edu:8080/modoai</request>
9 <Identify>

10 <repositoryName>http://www.foo.edu:8080</repository Name>
11 <baseURL>http://www.foo.edu:8080/modoai</baseURL>
12 <protocolVersion>2.0</protocolVersion>
13 <adminEmail>jsmit@cs.odu.edu</adminEmail>
14 <earliestDatestamp>1900-01-01T12:00:00Z</earliestDa testamp>
15 <deletedRecord>no</deletedRecord>
16 <granularity>YYYY-MM-DDThh:mm:ssZ</granularity>
17 <description>
18 <friends
19 xmlns="http://www.openarchives.org/OAI/2.0/friends/ "
20 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
21 xsi:schemaLocation=
22 "http://www.openarchives.org/OAI/2.0/friends/
23 http://www.openarchives.org/OAI/2.0/friends.xsd">
24 </friends>
25 </description>
26 <description>
27 <gateway
28 xmlns="http://www.openarchives.org/OAI/2.0/gateway/ "
29 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
30 xsi:schemaLocation=

157

31 "http://www.openarchives.org/OAI/2.0/gateway/
32 http://www.openarchives.org/OAI/2.0/gateway.xsd">
33 <source>http://www.foo.edu:8080</source>
34 <gatewayDescription>
35 http://www.modoai.org/gateway.html
36 </gatewayDescription>
37 <gatewayAdmin>mail@joanasmith.com</gatewayAdmin>
38 </gateway>
39 </description>
40 <description>
41 <modoai
42 xmlns:modoai="http://www.modoai.org/OAI/2.0/modoai/ "
43 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
44 xsi:schemaLocation=
45 "http://www.modoai.org/OAI/2.0/modoai/modoai.xsd">
46 <modoai:version>0.7.1</modoai:version>
47 <modoai:server>
48 Apache/2.2.4 (Ubuntu)
49 PHP/5.2.3-1ubuntu6.3
50 </modoai:server>
51 </modoai>
52 </description>
53 <description>
54 <cratePlugins
55 xmlns="http://cratemodel.org/OAI/2.0/cratePlugins/"
56 xmlns:crateplugin="http://www.modoai.org/OAI/2.0/mo doai/"
57 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
58 xsi:schemaLocation=
59 "http://cratemodel.org/OAI/2.0/cratePlugins/
60 http://cratemodel.org/OAI/2.0/cratePlugins.xsd">
61 <crateplugin>
62 <crateplugin:name>wc</crateplugin:name>
63 <crateplugin:exec>/usr/bin/wc</crateplugin:exec>
64 <crateplugin:version>
65 <![CDATA[wc (GNU coreutils) 5.97
66 Copyright (C) 2006 Free Software Foundation, Inc.
67 This is free software.
68 You may redistribute copies of it under the terms of
69 the GNU General Public License
70 <http://www.gnu.org/licenses/gpl.html>.
71 There is NO WARRANTY, to the extent permitted by law.
72 Written by Paul Rubin and David MacKenzie.]]>
73 </crateplugin:version>
74 <crateplugin:mimeSet>text/ * </crateplugin:mimeSet>
75 </crateplugin>
76 <crateplugin>
77 <crateplugin:name>file</crateplugin:name>
78 <crateplugin:exec>/usr/bin/file</crateplugin:exec>
79 <crateplugin:version>
80 <![CDATA[file-4.21 magic file from
81 /etc/magic:/usr/share/file/magic]]>
82 </crateplugin:version>
83 <crateplugin:mimeSet> * / * </crateplugin:mimeSet>
84 </crateplugin>

158

85 <crateplugin>
86 <crateplugin:name>md5sum</crateplugin:name>
87 <crateplugin:exec>/usr/bin/md5sum</crateplugin:exec >
88 <crateplugin:version>
89 <![CDATA[md5sum (GNU coreutils) 5.97
90 Copyright (C) 2006 Free Software Foundation, Inc.
91 This is free software.
92 You may redistribute copies of it under the terms of
93 the GNU General Public License
94 <http://www.gnu.org/licenses/gpl.html>.
95 There is NO WARRANTY, to the extent permitted by law.
96 Written by Ulrich Drepper, Scott Miller,
97 and David Madore.]]>
98 </crateplugin:version>
99 <crateplugin:mimeSet>application/ * </crateplugin:mimeSet>

100 </crateplugin>
101 <crateplugin>
102 <crateplugin:name>sha1sum</crateplugin:name>
103 <crateplugin:exec>/usr/bin/sha1sum</crateplugin:exe c>
104 <crateplugin:version>
105 <![CDATA[sha1sum (GNU coreutils) 5.97
106 Copyright (C) 2006 Free Software Foundation, Inc.
107 This is free software.
108 You may redistribute copies of it under the terms of
109 the GNU General Public License
110 <http://www.gnu.org/licenses/gpl.html>.
111 There is NO WARRANTY, to the extent permitted by law.
112 Written by Ulrich Drepper, Scott Miller,
113 and David Madore.]]>
114 </crateplugin:version>
115 <crateplugin:mimeSet>image/ * </crateplugin:mimeSet>
116 </crateplugin>
117 <crateplugin>
118 <crateplugin:name>sha224sum</crateplugin:name>
119 <crateplugin:exec>/usr/bin/sha224sum</crateplugin:e xec>
120 <crateplugin:version>
121 <![CDATA[sha224sum (GNU coreutils) 5.97
122 Copyright (C) 2006 Free Software Foundation, Inc.
123 This is free software.
124 You may redistribute copies of it under the terms of
125 the GNU General Public License
126 <http://www.gnu.org/licenses/gpl.html>.
127 There is NO WARRANTY, to the extent permitted by law.
128 Written by Ulrich Drepper, Scott Miller,
129 and David Madore.]]>
130 </crateplugin:version>
131 <crateplugin:mimeSet>image/png</crateplugin:mimeSet >
132 </crateplugin>
133 <crateplugin>
134 <crateplugin:name>sha384sum</crateplugin:name>
135 <crateplugin:exec>/usr/bin/sha384sum</crateplugin:e xec>
136 <crateplugin:version>
137 <![CDATA[sha384sum (GNU coreutils) 5.97
138 Copyright (C) 2006 Free Software Foundation, Inc.

159

139 This is free software.
140 You may redistribute copies of it under the terms of
141 the GNU General Public License
142 <http://www.gnu.org/licenses/gpl.html>.
143 There is NO WARRANTY, to the extent permitted by law.
144 Written by Ulrich Drepper, Scott Miller,
145 and David Madore.]]>
146 </crateplugin:version>
147 <crateplugin:mimeSet>image/jpeg</crateplugin:mimeSe t>
148 </crateplugin>
149 <crateplugin>
150 <crateplugin:name>sha256sum</crateplugin:name>
151 <crateplugin:exec>/usr/bin/sha256sum</crateplugin:e xec>
152 <crateplugin:version>
153 <![CDATA[sha256sum (GNU coreutils) 5.97
154 Copyright (C) 2006 Free Software Foundation, Inc.
155 This is free software.
156 You may redistribute copies of it under the terms of
157 the GNU General Public License
158 <http://www.gnu.org/licenses/gpl.html>.
159 There is NO WARRANTY, to the extent permitted by law.
160 Written by Ulrich Drepper, Scott Miller,
161 and David Madore.]]>
162 </crateplugin:version>
163 <crateplugin:mimeSet>application/pdf</crateplugin:m imeSet>
164 </crateplugin>
165 <crateplugin>
166 <crateplugin:name>zipinfo</crateplugin:name>
167 <crateplugin:exec>/usr/bin/zipinfo</crateplugin:exe c>
168 <crateplugin:version>
169 <![CDATA[ZipInfo 2.42 of 28 February 2005,
170 by Greg Roelofs and the Info-ZIP group.]]>
171 </crateplugin:version>
172 <crateplugin:mimeSet> * /zip</crateplugin:mimeSet>
173 </crateplugin>
174 </cratePlugins>
175 </description>
176 </Identify>
177 </OAI-PMH>

160

2 CRATE PLUGINS IN THE GET RECORD RESPONSE

Plugins are applied to each resource based on criteria specified in the configuration file,modoai.conf.

In the example below, theword count(wc) utility is not applied because the resource is a JPEG

image. Cf. lines 46 – 59 in Appendix B– 1 on page 156 where the rules for that plugin are defined.

REQUEST:

http://www.foo.edu:8080/modoai?verb=GetRecord
&metadataPrefix=oai_crate
&identifier=http://www.foo.edu/modoaitest/crate.jpe g

RESPONSE:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/ "
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
4 xsi:schemaLocation="http://www.openarchives.org/OAI /2.0/
5 http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
6 <responseDate>2008-05-15T15:32:50Z</responseDate>
7 <request verb="GetRecord"
8 identifier="http://www.foo.edu/modoaitest/crate.jpe g"
9 metadataPrefix="oai_crate">http://www.foo.edu:8080/ modoai/</request>

10 <GetRecord>
11 <record>
12 <header>
13 <identifier>http://www.foo.edu/modoaitest/crate.jpe g</identifier>
14 <datestamp>2000-02-28T17:00:00Z</datestamp>
15 <setSpec>mime:image:jpeg</setSpec>
16 </header>
17 <metadata>
18 <didl:DIDL xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL- NS"
19 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
20 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
21 http://purl.lanl.gov/STB-RL/schemas/2004-11/DIDL.xs d">
22 <didl:Item>
23 <didl:Descriptor>
24 <didl:Statement mimeType="application/xml; charset=ut f-8">
25 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-D II-NS"
26 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
27 xsi:schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS
28 http://purl.lanl.gov/STB-RL/schemas/2003-09/DII.xsd ">
29 http://www.foo.edu/modoaitest/crate.jpeg</dii:Ident ifier>
30 </didl:Statement>
31 </didl:Descriptor>
32 <didl:Descriptor>
33 <didl:Statement mimeType="application/xml; charset=ut f-8">
34 <http:header xmlns:http="http://www.modoai.org/OAI/2 .0/http_header/"
35 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
36 xsi:schemaLocation="http://www.modoai.org/OAI/2.0/h ttp_header/
37 http://purl.lanl.gov/STB-RL/schemas/2004-08/HTTP-HE ADER.xsd">
38 <http:Content-Length>19339</http:Content-Length>
39 <http:Server>Apache/2.2.4 (Ubuntu) PHP/5.2.3-1ubuntu6 .3</http:Server>
40 <http:Content-Type>image/jpeg</http:Content-Type>
41 <http:Last-Modified>Mon, 28 Feb 2000 17:00:00 GMT</http: Last-Modified>

161

42 <http:Date>Thu, 15 May 2008 15:32:50 GMT</http:Date>
43 <http:Via>1.1 SRVWINISA003</http:Via><http:User-Agen t>Mozilla/4.0
44 (compatible; MSIE 5.5; Windows 98)</http:User-Agent>
45 <http:Host>www.foo.edu:8080</http:Host>
46 <http:Te>deflate,gzip;q=0.3</http:Te>
47 <http:X-Forwarded-For>70.161.101.174</http:X-Forwar ded-For>
48 <http:Accept>image/gif, image/x-xbitmap,
49 image/jpeg, image/pjpeg, application/vnd.ms-excel,
50 application/msword, application/vnd.ms-powerpoint,
51 * / * </http:Accept>
52 <http:Connection>Keep-Alive</http:Connection></http :header>
53 </didl:Statement>
54 </didl:Descriptor>
55 <oai_crate:crateplugin
56 xmlns:oai_crate='http://modoai.org/OAI/2.0/oai_crat e/'
57 xmlns:crateplugin="http://modoai.org/OAI/2.0/cratep lugin "
58 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e "
59 xsi:schemaLocation="http://modoai.org/OAI/2.0/oai_c rate/crate.xsi" >
60 <crateplugin>
61 <crateplugin:name>file</crateplugin:name>
62 <crateplugin:version>
63 <![CDATA[file-4.21 magic file from /etc/magic:/usr/shar e/file/magic
64]]>
65 </crateplugin:version>
66 <crateplugin:content>
67 <![CDATA[
68 /var/www/modoaitest/crate.jpeg:
69 JPEG image data, JFIF standard 1.01
70]]>
71 </crateplugin:content>
72 </crateplugin>
73 <crateplugin>
74 <crateplugin:name>sha1sum</crateplugin:name>
75 <crateplugin:version>
76 <![CDATA[sha1sum (GNU coreutils) 5.97
77 Copyright (C) 2006 Free Software Foundation, Inc.
78 This is free software. You may redistribute copies of it unde r the
79 terms of the GNU General Public License
80 <http://www.gnu.org/licenses/gpl.html>.
81 There is NO WARRANTY, to the extent permitted by law.
82 Written by Ulrich Drepper, Scott Miller, and David Madore.
83]]>
84 </crateplugin:version>
85 <crateplugin:content>
86 <![CDATA[7b15663fbfb3bc174c5883d2b57facbe91465bcb
87 /var/www/modoaitest/crate.jpeg
88]]>
89 </crateplugin:content>
90 </crateplugin>
91 <crateplugin>
92 <crateplugin:name>sha384sum</crateplugin:name>
93 <crateplugin:version>
94 <![CDATA[sha384sum (GNU coreutils) 5.97
95 Copyright (C) 2006 Free Software Foundation, Inc.

162

96 This is free software. You may redistribute copies of it unde r the
97 terms of the GNU General Public License
98 <http://www.gnu.org/licenses/gpl.html>.
99 There is NO WARRANTY, to the extent permitted by law.

100 Written by Ulrich Drepper, Scott Miller, and David Madore.
101]]>
102 </crateplugin:version>
103 <crateplugin:content>
104 <![CDATA[709f27aa6832e044fb7edaab2abd0fec00cb478ddd eb68674
105 4369c6bbd1bbb1aa2052ecdf58a73b1945dd69150583bb6
106 /var/www/modoaitest/crate.jpeg
107]]>
108 </crateplugin:content>
109 </crateplugin>
110 </oai_crate:crateplugin>
111 <didl:Component>
112 <didl:Resource mimeType="image/jpeg"
113 encoding="base64">/9j/4AAQSkZJRgBDAAE.....IWzr9e3+1 P/2Q==
114 </didl:Resource>
115 <didl:Resource mimeType="image/jpeg"
116 ref="http://www.foo.edu/modoaitest/crate.jpeg"/>
117 </didl:Component>
118 </didl:Item>
119 </didl:DIDL>
120 </metadata>
121 </record>
122 </GetRecord>
123 </OAI-PMH>

163

3 OAI-PMH LIST IDENTIFIERS RESPONSE

The presence of CRATE plugins inMODOAI does not affect the response to an OAI-PMH List Iden-

tifiers request. This response essentially rewrites the contents of the sitemapfile in OAI-PMH XML

form rather than in the sitemap protocol format. Cf. Appendix E on page 183for more details on

sitemap files.

REQUEST:

http://www.foo.edu:8080/modoai?verb=ListIdentifiers

RESPONSE:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/ "
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
4 xsi:schemaLocation="http://www.openarchives.org/OAI /2.0/
5 http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
6 <responseDate>2008-05-15T15:31:10Z</responseDate>
7 <request verb="ListIdentifiers" metadataPrefix="oai_c rate">
8 http://www.foo.edu:8080/modoai/</request>
9 <ListIdentifiers>

10 <header>
11 <identifier>http://www.foo.edu:8080/modoaitest/NetB eansAntTasks.zip
12 </identifier>
13 <datestamp>2007-09-19T08:06:56Z</datestamp>
14 <setSpec>mime:application:zip</setSpec>
15 </header>
16 <header>
17 <identifier>http://www.foo.edu:8080/modoaitest/READ ME.txt</identifier>
18 <datestamp>2008-04-26T16:37:57Z</datestamp>
19 <setSpec>mime:text:plain</setSpec>
20 </header>
21 <header>
22 <identifier>http://www.foo.edu:8080/modoaitest/crat e.jpeg</identifier>
23 <datestamp>2000-02-28T17:00:00Z</datestamp>
24 <setSpec>mime:image:jpeg</setSpec>
25 </header>
26 <header>
27 <identifier>http://www.foo.edu:8080/modoaitest/diag .jpg</identifier>
28 <datestamp>2002-10-22T16:00:00Z</datestamp>
29 <setSpec>mime:image:jpeg</setSpec>
30 </header>
31 <header>
32 <identifier>http://www.foo.edu:8080/modoaitest/file .sxw</identifier>
33 <datestamp>2005-12-31T17:00:00Z</datestamp>
34 <setSpec>mime:application:vnd.sun.xml.writer</setSp ec>
35 </header>
36 <resumptionToken>5 * oai_crate * 0* 0* 0</resumptionToken></ListIdentifiers>
37 </OAI-PMH>

164

APPENDIX C

EXAMPLES OF METADATA UTILITY OUTPUT

1 COMPARATIVE METADATA OUTPUT OF A SMALL JPEG FILE

In the following sections, a small JPEG file is passed to utilities that were used aspart of the

CRATE evaluation experiments. The image is shown in Figure 61 on the next page. The utilities

used are Pronom-DROID, Jhove, Exif Tool, and the Unix-based utility, “File Magic”. For additional

comparison, we present the metadata that an HTTP Response produces (HTTP Headers), and the

information available via the graphical KDE Desktop.

1.1 HTTP-Headers

Only a very simple set of headers is returned when requesting this file fromthe web server:

The HTTP Request:

HEAD /foo2.jpg HTTP/1.1
Host: localhost

The HTTP Response Headers:

HTTP/1.1 200 OK
Date: Wed, 14 May 2008 20:47:51 GMT
Server: Apache/2.2.8 (Ubuntu)
Last-Modified: Wed, 14 May 2008 20:35:46 GMT
ETag: "22e10d-6aac-44d36b9b40c80"
Accept-Ranges: bytes
Content-Length: 27308
Content-Type: image/jpeg

1.2 The Linux file Utility

The Unix/Linux File Magic utilities are closely associated with MIME typing as usedby Apache

and other web servers. As such, the bare minimum information is obtained from the file, as this

example shows.

file-4.21

magic file from /etc/magic:/usr/share/file/magic

images/foo2.jpg: JPEG image data, JFIF standard 1.01 file- 4.21

165

FIG. 61: .
“Two foos having lunch” (foo2.jpg). Appendix C–1 shows the metadata provided from the HTTP re-
sponse, the Linux file utility, Pronom-DROID, Exif Tool, and Jhove, all of which are command-line
utilities; and by the KDE Desktop file inspector which provides a GUI-based view of file metadata.

1.3 Pronom-DROID

The Pronom-DROID utility provides somewhat more information than we have gleaned so far.

<?xml version="1.0" encoding="UTF-8"?>

<FileCollection

xmlns="http://www.nationalarchives.gov.uk/pronom/Fi leCollection">

<DROIDVersion>V1.1</DROIDVersion>

<SignatureFileVersion>12</SignatureFileVersion>

<DateCreated>2007-09-06T23:11:12</DateCreated>

<IdentificationFile IdentQuality="Positive" >

<FilePath>images/foo2.jpg</FilePath>

<FileFormatHit>

<Status>Positive (Specific Format)</Status>

<Name>JPEG File Interchange Format</Name>

<Version>1.01</Version>

<PUID>fmt/43</PUID>

</FileFormatHit>

</IdentificationFile>

</FileCollection>

166

1.4 Exif Tool

Generally, Exif Tool was written to analyze digital camera photographs. While our sample Figure 61

on the preceding page is not a product of a digital camera, it is in JPEG format and so Exif provides

some metadata, though much less than would be seen if it were a true digital camera image.

ExifTool Version Number : 6.95

File Name : foo2.jpg

Directory : /home/jsmit/images

File Size : 27 kB

File Modification Date/Time : 2007:08:31 13:02:25

File Type : JPEG

MIME Type : image/jpeg

JFIF Version : 1.1

Resolution Unit : inches

X Resolution : 150

Y Resolution : 150

Image Width : 409

Image Height : 278

Encoding Process : Baseline DCT, Huffman coding

Bits Per Sample : 8

Color Components : 3

Y Cb Cr Sub Sampling : YCbCr4:2:0 (2 2)

Image Size : 409x278

167

1.5 Jhove with the JPEG-hul

Jhove offers a variety of filters which target specific file types, such asthe eponymous JPEG-hul.

Here is what Jhove reports for foo2.jpg:

Jhove (Rel. 1.1, 2006-06-05)
Date: 2008-05-14 13:30:00 EDT
RepresentationInformation: ../foo2.jpg
ReportingModule: JPEG-hul, Rel. 1.2 (2005-08-22)
LastModified: 2008-05-14 10:51:25 EDT
Size: 27308
Format: JPEG
Version: 1.01
Status: Well-Formed and valid
SignatureMatches:
JPEG-hul
MIMEtype: image/jpeg
Profile: JFIF
JPEGMetadata:
CompressionType: Huffman coding, Baseline DCT
Images:
Number: 1
Image:
NisoImageMetadata:
MIMEType: image/jpeg
ByteOrder: big-endian
CompressionScheme: JPEG
ColorSpace: YCbCr
SamplingFrequencyUnit: inch
XSamplingFrequency: 150
YSamplingFrequency: 150
ImageWidth: 408
ImageLength: 278
BitsPerSample: 8, 8, 8
SamplesPerPixel: 3
Scans: 1
QuantizationTables:
QuantizationTable:
Precision: 8-bit
DestinationIdentifier: 0
QuantizationTable:
Precision: 8-bit
DestinationIdentifier: 1
ApplicationSegments: APP0

168

FIG. 62: .
The sample image file information seen from the KDE Desktop environment. The mouse cursor is
placed on the file icon, and the information window appears beside it.

1.6 KDE Desktop File Inspector

By comparison, the KDE file inspector reports a bit more information about thefile. This infor-

mation is provided simply by moving the mouse pointer over the file icon or filename, as shown in

Figure 62.

Name: foo2.jpg
Type: JPEG Image
Size: 26.7 KB (27,308 B)
Modified: 2007-09-02 15:25
Owner: jsmit - jsmit
Permissions: -rwxr--r--
Dimensions: 108 x 278 pixels
Color Mode: Color
Flash Used: No
JPEG Process: Baseline

169

FIG. 63: A real digital photograph, taken with a Panasonic Lumix camera. Today’s digital cameras
often store a considerable amount of metadata with each image, but special tools are needed to
access it. (L-R: Dr. Michael Overstreet, the author, Dr. Michael Nelson)

2 OTHER EXAMPLES OF METADATA UTILITY OUTPUT

2.1 Exif Tool on a Digital Photograph

Exif Tool was designed specifically for digital photographs. Its output ismuch more detailed when

applied to such a file rather than to the non-photographic image of Figure 61 on page 165 as shown in

Appendix C on page 164. The following analysis is produced by Exif Toolapplied to the photograph

shown in Figure 63.

EXIF Tool Output

bestRA5.JPG:
Intel format

IFD 0 (Image) at offset 8:
Make: (0x010F) ASCII=Panasonic @ 146
Model: (0x0110) ASCII=DMC-TZ3 @ 156
Orientation: (0x0112) Short=1 @ 42
XResolution: (0x011A) Ratio=72 @ 164
YResolution: (0x011B) Ratio=72 @ 172
ResolutionUnit: (0x0128) Short=Pixels/Inch @ 78
Software: (0x0131) ASCII=Ver.1.0 @ 180
DateTime: (0x0132) ASCII=2008:05:03 11:56:44 @ 190
YCbCrPositioning: (0x0213) Short=2 @ 114
ExifOffset: (0x8769) Long=418 @ 126
Tag 0xC4A5: (0xC4A5) Undefined=[80, 114, 105, 110, 116,
73, 77, 0, 48, 50, 53, 48, 0, 0, 14, 0, 1, 0, 22, 0, 22,
0, 2, 0, 0, 0, 0, 0, 3, 0, 100, 0, 0, 0, 7, 0, 0, 0, 0,
0, 8, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0,
11, 0, 172, 0, 0, 0, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0,
0, 14, 0, 196, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 1, 1, 0, 0,
0, 16, 1, 128, 0, 0, 0, 9, 17, 0, 0, 16, 39, 0, 0, 11, 15,

170

0, 0, 16, 39, 0, 0, 151, 5, 0, 0, 16, 39, 0, 0, 176, 8, 0,
0, 16, 39, 0, 0, 1, 28, 0, 0, 16, 39, 0, 0, 94, 2, 0, 0,
16, 39, 0, 0, 139, 0, 0, 0, 16, 39, 0, 0, 203, 3, 0, 0, 16,
39, 0, 0, 229, 27, 0, 0, 16, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0] @ 210

EXIF SubIFD at offset 418:
ExposureTime: (0x829A) Ratio=10/2500 @ 832
FNumber: (0x829D) Ratio=33/10 @ 840
ExposureProgram: (0x8822) Short=Program Normal @ 452
ISOSpeedRatings: (0x8827) Short=100 @ 464
ExifVersion: (0x9000) Undefined=[48, 50, 50, 49] @ 476
DateTimeOriginal: (0x9003) ASCII=2008:05:03 11:56:44 @ 8 48
DateTimeDigitized: (0x9004) ASCII=2008:05:03 11:56:44 @ 868
ComponentsConfiguration: (0x9101) Undefined=YCbCr @ 512
CompressedBitsPerPixel: (0x9102) Ratio=4 @ 888
ExposureBiasValue: (0x9204) Signed Ratio=0/100 @ 896
MaxApertureValue: (0x9205) Ratio=344/100 @ 904
MeteringMode: (0x9207) Short=5 @ 560
LightSource: (0x9208) Short=Unknown @ 572
Flash: (0x9209) Short=Auto Off @ 584
FocalLength: (0x920A) Ratio=46/10 @ 912
MakerNote: (0x927C) Undefined=[] @ 920
FlashPixVersion: (0xA000) Undefined=[48, 49, 48, 48] @ 620
ColorSpace: (0xA001) Short=1 @ 632
ExifImageWidth: (0xA002) Long=3328 @ 644
ExifImageLength: (0xA003) Long=1872 @ 656
InteroperabilityOffset: (0xA005) Long=7702 @ 668
SensingMethod: (0xA217) Short=2 @ 680
FileSource: (0xA300) Undefined=Digital Camera @ 692
SceneType: (0xA301) Undefined=Directly Photographed @ 70 4
Tag 0xA401: (0xA401) Short=0 @ 716
Tag 0xA402: (0xA402) Short=0 @ 728
Tag 0xA403: (0xA403) Short=0 @ 740
Tag 0xA404: (0xA404) Ratio=0/10 @ 7694
Tag 0xA405: (0xA405) Short=28 @ 764
Tag 0xA406: (0xA406) Short=0 @ 776
Tag 0xA407: (0xA407) Short=0 @ 788
Tag 0xA408: (0xA408) Short=0 @ 800
Tag 0xA409: (0xA409) Short=0 @ 812
Tag 0xA40A: (0xA40A) Short=0 @ 824

EXIF Interoperability SubSubIFD at offset 7702:
InteroperabilityIndex: (0x0001) ASCII=R98 @ 7712
InteroperabilityVersion: (0x0002) Undefined=[48, 49, 48 , 48] @ 7724

EXIF MakerNote SubSubIFD at offset 7702:
IFD 1 (Thumbnail) at offset 7732:

Compression: (0x0103) Short=JPEG Compressed @ 7742
Orientation: (0x0112) Short=1 @ 7754
XResolution: (0x011A) Ratio=72 @ 7834
YResolution: (0x011B) Ratio=72 @ 7842
ResolutionUnit: (0x0128) Short=Pixels/Inch @ 7790
JPEGInterchangeFormat: (0x0201) Long=8084 @ 7802
JPEGInterchangeFormatLength: (0x0202) Long=8830 @ 7814
YCbCrPositioning: (0x0213) Short=2 @ 7826

171

CRATE Performance Test Website

Quotation from Ulysses by James Joyce

He walked back along Dorset street, reading gravely. Agendath Netaim:

planters' company. To purchase waste sandy tracts from Turkish government

and plant with eucalyptus trees. Excellent for shade, fuel and

construction. Orangegroves and immense melonfields north of Jaffa. You

pay eighty marks and they plant a dunam of land for you with olives,

oranges, almonds or citrons. Olives cheaper: oranges need artificial

irrigation. Every year you get a sending of the crop. Your name entered

for life as owner in the book of the union. Can pay ten down and the

balance in yearly instalments. Bleibtreustrasse 34, Berlin, W. 15.

Nothing doing. Still an idea behind it.

He looked at the cattle, blurred in silver heat. Silverpowdered

olivetrees. Quiet long days: pruning, ripening. Olives are packed in

jars, eh? I have a few left from Andrews. Molly spitting them out. Knows

the taste of them now. Oranges in tissue paper packed in crates. Citrons

too. Wonder is poor Citron still in Saint Kevin's parade. And Mastiansky

with the old cither. Pleasant evenings we had then. Molly in Citron's

basketchair. Nice to hold, cool waxen fruit, hold in the hand, lift it to

the nostrils and smell the perfume. Like that, heavy, sweet, wild

perfume. Always the same, year after year. They fetched high prices too,

Moisel told me. Arbutus place: Pleasants street: pleasant old times. Must

be without a flaw, he said. Coming all that way: Spain, Gibraltar,

Mediterranean, the Levant. Crates lined up on the quayside at Jaffa, chap

ticking them off in a book, navvies handling them barefoot in soiled

dungarees. There's whatdoyoucallhim out of. How do you? Doesn't see. Chap

you know just to salute bit of a bore. His back is like that Norwegian

captain's. Wonder if I'll meet him today. Watering cart. To provoke the

rain. On earth as it is in heaven.

Old Dominion University CS Dept

Experimental Website Resource File

1

Photograph of James Joyce 1882-1941

Joan A. Smith 2008

Experimental Website Resource File

2

FIG. 64: Sample PDF analyzed by Jhove

2.2 Jhove With the PDF-Hul

At the time of this writing, there are few non-commercial utilities available for inline analysis of

PDF files. One of these is the PDF-Hul for use with Jhove. Figure 64 shows the simple, one-page

PDF for which the Jhove analysis is displayed below.

Jhove Output (using PDF-hul)

Jhove (Rel. 1.1, 2006-06-05)
Date: 2008-05-14 10:43:18 EDT
RepresentationInformation: /testWeb/group8/pdf93.pdf
ReportingModule: PDF-hul, Rel. 1.5 (2006-03-31)
LastModified: 2008-01-24 13:17:23 EST
Size: 233046
Format: PDF
Version: 1.3
Status: Well-Formed, but not valid
SignatureMatches:
PDF-hul
ErrorMessage: Improperly formed date
Offset: 200
MIMEtype: application/pdf
PDFMetadata:
Objects: 37
FreeObjects: 1
IncrementalUpdates: 1
DocumentCatalog:
PageLayout: SinglePage

172

PageMode: UseNone
Outlines:
Item:
Title: Experimental Website Resource File
Destination: 1
Info:
Title: Experimental Website Resource File
Producer: htmldoc 1.8.27
Copyright 1997-2006 Easy Software Products, All Rights Res erved.
ID: 0x9082b9f3aa38c58364dd8e39fe155de9,
0x9082b9f3aa38c58364dd8e39fe155de9
Filters:
FilterPipeline: FlateDecode
Images:
Image:
NisoImageMetadata:
MIMEType: application/pdf
CompressionScheme: Deflate
ColorSpace: palette color
ImageWidth: 60
ImageLength: 72
BitsPerSample: 8
Image:
NisoImageMetadata:
MIMEType: application/pdf
CompressionScheme: Deflate
ColorSpace: palette color
ImageWidth: 496
ImageLength: 192
BitsPerSample: 8
Image:
NisoImageMetadata:
MIMEType: application/pdf
CompressionScheme: Deflate
ColorSpace: palette color
ImageWidth: 88
ImageLength: 99
BitsPerSample: 2
Fonts:
Type1:
Font:
BaseFont: Times-Bold
FirstChar: 0
LastChar: 255
FontDescriptor:
FontName: Times-Bold
Flags: Serif, Nonsymbolic
FontBBox: -168, -341, 1000, 960
FontFile: true
EncodingDictionary:
Differences: true
Font:
BaseFont: Courier
FirstChar: 0

173

LastChar: 255
FontDescriptor:
FontName: Courier
Flags: FixedPitch, Nonsymbolic
FontBBox: -12, -237, 650, 811
FontFile: true
EncodingDictionary:
Differences: true
Font:
BaseFont: Times-Roman
FirstChar: 0
LastChar: 255
FontDescriptor:
FontName: Times-Roman
Flags: Serif, Nonsymbolic
FontBBox: -168, -281, 1000, 924
FontFile: true
EncodingDictionary:
Differences: true
Font:
BaseFont: Helvetica
FirstChar: 0
LastChar: 255
FontDescriptor:
FontName: Helvetica
Flags: Nonsymbolic
FontBBox: -174, -285, 1001, 953
FontFile: true
EncodingDictionary:
Differences: true
Pages:
Page:
Label: 1
Page:
Label: 2

174

2.3 Metadata Extractor Utility

Another open source utility which will inspect PDF files is Metadata Extractor Utility from The

National Library of New Zealand. When used to inspect the same PDF shown in Figure 64 on

page 171, it produces the following output.

Metadata Extractor Output

<Object><Name>metex</Name><ID>3333</ID>
<ReferenceNumber></ReferenceNumber>
<GroupIdentifier></GroupIdentifier>
<PersistentIdentifier></PersistentIdentifier>
<MasterCreationDate locale="EDT">
<Date format="yyyyMMdd">20080514</Date>
<Time format="HHmmssSSS">104822321</Time>
</MasterCreationDate>
<ObjectComposition>simple</ObjectComposition>
<StructuralType>
<Name></Name> <Extension></Extension>
</StructuralType>
<HardwareEnvironment>i386</HardwareEnvironment>
<SoftwareEnvironment>OS: Linux 2.6.9-67.0.1.ELsmp,
JVM:Sun Microsystems Inc. 1.5.0_07</SoftwareEnvironmen t>
<InstallationRequirements></InstallationRequirement s>
<AccessInhibitors></AccessInhibitors>
<AccessFacilitators></AccessFacilitators>
<Quirks></Quirks>
<MetadataRecordCreator></MetadataRecordCreator>
<MetadataCreationDate locale="EDT">
<Date format="yyyyMMdd">20080514</Date>
<Time format="HHmmssSSS">104822350</Time>
</MetadataCreationDate>
<Comments></Comments>
<Files>
<File xmlns:nz_govt_natlib_xsl_XSLTFunctions=
"nz.govt.natlib.xsl.XSLTFunctions"><FileIdentifier/ >
<Path>/var/www/testWeb/group8/pdf93.pdf</Path>
<Filename>
<Name>pdf93.pdf</Name> <Extension>pdf</Extension>
</Filename>
<Size>233046</Size>
<FileDateTime>
<Date format="yyyyMMdd">20080124</Date>
<Time format="HHmmssSSS">131723000</Time>
</FileDateTime>
<Mimetype>application/pdf</Mimetype>
<FileFormat>
<Format>Abobe PDF</Format> <Version>1.3</Version>
</FileFormat>
<Text>
<CharacterSet>ISO-8859-1</CharacterSet>
<MarkupLanguage>unknown</MarkupLanguage>
</Text></File></Files>
</Object>

175

FIG. 65: A view of the HTML file passed to the Dublin Core UtilityjasDC.plfor analysis

2.4 Dublin Core Utilities

Dublin Core is a common metadata scheme used in Digital Libraries. However, deriving such

metadata is not as trivial as it might appear to be. A small utility in Perl was written as part of the

CRATE project because no command-line open source tool was available.For this example, one of

the test HTML pages is used. An image of the page is shown in Figure 65.

jasDC.pl Output

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en">
<head>
<TITLE>Crate Utility Performance Test
SUBDIRECTORY INDEX for /home/jsmit/testWeb/group12/dir 2
</TITLE>
<META http-equiv="Content-Type" content="text/html"; c harset="UTF-8">
<META content="links to site subdirectories" name="DC.so urce" >
<META content=" Crate Utility Performance Test
SUBDIRECTORY INDEX for /home/jsmit/testWeb/group12/dir 2 INDEX"
name="DC.title" >
<META content=" Joan A. Smith" name="DC.creator" >
<META content="2008-1-24" name="DC.date" >
<META content="Links to Subdirectory indices"
name="DC.identifier" >
<META content="Copyright ODU" name="DC.rights" >
<META content="Page produced as part of performance test"
name="DC.description" >

176

2.5 Open Text Summarizer

The Open Text Summarizer utility attempts to distill a brief summary of a text-based document.

It appears to "weight" words by frequency and as a result will misinterpret tags in, for example,

HTML documents as being "important" words. Using the "-a" (about) option on even a lengthy file,

it returns a short, descriptive phrase, for example:

Article talks about “web,resources,metadata,files,typical”

is the full literal text output from processing the article cited in [130].

In contrast, using the default option which summarizes the text, a lengthier overview of the content

is produced. The following summary is taken from a text version of a D-Lib Magazine article [130],

stripped of its HTML tags. The utility selects what it considers to be the “important” phrases or

sentences from the document and outputs them as a single, unbroken line of text. Since punctuation

may be left off, particularly if the phrase is a heading rather than a sentence, the result is not nec-

essarily grammatically nor syntactically correct and may read awkwardly. However, the purpose is

distillation for preservation, not for publication per se.

The Derived Summary

We propose a simple model for such everyday web sites which ta kes
advantage of the web server itself to help prepare the site's
resources for preservation. The web server responds to the
archiving repository crawler by sending both the resource a nd the
just-in-time generated metadata as a straight-forward
XML-formatted response. Even though digital libraries are often
accessed as web sites, anyone involved with digital librari es can
easily point out the many differences between everyday web s ites
and a true Digital Library (DL). The Web is an unorganized
amalgamation of digital pages with little metadata and
unpredictable additions, deletions, and modifications â ĂŞ a
crawlapalooza for the web robot. For an archiving repositor y
seeking to preserve web sites, the site preparation process is
challenging thanks to the wide variety of resource types and
content that exist on web sites. Typically, an archivist wil l
crawl the target web site then process each resource with var ious
metadata utilities to extract technical information. From the
webmaster's point of view, the ideal solution would be a tool
installed on the web server which manages itself, and which
automatically provides the "extra information" (i.e., met adata)
that the archiving site needs to prepare the website for
preservation, and which does not impact the normal operatio n of
the web server. Motivation We begin by observing that digita l
preservation: remains in the niche of librarians and
archivists is not sustainable as an ex post, ad hoc process it
should be congruent with practices of the general web commun ity
it is applicable to content whose value is not always known in
advance As participants of the Archive Ingest and Handling T est

177

(AIHT), 1 one of the lessons we learned was that preserving th e
GMU 911 web site was, in a sense, made more difficult because t he
website was not harvested directly from the web, but rather
processed by site administrators and given directly to us. T he
purpose of the research reported in this article is to build a
framework that allows dual access to web resources: the exis ting
HTTP access mechanisms for conventional web agents, and a
"preservation-ready" access channel that integrates the b est
tools of the digital preservation community into the web ser ver.
A typical HTTP response contains just enough information to
enable the smooth transfer of content from web server to web
client or crawler. In short, web server MIME typing has serio us
limitations when it comes to providing adequate preservati on
information about the data format of web resources. Clearly ,
getting the responding server to preprocess the resource an d
include the results together with the original resource in o ne
complex-object response would help both the particular arc hivist
and the general goal of web preservation. Metadata Utilitie s How
can metadata be derived for web resources? Name Description Jhove
Analysis & characterization by type (img, audio, text) Kea K ey
phrase extraction OTS Open Text Summarizer ExifTool Image/ video
metadata extractor PDFlib-pCOS Extract PDF metadata (comm ercial
tool) MP3-TAG Extract audio file tags Essence Customized
information extraction GDFR Extended MIME file typing MD5 M essage
Digest File Magic Type identification using special ID bits of
the file DROID File signature analysis (internal and extern al)
Table 2: Some utilities for producing resource metadata. If we
combine this output with a Base64-encoding of the resource, we
would have a neatly packaged, pre-processed web resource re ady
for archive ingestion and preservation preparation. The co ncept
calls for the disseminating web server to preprocess the
resources it serves up by using metadata-generation utilit ies,
such as those described here, and to serialize this informat ion
together with the Base64-encoded resource in a simple
XML-formatted complex object response. They are specified in the
web server's configuration file, using a simple enabling
directive: LoadModule <module-name> <path/to/module.so > Common
examples for the Apache web server are mod_perl and mod_pyth on
(Perl/Python-CGI optimizers), mod_ssl (to support secure socket
layer connections), and mod_jserv (Java servlet engine). F igure
2: (A) Normal web page request and (B) OAI-PMH request For the
example given in Figure 2-B, the \textsc{modoai} response i s
returned as human-readable ASCII in the DIDL XML format (cal led a
"DID"), with the resource encoded in Base64 and with the HTTP
response headers included as basic metadata (see Table 3, be low).
The utilities enabled on this server are: File - Looks at the
"magic bytes" to determine MIME type MD5 - Provides the MD5
hash value of the file Jhove - File analyzed using the HUL
appropriate to specific file type DROID - Pronom's DROID
utility which evaluates MIME type ExifTool - Phil Harvey's
Perl script which analyzes images Best-effort Metadata The
approach described here is a best-effort approach to metada ta.

178

APPENDIX D

APACHE CONFIGURATION DIRECTIVES FOR MODOAI

1 THE STRUCTURE OF THE MODOAI CONFIGURATION FILE

Apache uses a series of configuration commands usually located either in a single file (“httpd.conf”)

or in a series of files (“apache2.conf”, “ports.conf”, “modoai.conf”,etc.). Each line in a con-

figuration file is equivalent to a “command” or “directive” which controls Apache’s responses to

HTTP events. Most modules – mod_rewrite, mod_perl, and mod_cgi for example – have numerous

switches or configuration options that can be individually declared or suppressed. This allows the

webmaster to completely customize the installation and behavior of Apache for any site.

An example configuration forMODOAI is shown in Appendix D– 2 on page 181. The individual

lines have been numbered for ease of reference. Each number in the left margin indicates the start

of a new, single logical line (in the actual Apache conf file, there are no linenumbers). In addition,

breaks within a line (i.e., an EOL character) are not allowed, so in the configuration file the string

must occur on a single text line.

A whitespacecharacter acts as the delimiter within a single line. Apache reads this section into a

structure accessible by Apache and the module. Lines 1 – 3 define the scope and handling of the

directives for theMODOAI module; Table 29 explains each of these lines.

The remaining configuraton lines create and populate variables used by theMODOAI module. For

example, lines 4 –7 define the variables “modoai_sitemap” (location and name ofthe sitemap

file), “modoai_admin” (user account associated withMODOAI administration), and “modoai_email”

which can be called by name from withinMODOAI. These variables are simple and unique, i.e., only

one of each exists in the module.

For variables needing multiple definitions, the Apache API provides a 5-part structure consisting

of the variable name and up to 4 attributes. This structure allows the module to have any number

of items with the same variable name. Using this signature, more than one metadata utilitycan

be named. Thus, lines 11 – 24 create a single variable calledmodoai_pluginwith 11 instances of

TABLE 29: Directives in modoai.conf

Directive Explanation
1 Alias /modoai “/var/www/” MODOAI points to webroot
2 <Location /modoai> if home URL ends with /modoai, then. . .
3 SetHandler modoai-handler use theMODOAI module

179

the variable defined. Each entry has 4 elements, delimited by awhitespacecharacter. Quotations

surround any element that requires whitespace within it, such as command-line arguments for a

utility. Where the utility itself also expects in-line quotations, these are embedded within outer

quotes of the element.

Eachmodoai_pluginfirst element is atag name. It can be whatever the webmaster wants to call

it – MODOAI does not refer to the tag name per se. Since the tag name will appear in CRATE

responses, the recommended tag name for each modoai_plugin variable is theshort name of the

metadata utility executable.

The modoai_plugin variable’s other three elements assigned are, in order of appearance: (2) the

execution command (3) the command to get utility version information and (4) the Mimetypes for

which the utility is invoked. As an example, lines 11 (the Word Count utility) and 21(the Exif

Tool utility) can be interpeted as shown in Table 30. Appendix D– 2 on page 181 contains the

actual configuration directives used for the CRATE utilities experiments discussed in Chapter VIII

on page 93.

TABLE 30: MODOAI plugin elements & attributes

modoai_plugin wc /usr/bin/wc %s /usr/bin/wc –v text/*
add a plugin name is executable command command to print use on any
to the list “wc” %s: filename version info text file
modoai_plugin exifTool /usr/bin/exiftool -a -u %s /usr/bin/exiftool –v image/*
add a plugin name is command; -a,-u are command to print use on any
to the list “exifTool” switches; %s: filename version info image file

Some utilities have a wide variety of switches which can be applied to particular combinations of

Mime types. In this case, it may be simpler to create a script to address each particular situation.

Jhove is an example of a utility which has so many options that a script could be auseful implemen-

tation method. The actual Jhove script used for the CRATE experiments is given in Appendix D– 3

on page 182. Alternatively, each Jhove call in the script could exist as aunique plugin variable in

the configuration file. Each method has its pros and cons in terms of maintenance simplicity, ease of

implementation and the administrative approach of the local webmaster. Overhead cost, of course,

will vary from system to system.

Finally, responses generated byMODOAI can be very large. The variables on lines 9 and 10 are

used by the server to help control response size - in bytes (max_response_size) and in absolute

number of records per response (max_response_items). They determine when aResumption Token

needs to be issued to the harvester. Setting the number very large as in the example configuration

file is equivalent to having no upper limit on the variable(s). In implementation, whichever limit

is reached first is the one that applies. If the size limit in bytes is reached before the item count

limit, that portion of the response completes. That is, no response contains an incomplete item.

180

Because the response is builtin situ, the final size of any record in the response is not known until

it has been processed by each of the subcomponents - plugin, XML writer, subrequest handler, etc.

- of MODOAI. Similarly, a single GetRecord request could produce a response that exceeds the

max_response_size parameter, but it would still be provided to the harvester in one response event,

that is, no Resumption Token would be needed nor issued.

181

2 CONTENTS OF THE MODOAI.CONF FILE

1 Alias /modoai "/var/www/"
2 <Location /modoai>
3 SetHandler modoai-handler
4 modoai_sitemap /var/www/sitemap.xml
5 modoai_admin jsmit
6 modoai_email admin@crate.gotdns.com
7 modoai_gateway_email mail@crate.gotdns.com
8 modoai_oai_active ON
9 modoai_max_response_size 9999999999

10 modoai_max_response_items 9999999999
11 modoai_plugin wc '/usr/bin/wc %s' '/usr/bin/wc --versi on' text/ *
12 modoai_plugin file '/usr/bin/file %s' '/usr/bin/file - -version' * / *
13 modoai_plugin md5sum '/usr/bin/md5sum %s'

'/usr/bin/md5sum --version' application/ *
14 modoai_plugin sha1sum '/usr/bin/sha1sum %s'

'/usr/bin/sha1sum --version' image/ *
15 modoai_plugin sha224sum '/usr/bin/sha224sum %s'

'/usr/bin/sha224sum --version' image/png
16 modoai_plugin sha384sum '/usr/bin/sha384sum %s'

'/usr/bin/sha384sum --version' image/jpeg
17 modoai_plugin sha256sum '/usr/bin/sha256sum %s'

'/usr/bin/sha256sum --version' application/pdf
18 modoai_plugin zipinfo '/usr/bin/zipinfo %s'

'/usr/bin/zipinfo --version' * /zip
19 modoai_plugin jhove "/opt/jhove/jhove -c /opt/jhove/c onf/jhove.conf

-m jpeg-hul -h xml %s" "/opt/jhove/jhove
-c /opt/jhove/conf/jhove.conf -h xml -v" image/jpeg

20 modoai_plugin pronom_droid "/opt/jdk1.5.0_07/bin/ja va -jar
/opt/droid/DROID.jar
-L%s -S/opt/droid/DROID_SignatureFile_V12.xml"
"/opt/jdk1.5.0_07/bin/java -jar /opt/droid/DROID.jar - V" * / *

21 modoai_plugin exifTool "/usr/bin/exiftool -a -u %s"
"/usr/bin/exiftool -ver" image/ *

22 modoai_plugin ots '/usr/local/bin/ots -a %s'
'/usr/local/bin/ots -v' text/ *

23 modoai_plugin metadata-extractor
"/home/jsmit/metadata-extractor/dist/extract.sh extr act

'NLNZ Data Dictionary' Default simple 'Blah' 3333 %s
2>/dev/null %s"

"/bin/echo metadata-extractor 3.4" image/jpeg
24 modoai_plugin dcdot '/opt/dublinCoreUtil/dcdot/jasD C.pl %s'

'/opt/dublinCoreUtil/dcdot/jasDC.pl --version' text/h tml
25 </Location>

182

3 EXAMPLE SHELL SCRIPT INVOKING JHOVE OPTIONS

#!/usr/bin/perl -w
$|=1; #piping-hot I/O

use strict;
use File::Copy;

if ($#ARGV !=0){
die "\nUsage: procJhove.pl path/to/file/filename \n\n";

}

my $fileName = $ARGV[0];
my $format = `file -b $fileName`; #-i (mime) produces inadeq uate typing
my $module = "BYTESTREAM"; # Module: BYTESTREAM 1.2 (defaul t)

#Jhove module processing types installed

#text processors:
$module = "WAVE-hul" if ($format=~m/wmv/i);# Module:WAVE -hul 1.2
$module = "ASCII-hul" if ($format=~m/ascii/i);# Module: A SCII-hul 1.2
$module = "HTML-hul" if ($format=~m/html/i);# Module: HTM L-hul 1.2
$module = "UTF8-hul" if ($format=~m/utf\-8/i);# Module: U TF8-hul 1.2
$module = "XML-hul" if ($format=~m/xml/i);# Module: XML-h ul 1.3
if (($format=~m/text/i)&&($format=~m/script/i)){

$module = "ASCII-hul"; #plain scripts usually ascii
}

#image processors:
$module = "AIFF-hul" if ($format=~m/aiff/i); # Module: AIF F-hul 1.3
$module = "GIF-hul" if ($format=~m/gif/i);# Module: GIF-h ul 1.2
$module = "JPEG-hul" if ($format=~m/jpeg/i);# Module: JPE G-hul 1.2
$module = "JPEG2000-hul" if (($format=~m/jpeg/i)&&($for mat=~m/2000/));
$module = "TIFF-hul" if ($format=~m/tiff/i);# Module: TIF F-hul 1.4

#application processors:
$module = "PDF-hul" if ($format=~m/pdf/i);# Module: PDF-h ul 1.5

#audio processors:
$module = "WAVE-hul" if ($format=~m/wav/i);# Module: WAVE -hul 1.2

#print "\nFile: \t$fileName\t";
#print "info: \t$format";
#print "Module: $module\n";

my $cmd = "/opt/jhove/jhove -c /opt/jhove/conf/jhove.con f -m ";
$cmd = $cmd." $module $fileName";
my $jhove = `$cmd` ;
print "$cmd\n";
exit;

183

APPENDIX E

SITEMAP FILES

1 USING SITEMAP TOOLS

There are a number of tools for webmasters to use which will help to build a sitemap file such

as [5, 47] which are installed and run locally. Since they are “privileged”applications, they can mine

databases and web server logs for more complete site coverage. Others run on remote servers. [4,

150] These accept a starting URL and proceed to follow all of the links found (Figure 66 on the

following page) in pages on the site. Most tools will also test each of the links,noting those which

are found (HTTP Response Code = 200) versus those that are broken (HTTP response Code =

404). Obvious duplicates are removed, and the list of links is converted intoan XML document in

accordance with the sitemaps protocol. [126] Thus, these links:

http://localhost/testWeb/group8/pdf120.pdf
http://localhost/testWeb/group8/pdf1.pdf
http://localhost/testWeb/group8/dir3/pg5.html

will become the following entries in a sitemap file:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitem ap/0.9">

<url>
<loc>http://localhost/testWeb/group8/pdf120.pdf</lo c>

</url>
<url>

<loc>http://localhost/testWeb/group8/pdf1.pdf</loc>
</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg5.html< /loc>
</url>

</urlset>

The sitemaps protocolrequiresthe XML and namespace declarations, as well as a<loc> (location)

tag (within<url> and</url> tags) for each URL. There are a few other tags that arerecommended,

however. Part of the information available to the crawler includes the timestamp on the file. This

information is added to the sitemap within “last modified” (<lastmod>) tags:

<url>
<loc>http://localhost/testWeb/group8/pdf120.pdf</lo c>
<lastmod>2007-11-21T14:35:21Z</lastmod>

</url>

184

FIG. 66: Links on a web page provide crawlers with a list of resources toask for. Usually only
internal links are followed.

Two other useful tags are thepriority andchange frequencytags. Priority can range from 0.0 to

1.0, and is used to by search engines to determine the order of pages in a query result set (it does

not impact how the site ranks compared to other sites). The protocol specifies a default URL a

priority of 0.5, which can be manually edited by the webmaster. Change frequency signals how

often crawlers can expect to find new information at that particular link. Anycombination of these

tags (provided the minimum set is present) can be specified on a per-link basis. Sitemap tools will

typically ask what frequency should be assigned to pages on the site, since no default is specified

by the protocol. There are specific values allowed, ranging from “always” to “never.” A common

value is “monthly.”

The last item that is required is UTF-8 encoding of the ampersand, quotes (single and double), and

the “<” and “>” symbols. Thus the URL:

http://localhost/testWeb/knitting&cat_01.png

will become:

<loc>http://localhost/testWeb/knitting&cat_01.p ng</loc>

in the sitemap file.

185

2 EXAMPLE SITEMAP FILE

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"

xsi:schemaLocation="http://www.sitemaps.org/schemas /sitemap/0.9"
url="http://www.sitemaps.org/schemas/sitemap/0.9/si temap.xsd"
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" >

<url>
<loc>http://localhost/index.html</loc>
<lastmod>2007-10-20T11:03:00Z</lastmod>
<priority>1.000</priority>
<changefreq>monthly</changefreq>

</url>
<url>

<loc>http://localhost/testWeb/group8/pdf120.pdf</lo c>
<lastmod>2007-11-21T14:35:21Z</lastmod>

</url>
<url>

<loc>http://localhost/testWeb/group8/pdf1.pdf</loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg5.html< /loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg4.html< /loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/index.htm l</loc>
<lastmod>2008-01-01T04:05:01Z</lastmod>
<priority>1.0000</priority>
<changefreq>monthly</changefreq>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/knitting_ 01.png</loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/softdrink _icon_01.gif</loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg9.html< /loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pdf94.pdf </loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>

186

<priority>0.7000</priority>
</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/alice05a. png</loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg8.html< /loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.5000</priority>

</url>
<url>

<loc>http://localhost/testWeb/group8/dir3/pg1.html< /loc>
<lastmod>2007-11-21T14:35:21Z</lastmod>
<priority>0.8000</priority>

</url>
</urlset>

187

VITA

Joan A. Smith

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION

Ph.D. Computer Science, Old Dominion University, 2008

M.A. Computer Education, Hampton University, 1988

B.A. Natural Science, University of the State of New York, 1986

PROFESSIONAL EXPERIENCE

2004–Present Research Assistant, Old Dominion University

2000–2004 Business Owner and Consultant

1998–2000 Northrop Grumman, Inc.

1989–1998 Inter-National Research Institute

1987–1989 Electronic Institute of Technology

PUBLICATIONS AND PRESENTATIONS

A complete list is available athttp://www.joanasmith.com/pubs.html

PROFESSIONAL & ACADEMIC SOCIETES

Association for Computing Machinery (ACM)

Institute of Electrical and Electronics Engineers (IEEE)

Alpha Gamma Sigma National Honor Society (AΓΣ)

Golden Key International Honor Society

PERMALINKS

Home Page:http://www.joanasmith.com/

Email: mail@joanasmith.com

Typeset using LATEX.

