
CS 620–Introduction to Data Science and Analytics, HW4, Spring 2022

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

D1 2 0 0 0 0 4 0 0 2 1 1 0 0 0 0 0

D2 0 0 0 0 1 1 0 0 7 0 2 0 0 0 0 6

D3 0 0 1 0 0 1 0 0 3 0 3 0 2 0 3 0

D4 0 3 1 0 0 0 0 5 0 0 0 3 0 0 0 0

D5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0

D6 0 0 0 0 1 0 0 0 3 0 0 2 0 0 0 0

D7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3

D8 0 0 1 0 0 0 0 3 0 0 0 2 0 1 0 0

D9 0 1 2 0 0 0 2 0 3 0 0 0 2 1 0 1

D10 0 0 0 0 1 1 0 0 0 1 0 5 0 0 0 0

Q1 1 0 1 0 0 0 0 0 2 1 0 0 0 0 0 1

Consider the above Document-Term Matrix for Documents D1-D10, Terms T1-T16, and Query Q1. You

can download it here. You have 2 options to solve the given problem (1). Pick only one of these options.

Option 1: Create a program using python and other associated libraries and display the results.

Option 2: Detailed calculations by hand.

1) (50 pts) Consider the given documents and the term-frequencies.

a. Calculate the tf.idf weights for each term. Note: Don’t forget to normalize your raw term-

frequencies (tf). Use base 2 for log scale (idft = log2(N/dft))

b. Transform the query into the vector space using the same document-frequency (df) values

in the above table and calculate the tf.idf weights for the query. (Note: DO NOT normalize

the terms of this query when considering the tf values)

c. Based on the document vectors calculated, rank each document for the given query using

cosine similarity.

2) (50 pts) Consider the transaction database in the table below. Show the candidate itemsets and the

frequent itemsets in each level-wise pass of the Apriori algorithm at minimum support count of 2.

What to turn in: Submit your LastName-hw4.zip (your LastName-hw4.py + Lastname-hw4.pdf) or

Lastname-hw4.pdf to Blackboard.

document-term-matrix.csv

