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Abstract. We present document domain randomization (DDR), a simple and
effective method for training data preparations for deep neural network (DNN)
models to extra non-textual content from real paper pages. This method simulates
document pages by randomizing document structural and semantic content. With
enough randomization of appearance in our page generator, the real page would
appear to the model as just another variant. We validate our method by first
generating three training data using our DDR and two test data from randomly
selected papers published in two domains: annual meetings of Association for
Computational Linguistics (ACL) and IEEE visualization (VIS). Our approach
achieves competitive results (90% mean average precision (mAP) on ACL and
99% mAP on VIS for figure extraction; 97% mAP on table extraction when the
DDRs were target-adjusted). Furthermore, we show how reducing the unique
number of training samples could affect the prediction accuracy. To the best of our
knowledge, we provide the first successful application of a deep neural network
that does not rely on human-curated training samples and that only exploits
graphically rendered papers for real-world paper page segmentation.

Keywords: Document domain randomization · Document layout · Deep Neural
network · Learning Representation.

1 Introduction

Fast, low-cost production of consistent and accurate training data enables us to use deep
neural networks (DNNs) for downstreaming document understanding [12,32,37,38].
Document pages can appear very complex and noisy, since they do not always follow
section rules and formats [10,25]. Even within the scholarly article genre, different
communities (e. g., computational linguistics vs. machine learning; computer science
vs. biology) can use different structural and semantic organization of sections and
subsections. This diversity can create discrepancies (or ‘reality gaps’) between training
and test data, and forces DNNs to use millions of training samples in order to successfully
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Fig. 1: Illustration of our document domain randomization (DDR) approach. A
deep neural network-(DNN-)based layout analysis using training pages of 100% ground-
truth bounding boxes generated solely on simulated pages: low-fidelity textual content
and images pasted via constrained layout randomization of figure/table/algorithm/equa-
tion size, paragraph and caption length, column width and height, two-column spacing,
font style and size, captioned or not, title height, and randomized texts. Nine classes
are used in the real document layout analysis with no additional training data: abstract,
algorithm, author, caption, equation, figure, table, body text, and title. Here the colored
texts illustrate the semantic information; all text in the training data is black.

carry out inference (e. g., [38]). Sophisticated algorithmic solutions have achieved
considerable success in generating training data from digitally created LATEX and XML
files from millions of published papers [25,38], but curating these results is often time-
consuming and not always accurate [31].

To overcome this challenge we propose document domain randomization (DDR)
(shown in Fig. 1), a combination of simulation-based training document generation
and domain randomization (DR) [35] for fast, accurate, and consistent document page
production. The key idea is that we abandon the time-consuming use of real paper pages
to learn the paper layout, and instead use randomized layout to minimize training and
test-data discrepancies. As with DR in robotics [18,29,36] and computer vision [14,26],
the randomized styles and semantics get the models to learn to focus on the essential
features of interest on document pages.

Though, in principle, the use of DDR lets us create as many training documents as
needed and paste any component part of document page to minimize the reality gap and
“cover” the real world, we focus on the specific two-column body-text data format that is
common in scholarly articles. This focus does not limit our work since DDR enables us
to produce data from any paper style. Limiting the style, however, allows us to focus
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Fig. 2: DDR Render-to-Real Workflow. Render-to-real is transferred only on simulated
pages to real-world document layout extraction in scholarly articles for ACL and VIS.

on the specific parametric space. Moreover, we also acquire ground truth for both the
textual and non-textual content simultaneously, in a single pass. By including semantic
information, we see DDR’s ability to localize token-level semantics as a stepping-stone
to general-purpose training data production, covering both semantics and structure. To
the best of our knowledge, DDR is the first successful transfer of a DNN trained only on
simulated papers to real-world document analysis, beyond digitally created formats.

We validated DDR and achieved competitive results for page layout segmentation in
both computational linguistics (ACL) and visualization (VIS). We show that document
component part randomization is key for producing training samples to then infer real-
world document structures. We are the first to randomize the domain with competitive
performance based only on document page layout extraction. We thus contribute

– DDR, an extension of previous domain randomization- and simulation-based meth-
ods to non-trivial tasks in the document structural analysis domain,

– a design space that influences the training data usefulness, and
– a systematic study of the random variables of DDR so as to evaluate their effect on

prediction accuracy of page layout.

2 Related Work

We review past work in two areas: the pioneering work in document structure analysis
and DR solutions in computer vision.

2.1 Document Parts and Layout Analyses

Documents in PDF format dominate scholarly publications. Recognizing the layout of
this unstructured digital form is crucial for downstreaming document understanding
tasks [6,12,16,25,32]. Pioneering work in training data production has accelerated DNN-
based document analysis and has achieved considerable real-world impact in digital
libraries, such as CiteSeerx [6], Microsoft Academic [32], Google Scholar [13], Semantic
Scholar [24], and IBM Science summarizer [10]. As a consequence, researchers have
generated high-fidelity pages for training data production. Almost all existing solutions
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attempt to produce realistic pages with the correct semantics and figures, typically
by annotating existing publications either manually or semi-automatically. Notably,
Clark et al. [11] present a crowd-sourced CS150 to annotate 150 papers in diverse
computer science areas; Katona [19] developed an special purpose annotation tool to
annotate 350 publications from three scientific fields to compare networks. Clark et
al. [11] further pioneered a markup language-(XML-)based extraction and contributed
CS-Large. GROBID [25] is perhaps the most widely used XML-based section extraction
system. PubLayNet [38] scraped millions of articles on PubMed and has become the
gold standard in the annual ICDAR competitions. Siegel et al. [30,31] designed a most
successful and least labor-intensive approach to align document syntax to automate
figure and table extractions of over four million pages. Similar LATEX-based approaches
have also been used to create DocBank, TableBank [21], and table extraction [3] through
analyzing LATEX structures and encoding. The rationale for these work is that the quality
of the labeled training data dictates the success of DNN models. One drawback of
these markup-language-based methods, however, is that we would still need a rendering
engineer to reproduce old scanned documents for downstreaming information retrieval,
which is why we used an approach that does not rely on marking existing papers. Also,
tools can fail when the documents are scanned PDF.

Other techniques, which inspire ours, manipulate pixels to synthesize document
pages. He et al. [17] assumed that text styles and fonts within a document were similar
or follow similar rules. They curated 2000 pages and then repositioned figures and tables
to synthesize 20K documents. Yang et al. [37] synthesized documents through an enco-
der-decoder network itself to utilize both appearance (to distinguish text from figures,
tables, and line segments) and semantics (e. g., paragraphs and captions). Compared to
Yang et al., our approach does not require another neural network for feature engineering.
In a sense, our method is akin to treating the ambiguity as a cascading step [27]. Ling
and Chen [23] also used a rendering solution and the only randomization they applied
was figure and table positioning for extracting those two categories. Our work broadens
this approach by randomizing many document structural parts to acquire both structural
and semantic labels. Moreover, even with unprecedented access to ground truth, it is not
obvious how to use such data effectively, or when training datasets become effective.

In essence, instead of segmenting original, high-fidelity document pages or creating
networks to decode real documents, we simulate the document appearance by positioning
textual and non-textual content onto a page, while diversifying structure and semantic
contents, thus forcing the network to learn important structure. Our approach can produce
millions of training samples overnight with both structure and semantics and then extract
the layout in one pass, with no human intervention for the training data production. Our
assumption is that, if models utilize textures and shape for their decision [15], these
models may well be able to distinguish between figures, tables, and text.

2.2 Bridging the Reality Gap in Domain Randomization

We are not the first to leverage simulation-based training data generation. Chatzimparm-
pas et al. [7] provided an excellent review of leveraging graphical methods to generate
simulated data for training data generation used in vision science. When using these
datasets, bridging the reality gap (i. e., minimizing the training and test differences) is
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often crucial to the success of the network models. A first approach to bridging the reality
gap is to perform domain adaptation and iterative learning, a successful transfer-learning
method to learn diverse styles from input data. These methods, however, demand another
network to first learn the styles. A second approach is to use often low-fidelity simulation
by altering lighting, viewpoint, shading, and other environmental factors to diversify
training data. This second approach has inspired our work and, like theirs, our work
shows that using such an approach in the document domain is successful.

Our DDR relies on high-quality domain-specific graphical content to be avail-
able because it is needed to compose pages. Besides the databases mentioned above,
VIS30K [8,9], a comprehensive collection of images including tables, figures, algo-
rithms, equations, texts of both scanned and more recent digital versions over 31 years
(1990–2020). This dataset contains not only charts and tables but also spatial data and
photos. It is also the only collection to the best of our knowledge that includes both
high-quality print and scanning degradations such as aliased, grayscale, low-quality
scans of document pages. In this work we use the VIS30K dataset as a reliable source
for DNN to distinguish figure/table/algorithm/equations from other texts.

3 Document Domain Randomization

Given a document, our goal with DDR is to train a DNN on rendered paper pages
using domain randomization. This randomization needs to provide us with enough
simulated variability to cover the test cases at training time, so that, at test time, our
model can be used on real-world data. We construct the simulated pages with ground-
truth semantic labels, textual and image content, and bounding boxes. Fig. 1 and 2
show our DDR execution pipeline, while Fig. 3 shows some sample results. Like other
simulation-based solutions, we view synthetic datasets and training data generation
from a computer graphics perspective, and use a two-step procedure of modeling and
rendering by randomizing the following input in the document space:

– We use Modeling to create the semantic textual and non-textual content.
• Algorithms, figures, tables, and equations. In the examples we use in this

paper, we rely on the VIS30K dataset [8,9] for this purpose.
• Textual content, such as authors, captions, section headings, title, body text,

and so on. We use randomized yet meaningful text [34] for this purpose.
– With Rendering we manage the visual look of the paper. For example, we help the

DNN improve its classification accuracy by adding noise such that, later-on, we
avoid classifying real scanner noise as useful information. We ensure to use:
• a diverse set of other-than-body-text components (figures, tables, algorithms,

and equations) randomly chosen from the input images;
• an abstract layout of double- and single-column format of the target domain;
• distances between captions and figures;
• distances between two columns in double-column articles;
• target-adjusted font style and size;
• target-adjusted paper size and text alignment; and
• varying locations of graphical components (figures, tables) and textual content.
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(a) (b) (c)

Fig. 3: Synthesized DDR pages in mixed ACL and VIS formats. The boxed areas are
synthesized randomly rendered (constrained to ACL and VIS). Ground-truth labels and
bounding boxes are produced automatically. Left: single-column abstract in italics, with
keywords; subsection title aligned to the middle. Middle: wide abstract, no keywords, no
italic, subsection title aligned to the left, Right: page with a teaser image, authors without
affiliation. Our program can couple the variables arbitrarily to generate document pages.

Modeling Choices. In the modeling phase, we had the option to use content from
publicly available datasets, e. g., Battle et al.’s [4] very large Beagle collection of SVG
figures, Borkin et al.’s [5] info-graphics, He et al.’s [17] many charts, and Li and Chen’s
scientific visualization figures [22], not to mention many vision databases [20,33] We
did not use any of these sources since each of them covers only a single facet of the
rich scholarly article genre. While the image choices could bias DNN’s classification
accuracy, we chose VIS30K [8,9], which is a diverse scholarly image content.

We automatically generated the textual content in the paper pages using SciGen [34].
As a result, we know the token-level semantic content of these pages, which were created
at the paragraph level. Different successive paragraphs, however, may not be semantically
coherent since our goal was to focus on text rendering, as opposed to semantic synthesis.

Rendering Choices. As Clark and Divvala rightfully point out, the font style in-
fluences the prediction accuracy [11]. In pilot tests we found that ignoring spacingcheck this sentence for

correctness conventions failed network models with many false negatives. We thus incorporated text
font styles and sizes and use the variation of the target domain (ACL+VIS, ACL, or VIS).
We also randomized the distances of these elements to “cover” the data range of the test
set. We arranged a random number of figures, tables, algorithms, and equations onto a
paper page and used randomized text for title, abstract, figure and table captions, etc.

We show a comparison of the paper pages synthesized by our version of DDR with
the original ACL and VIS papers in Fig. 3. Note that the font size and space variations
are randomized so that the styles are among the original collection but the combinations
of title font and main text need not be. Our program permits viewers to customize
scholarly document pages using the same pipeline without additional programming
effort. Theoretically, viewers can modify pages arbitrarily to minimize the reality gap
between DDR pages and the target domain of use.
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All these variations, while empowering the models to achieve more complex be-
havior, require no feature engineering, make no assumptions about caption locations,
and require very little additional work beyond previous approaches other than domain
randomization. Doing this allows us to create 100% accurate ground-truth labels quickly
in any predefined randomization style. It also requires no decoding of markup languages,
e. g., XML or managing of document generation engines, e. g., LATEX.

4 Evaluation of DDR

In this section we outline the core elements of our empirical setup and procedure. We
constructed six models here to study DDR behaviors. The goal of our experiments are:

– Goal 1: Evaluate the segmentation accuracy of our trained DDR on randomly
sampled benchmark datasets.

– Goal 2: Determine which document class in our current solution is enough to per-
form robust document localization tasks. This will inform subsequent manipulations
useful in improving accuracy.

– Goal 3: Assess the effect of the reality gap.

4.1 Preparation of Test Data

Table 1: Two Test Datasets

Name Source Page count

ACL300 ACL anthology 2508

VIS300 IEEE 2619

We evaluated our approach by training DNNs to
detect nine classes of textual and nontextual con-
tent using images generated by our DDR-based
approach. To evaluate the accuracy of the learned
models in the real document, we collected two
test sets to measure model performance (Table 1).
These categories were chosen based on our own in-
terests and familiarity with the knowledge domains. Also, having two different domains
lets us measure the effect of using images generated in one domain to test on another
when the reality gap could be large. ACL300 contains 300 randomly sampled articles
from the 55,759 papers scraped from the ACL anthology website. VIS300 contains about
10% of the document pages in randomly partitioned articles from 26,350 VIS paper
pages. We prepared these test data by using our DDR methods to first automatically
segment new classes and then curate labels to produce these ground-truth test data.

4.2 DDR-based Simulated Training Data

Training images for this research were generated synthetically. Nine document classes
were used as the target of interests. We generated DDR simulators by randomizing the
data in three training cohorts:

– DDR-(ACL+VIS): DDR randomized to both ACL and VIS rendering style.
– DDR-ACL: DDR randomized to ACL rendering style.
– DDR-VIS: DDR randomized to VIS rendering style.
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Fig. 4: Statistics of the ACL300 (top), VIS300 (middle), and our DDR dataset (bottom).
Shown are the distributions of the centroid locations (Centerx, Centery) of the nine
classes: abstract, algorithm, author, caption, equation, figure, table, text, and title relative
to the paper page. Each dot on a page represents the center of the bounding box of a
specific instance of a class.
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Table 2: Benchmark performance of DDR predictions in six experiments (3 training ×
2 test data). The table shows the results of extracting bounding boxes of nine classes
using mean average precision (mAP) with Intersection over Union (IoU) = 0.8. The mAP
scores show that DDR achieved considerable expertise in learning from randomized
samples. Here, the column “Same Tr.-Te style” marks two conditions when the reality
gap between the train and test become larger. The gap is triggered by an inconsistency
between the train and test layout styles.
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Avg

Human-(VIS) ACL300 N 0.99 0.60 0.98 0.91 0.90 0.92 0.90 0.98 0.96 0.88
DDR-(ACL+VIS) ACL300 0.97 0.55 0.94 0.90 0.87 0.90 0.89 0.95 0.94 0.90
DDR-(ACL) ACL300 0.92 0.34 0.96 0.86 0.87 0.88 0.97 0.74 0.83 0.82
DDR-(VIS) ACL300 N 0.89 0.42 0.96 0.85 0.84 0.89 0.96 0.65 0.81 0.81

Human-(VIS) VIS300 0.99 0.83 0.80 0.93 0.95 0.99 0.92 0.99 0.96 0.93
DDR-(ACL+VIS) VIS300 0.99 0.70 0.78 0.90 0.84 0.98 0.90 0.98 0.92 0.88
DDR-(VIS) VIS300 0.92 0.82 0.72 0.93 0.92 0.99 0.96 0.85 0.93 0.89
DDR-(ACL) VIS300 N 0.76 0.63 0.78 0.91 0.94 0.97 0.96 0.82 0.79 0.84

The same ACL300 and VIS300 are used in all studies; i. e., we also tested on VIS300
for DDR-ACL and vise versa when transfer learning must occur (‘N’ in the ‘Same
Tr.-Test. style’ in Table 2. We anticipate that train-test discrepancy would lower the
performance (Goal 3). Fig. 4 shows the centroid location distribution of the two test
data ACL300 and VIS300, as well as one of our DDR datasets (DDR-(ACL+VIS)). We
can see that the ACL and VIS had similar structures and DDR was more diverse in
representing these two domains.

4.3 DNN Architecture

We use the Faster-RCNN architecture, inspired by its success in structural analyses for
table detection in PubLayNet [38]. The input are paper pages in PNG format. We used
15K training input pages and 5K validation running 10 times rendered with random
figures, tables, algorithms, and equations chosen from VIS30K. We also reused authors
and fixed the authors’ format to IEEE visualization conference style.

4.4 Real Document Segmentation Accuracy

We followed the evaluation metrics of Clark and Divvala [11] to measure the overall
performance obtained by our approach on ACL300 and VIS300. A predicted bounding
box is compared to a ground truth based on the Jaccard index or intersection over union
(IoU) and is considered correct if it is above the threshold. We computed mAP using
IoU = 0.8. All image and non-image categories are evaluated by comparing the returned
bounding boxes with the ground truth using the same overlap criterion.
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Table 2 summarizes the performance results of our models in six experiments:
training DNNs on DDR-(ACL+VIS), DDR-ACL, and DDL-VIS and testing on ACL300
and VIS300 to locate bounding boxes from each paper page in the nine categories. Our
approach achieves competitive mAP scores on each dataset for both figures and tables
(on average 89% on ACL300 and 98% on VIS300 for figures and 94% on both ACL300
and VIS300 for tables). On the textual information such as abstract, author, caption,
equation, and title, we also see high mAP scores. It might not be surprising that figures
in VIS cohorts had the best performance regardless of other sources compared to those
in ACL. This supports that the figure style would influence the results.

The algorithm category showed rather poor performance (34% and 42%). It is worth
noting that the algorithm, equations, figures, and tables come from the VIS30K data
which share the style with the VIS300. Since the algorithms formats in ACL differ from
those in VIS300, models trained on mismatch styles (train on DDR-ACL and test on VIS
or train on DDR-VIS and test on ACL) in general are less accurate. We also noticed that
many references were mis-classified as algorithms. This is partially because our training
images did not contain the reference format. It is perhaps no doubt that more accurate
style matching would be important for accurate localizing bounding boxes.

4.5 Error Analysis

We released all prediction results (see our Reproducibility statement in Sec. 6) and we
may observe some interesting errors. Text extraction is often considered a significant
source of error [11] and appeared so in our prediction results compared to other graphics.
We tried to use GROBID [25], ParsCit, and Poppler and all three tools failed to parse
our cohorts, implying that these errors stem from the text encoding formats unsupported
by these popular tools. Fig. 5 shows some of the errors related to text display. Many
ACL300 papers had the same title and subsection font and this introduced errors in
title prediction. Other errors are caused by misclassifying titles as texts and subsection
headings as titles, captions, and equations. Since we did not have the reference class in
our training data, many reference pages were misclassified as algorithms.

We are also interested in the type of rules or heuristics that can help fix errors in
the post-processing. Here we can summarize data using two modes of the prediction
errors on all data points of the nine categories in ACL300 and VIS300. The first kind of
heuristics belongs to rules that are almost impossible to violate: e. g., there will always
be an abstract located on the first page with title and authors (page order heuristic).
Title will always appear in the top 30% of the page and the first page at least in our test
cohorts (positioning heuristic). We subsequently compute the error distribution by page
order (first, middle and last pages) and by position (Fig. 6). We can see that we can
fix a few false-positive errors (9% of abstracts) and among the false positives for the
abstract category, Similarly, we found that a few abstracts can be fixed by page order
and about another 30% fixed by position. This result of having many false-positive titles
and abstract puzzled us because network models should be good at remembering spatial
locations and all training data had labeled title, authors, and abstract in the upper 30%. It
seems that many subsection titles are erroneously labeled as titles since some subsection
titles are larger and use the same bold font as the title. One explanation is that within the
text categories, however, our models may not be able to identify text labeling in a large
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Fig. 6: DDR Errors in Abstract (Train: DDR-ACL, test: ACL300).

font as a title or section heading [37]. We leave this to further investigation in the future.
Fig. 7 shows the resulting false positives and the mislabelled classes.
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Fig. 7: Error Distribution by Categories: Figure and algorithm. We can see 57 of 83 false
positive figures. This means those figures were found and the bounding boxes however
were not positioned properly. For the algorithms, 974 among 1,105 false positives existed
and they mostly were text (88%).

Table 3: DDR sensitivity to different unique inputs.
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Avg

DDR-(ACL+VIS) ACL300 0.97 0.55 0.94 0.90 0.87 0.90 0.89 0.95 0.94 0.90
DDR-(ACL+VIS)-half ACL300 0.92 0.35 0.89 0.83 0.85 0.88 0.93 0.72 0.63 0.78

DDR-(ACL+VIS) VIS300 0.99 0.70 0.78 0.90 0.84 0.98 0.90 0.98 0.92 0.93
DDR-(ACL+VIS)-half VIS300 0.84 0.73 0.77 0.74 0.84 0.98 0.94 0.74 0.78 0.82

5 Performance on the Number of Unique Input

The goal in this study is to stress-test the model to understand model robustness to down-
sampling. One of the goals in machine learning is to obtain a model performing well
on the input samples it has never seen before. Our DDR production stage is attempting
to cover the data range appeared in test. However, a random sample does not guarantee
the independent and identical distribution of the training and test samples. Reducing the
number of unique samples permits us to study the robustness of DDR with respect to
the same test sets. Here we randomly sampled half of the input from DDR-(ACL+VIS)
and tested on ACL300 and VIS300. Table 3 shows the DNN accuracy by the number
of unique training samples. It is not perhaps surprising that dropping the number of
training samples by half decreased task performance. In general, just like other network
models, DNNs for paper layout have limited generalizability, in that slight structure
variations can influence the results: these seemingly minor changes vary the textures,
and this challenges the DNNs to learn new data distributions.

6 Conclusion and Future Work

We addressed the challenging problem of scalable trainable data production of text that
could be robust enough to be used in many application domains. We demonstrate that
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our paper page composition that perturbs layout and fonts during training for our DDR
can achieve competitive accuracy to segment both graphics and semantics content in
papers. Our extraction accuracy of DDR is shown for document layout in two domains of
ACL and VIS. These findings suggest that producing document structures is a promising
solution to leverage training data diversity and accelerating the impact of DNNs on
document analysis by allowing fast training data production overnight without human
interference. Future work could explore how to make this technique reliable and effective
so as to succeed on old and scanned documents that are not digitally created. One could
also study methods to adapt to new styles automatically, and to optimize the DNN
model choices and learn ways to minimize the total number of training samples without
reducing performance. Finally, we suggest document domain randomization seems to be
a promising research direction toward bridging the reality between training and test data
for understanding document text in segmentation tasks.

Reproducibility. We released the randomized paper style variables we have con-
trolled, the data collections (ACL300, VIS300, and their meta-data), our CNN models,
and their prediction errors (http://bit.ly/3qQ7k2A). Upon acceptance, we will release the TO FIX/TO DO
source code and put the data on the IEEE data port to improve visibility.
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Additional material

While the main document contains the main aspects of employed procedure and ob-
servations, this supplemental material aims at providing exhaustive and reproducible
experimental details.

A Paper Styles and DDR-based Paper Page Samples

ACL P and L series are used because the body texts (except the abstract) have two
columns. The detailed measurement of the paper pages are available from this link:
https://bit.ly/3qQ5wGQ. Fig. 8–11 show four examples of DDR generated paper pages
with various spacing and font styles. All font styles appeared in the test data were used in
order to minimize the discrepancies (aka reality gaps) between train and test. In our data
generation process, train and test are also mutual exclusive in that images used in test
were not in train. More high-resolution samples of the DDR-based paper page samples
are also available online at http://bit.ly/3qQ7k2A.

B Deep Neural Network Models

We used the tensorflow-version Tensorpack implementation [1] of Faster-RCNN [28]
for our experiments and programmed in python for machine learning [2]. All hyper-
parameters are kept at default. The networks’ input were RGB images with a short edge
of 800 pixels and a long edge no more than 1,333 pixels. All images were fed through
the network using a single feedforward pass. We trained the models for 40 epochs with a
batch size of 8, and a learning rate of 0.01 that did not decay as the learning progressed.
All metrics, such as precision, recall, F1 scores, and mAP, if not stated otherwise, were
derived from this tensorflow-version of the Faster-RCNN [28]. All models were executed
on a single nVIDIA GeForce RTX 2080 Ti GPU, with 11 GB memory. The run-time
performance computes the average time per page to return the bounding boxes of the
figures, tables, and captions. Faster-RCNN used 0.23 seconds processing on average per
page to obtain the prediction.

https://bit.ly/3qQ5wGQ
http://bit.ly/3qQ7k2A
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Fig. 8: DDR Sample 1
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Fig. 9: DDR Sample 2
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Fig. 10: DDR Sample 3
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Fig. 11: DDR Sample 4
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C Experiments

In total, we conducted ten different experiments. All experiments are controlled to make
sure that the differences between styles when presented with test images are not merely
an artefact of the particular setup that we employed. Here is an overview of the paper WHERE?
page and/or manipulations. We showed some examples in Fig. 8–11.

D Results

Fig. 12 presents the detection results for the six DDR experiments (trained on three styles
and tested on ACL300 and VIS300), for IoU of 0.7, 0.8, and 0.9, respectively. Fig. 13–15
show some of the prediction results. We used four metrics (accuracy, recall, F1, and
mean average precision (mAP)) to evaluate DNNs’ performance in model comparisons,
since the preferred ones are often chosen based on the object categories and goals of the
experiment. For example,

– Precision and recall. Precision = true positives / (true positives + false positives))
and Recall = true positives / true positives + false negatives. Precision helps when
the costs of the false positives are high and is computed. Recall is often useful when
the cost of false negatives is high.

– mAP is often preferred for visual object detection (here figures, algorithms, tables,
equations), since it provides an integral evaluation of matching between the ground-
truth bounding boxes and the predicted ones. The higher the score, the more accurate
the model is for its task.

– F1 is more frequently used in text detection. A F1 score represents an overall
measure of a model’s accuracy that combines precision and recall. A higher F1
means that the model generates low false positives and low false negatives, and can
identify real class while keeping the distraction low. Here, F1 = 2 × (precision ×
recall) / ( precision + recall).

E Image Rights and Attribution

The VIS30K [9] dataset comprises all the images published at IEEE visualization
conferences in each year, rather than just a few samples. All image files are copyrighted
and for most the copyright is owned by IEEE. The dataset was released on IEEE Data
Port. We thank IEEE for dedicating tools like this to support the Open Science Movement.
All ACL papers are from the ACL Anthology website.



22 Ling et al.

Train: DDR-VIS+ACL 

Train: DDR-ACL

Test: ACL300

Train: DDR-VIS

Test:VIS300
Train: DDR-VIS+ACL 

Train: DDR-VIS

Train: DDR-ACL

IoU=0.7

Train: DDR-VIS+ACL 

Train: DDR-ACL

Test: ACL300

Train: DDR-VIS

Test:VIS300
Train: DDR-VIS+ACL 

Train: DDR-VIS

Train: DDR-ACL

IoU=0.8

Train: DDR-VIS+ACL 

Train: DDR-ACL

Test: ACL300

Train: DDR-VIS

Test:VIS300
Train: DDR-VIS+ACL 

Train: DDR-VIS

Train: DDR-ACL

IoU=0.9

Fig. 12: DDR behavior results from six experiments.
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Fig. 13: Result sample: Correctly labelled image with many equations and one figure/-
caption.
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Fig. 14: Result sample: Correctly labelled image which has many sub-images.
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Fig. 15: Result sample: Partially incorrectly labelled image: DRR could recognize the
small figure and its caption but labelled a bullet list as an algorithm and the other as
an equation. One caption is also missing. This result informs us that we may need to
explicitly add the ‘bullet list’ class to our training data.
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