Document Domain Randomization for Deep Learning
Document Layout Extraction

Meng Ling', Jian Chen', Torsten Méller?, Petra Isenberg?, Tobias Isenberg?, Michael
Sedlmair?, Robert S. Laramee’, Han-Wei Shen!, Jian Wu®, and C. Lee Giles’

! The Ohio State University, USA, {1ing.253 | chen.8028 | shen.94}@osu.edu
2 University of Vienna, Austria, torsten.moeller@univie.ac.at
3 Université Paris-Saclay, CNRS, Inria, LISN, France,
{petra.isenberg|tobias.isenberg}@inria.fr
4 University of Stuttgart, Germany, michael.sedlmair@visus.uni-stuttgart.de
5 University of Nottingham, UK, robert .laramee@nottingham.ac.uk
6 0ld Dominion University, USA, jwu@cs.odu.edu
7 The Pennsylvania State University, USA, c1g20@psu. edu

Abstract. We present document domain randomization (DDR), a simple and
effective method for training data preparations for deep neural network (DNN)
models to extra non-textual content from real paper pages. This method simulates
document pages by randomizing document structural and semantic content. With
enough randomization of appearance in our page generator, the real page would
appear to the model as just another variant. We validate our method by first
generating three training data using our DDR and two test data from randomly
selected papers published in two domains: annual meetings of Association for
Computational Linguistics (ACL) and IEEE visualization (VIS). Our approach
achieves competitive results (90% mean average precision (mAP) on ACL and
99% mAP on VIS for figure extraction; 97% mAP on table extraction when the
DDRs were target-adjusted). Furthermore, we show how reducing the unique
number of training samples could affect the prediction accuracy. To the best of our
knowledge, we provide the first successful application of a deep neural network
that does not rely on human-curated training samples and that only exploits
graphically rendered papers for real-world paper page segmentation.

Keywords: Document domain randomization - Document layout - Deep Neural
network - Learning Representation.

1 Introduction

Fast, low-cost production of consistent and accurate training data enables us to use deep
neural networks (DNNs) for downstreaming document understanding [12,32,37,38].
Document pages can appear very complex and noisy, since they do not always follow
section rules and formats [10,25]. Even within the scholarly article genre, different
communities (e. g., computational linguistics vs. machine learning; computer science
vs. biology) can use different structural and semantic organization of sections and
subsections. This diversity can create discrepancies (or ‘reality gaps’) between training
and test data, and forces DNNs to use millions of training samples in order to successfully
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Fig. 1: Tllustration of our document domain randomization (DDR) approach. A
deep neural network-(DNN-)based layout analysis using training pages of 100% ground-
truth bounding boxes generated solely on simulated pages: low-fidelity textual content
and images pasted via constrained layout randomization of figure/table/algorithm/equa-
tion size, paragraph and caption length, column width and height, two-column spacing,
font style and size, captioned or not, title height, and randomized texts. Nine classes
are used in the real document layout analysis with no additional training data: abstract,
algorithm, author, caption, equation, figure, table, body text, and title. Here the colored
texts illustrate the semantic information; all text in the training data is black.

carry out inference (e.g., [38]). Sophisticated algorithmic solutions have achieved
considerable success in generating training data from digitally created I&TgX and XML
files from millions of published papers [25,38], but curating these results is often time-
consuming and not always accurate [31].

To overcome this challenge we propose document domain randomization (DDR)
(shown in Fig. 1), a combination of simulation-based training document generation
and domain randomization (DR) [35] for fast, accurate, and consistent document page
production. The key idea is that we abandon the time-consuming use of real paper pages
to learn the paper layout, and instead use randomized layout to minimize training and
test-data discrepancies. As with DR in robotics [18,29,36] and computer vision [14,26],
the randomized styles and semantics get the models to learn to focus on the essential
features of interest on document pages.

Though, in principle, the use of DDR lets us create as many training documents as
needed and paste any component part of document page to minimize the reality gap and
“cover” the real world, we focus on the specific two-column body-text data format that is
common in scholarly articles. This focus does not limit our work since DDR enables us
to produce data from any paper style. Limiting the style, however, allows us to focus
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Fig.2: DDR Render-to-Real Workflow. Render-to-real is transferred only on simulated
pages to real-world document layout extraction in scholarly articles for ACL and VIS.

on the specific parametric space. Moreover, we also acquire ground truth for both the
textual and non-textual content simultaneously, in a single pass. By including semantic
information, we see DDR’s ability to localize token-level semantics as a stepping-stone
to general-purpose training data production, covering both semantics and structure. To
the best of our knowledge, DDR is the first successful transfer of a DNN trained only on
simulated papers to real-world document analysis, beyond digitally created formats.
We validated DDR and achieved competitive results for page layout segmentation in
both computational linguistics (ACL) and visualization (VIS). We show that document
component part randomization is key for producing training samples to then infer real-
world document structures. We are the first to randomize the domain with competitive
performance based only on document page layout extraction. We thus contribute

— DDR, an extension of previous domain randomization- and simulation-based meth-
ods to non-trivial tasks in the document structural analysis domain,

— adesign space that influences the training data usefulness, and

— asystematic study of the random variables of DDR so as to evaluate their effect on
prediction accuracy of page layout.

2 Related Work

We review past work in two areas: the pioneering work in document structure analysis
and DR solutions in computer vision.

2.1 Document Parts and Layout Analyses

Documents in PDF format dominate scholarly publications. Recognizing the layout of
this unstructured digital form is crucial for downstreaming document understanding
tasks [6,12,16,25,32]. Pioneering work in training data production has accelerated DNN-
based document analysis and has achieved considerable real-world impact in digital
libraries, such as CiteSeer* [6], Microsoft Academic [32], Google Scholar [13], Semantic
Scholar [24], and IBM Science summarizer [10]. As a consequence, researchers have
generated high-fidelity pages for training data production. Almost all existing solutions
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attempt to produce realistic pages with the correct semantics and figures, typically
by annotating existing publications either manually or semi-automatically. Notably,
Clark et al. [11] present a crowd-sourced CS150 to annotate 150 papers in diverse
computer science areas; Katona [19] developed an special purpose annotation tool to
annotate 350 publications from three scientific fields to compare networks. Clark et
al. [11] further pioneered a markup language-(XML-)based extraction and contributed
CS-Large. GROBID [25] is perhaps the most widely used XML-based section extraction
system. PubLayNet [38] scraped millions of articles on PubMed and has become the
gold standard in the annual ICDAR competitions. Siegel et al. [30,31] designed a most
successful and least labor-intensive approach to align document syntax to automate
figure and table extractions of over four million pages. Similar IATgX-based approaches
have also been used to create DocBank, TableBank [2 1], and table extraction [3] through
analyzing IXTEX structures and encoding. The rationale for these work is that the quality
of the labeled training data dictates the success of DNN models. One drawback of
these markup-language-based methods, however, is that we would still need a rendering
engineer to reproduce old scanned documents for downstreaming information retrieval,
which is why we used an approach that does not rely on marking existing papers. Also,
tools can fail when the documents are scanned PDF.

Other techniques, which inspire ours, manipulate pixels to synthesize document
pages. He et al. [17] assumed that text styles and fonts within a document were similar
or follow similar rules. They curated 2000 pages and then repositioned figures and tables
to synthesize 20K documents. Yang et al. [37] synthesized documents through an enco-
der-decoder network itself to utilize both appearance (to distinguish text from figures,
tables, and line segments) and semantics (e. g., paragraphs and captions). Compared to
Yang et al., our approach does not require another neural network for feature engineering.
In a sense, our method is akin to treating the ambiguity as a cascading step [27]. Ling
and Chen [23] also used a rendering solution and the only randomization they applied
was figure and table positioning for extracting those two categories. Our work broadens
this approach by randomizing many document structural parts to acquire both structural
and semantic labels. Moreover, even with unprecedented access to ground truth, it is not
obvious how to use such data effectively, or when training datasets become effective.

In essence, instead of segmenting original, high-fidelity document pages or creating
networks to decode real documents, we simulate the document appearance by positioning
textual and non-textual content onto a page, while diversifying structure and semantic
contents, thus forcing the network to learn important structure. Our approach can produce
millions of training samples overnight with both structure and semantics and then extract
the layout in one pass, with no human intervention for the training data production. Our
assumption is that, if models utilize textures and shape for their decision [15], these
models may well be able to distinguish between figures, tables, and text.

2.2 Bridging the Reality Gap in Domain Randomization

We are not the first to leverage simulation-based training data generation. Chatzimparm-
pas et al. [7] provided an excellent review of leveraging graphical methods to generate
simulated data for training data generation used in vision science. When using these
datasets, bridging the reality gap (i. e., minimizing the training and test differences) is
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often crucial to the success of the network models. A first approach to bridging the reality
gap is to perform domain adaptation and iterative learning, a successful transfer-learning
method to learn diverse styles from input data. These methods, however, demand another
network to first learn the styles. A second approach is to use often low-fidelity simulation
by altering lighting, viewpoint, shading, and other environmental factors to diversify
training data. This second approach has inspired our work and, like theirs, our work
shows that using such an approach in the document domain is successful.

Our DDR relies on high-quality domain-specific graphical content to be avail-
able because it is needed to compose pages. Besides the databases mentioned above,
VIS30K [8,9], a comprehensive collection of images including tables, figures, algo-
rithms, equations, texts of both scanned and more recent digital versions over 31 years
(1990-2020). This dataset contains not only charts and tables but also spatial data and
photos. It is also the only collection to the best of our knowledge that includes both
high-quality print and scanning degradations such as aliased, grayscale, low-quality
scans of document pages. In this work we use the VIS30K dataset as a reliable source
for DNN to distinguish figure/table/algorithm/equations from other texts.

3 Document Domain Randomization

Given a document, our goal with DDR is to train a DNN on rendered paper pages
using domain randomization. This randomization needs to provide us with enough
simulated variability to cover the test cases at training time, so that, at test time, our
model can be used on real-world data. We construct the simulated pages with ground-
truth semantic labels, textual and image content, and bounding boxes. Fig. 1 and 2
show our DDR execution pipeline, while Fig. 3 shows some sample results. Like other
simulation-based solutions, we view synthetic datasets and training data generation
from a computer graphics perspective, and use a two-step procedure of modeling and
rendering by randomizing the following input in the document space:

— We use Modeling to create the semantic textual and non-textual content.

e Algorithms, figures, tables, and equations. In the examples we use in this
paper, we rely on the VIS30K dataset [8,9] for this purpose.

o Textual content, such as authors, captions, section headings, title, body text,
and so on. We use randomized yet meaningful text [34] for this purpose.

— With Rendering we manage the visual look of the paper. For example, we help the
DNN improve its classification accuracy by adding noise such that, later-on, we
avoid classifying real scanner noise as useful information. We ensure to use:

e a diverse set of other-than-body-text components (figures, tables, algorithms,
and equations) randomly chosen from the input images;

an abstract layout of double- and single-column format of the target domain;

distances between captions and figures;

distances between two columns in double-column articles;

target-adjusted font style and size;

target-adjusted paper size and text alignment; and

varying locations of graphical components (figures, tables) and textual content.
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Fig. 3: Synthesized DDR pages in mixed ACL and VIS formats. The boxed areas are
synthesized randomly rendered (constrained to ACL and VIS). Ground-truth labels and
bounding boxes are produced automatically. Left: single-column abstract in italics, with
keywords; subsection title aligned to the middle. Middle: wide abstract, no keywords, no
italic, subsection title aligned to the left, Right: page with a teaser image, without
affiliation. Our program can couple the variables arbitrarily to generate document pages.

Modeling Choices. In the modeling phase, we had the option to use content from
publicly available datasets, e. g., Battle et al.’s [4] very large Beagle collection of SVG
figures, Borkin et al.’s [5] info-graphics, He et al.’s [17] many charts, and Li and Chen’s
scientific visualization figures [22], not to mention many vision databases [20,33] We
did not use any of these sources since each of them covers only a single facet of the
rich scholarly article genre. While the image choices could bias DNN’s classification
accuracy, we chose VIS30K [8,9], which is a diverse scholarly image content.

We automatically generated the textual content in the paper pages using SciGen [34].
As aresult, we know the token-level semantic content of these pages, which were created
at the paragraph level. Different successive paragraphs, however, may not be semantically
coherent since our goal was to focus on text rendering, as opposed to semantic synthesis.

Rendering Choices. As Clark and Divvala rightfully point out, the font style in-
fluences the prediction accuracy [ 1]. In pilot tests we found that ignoring spacing
conventions failed network models with many false negatives. We thus incorporated text
font styles and sizes and use the variation of the target domain (ACL+VIS, ACL, or VIS).
We also randomized the distances of these elements to “cover” the data range of the test
set. We arranged a random number of figures, tables, algorithms, and equations onto a
paper page and used randomized text for title, abstract, figure and table captions, etc.

We show a comparison of the paper pages synthesized by our version of DDR with
the original ACL and VIS papers in Fig. 3. Note that the font size and space variations
are randomized so that the styles are among the original collection but the combinations
of title font and main text need not be. Our program permits viewers to customize
scholarly document pages using the same pipeline without additional programming
effort. Theoretically, viewers can modify pages arbitrarily to minimize the reality gap
between DDR pages and the target domain of use.
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All these variations, while empowering the models to achieve more complex be-
havior, require no feature engineering, make no assumptions about caption locations,
and require very little additional work beyond previous approaches other than domain
randomization. Doing this allows us to create 100% accurate ground-truth labels quickly
in any predefined randomization style. It also requires no decoding of markup languages,
e. g., XML or managing of document generation engines, e. g., IATEX.

4 Evaluation of DDR

In this section we outline the core elements of our empirical setup and procedure. We
constructed six models here to study DDR behaviors. The goal of our experiments are:

— Goal 1: Evaluate the segmentation accuracy of our trained DDR on randomly
sampled benchmark datasets.

— Goal 2: Determine which document class in our current solution is enough to per-
form robust document localization tasks. This will inform subsequent manipulations
useful in improving accuracy.

— Goal 3: Assess the effect of the reality gap.

4.1 Preparation of Test Data

We evaluated our approach by training DNNs to Table 1: Two Test Datasets
detect nine classes of textual and nontextual con-
tent using images generated by our DDR-based
approach. To evaluate the accuracy of the learned ACL300 ACL anthology 2508
models in the real document, we collected two VIS300 IEEE 2619
test sets to measure model performance (Table 1).
These categories were chosen based on our own in-
terests and familiarity with the knowledge domains. Also, having two different domains
lets us measure the effect of using images generated in one domain to test on another
when the reality gap could be large. ACL300 contains 300 randomly sampled articles
from the 55,759 papers scraped from the ACL anthology website. VIS300 contains about
10% of the document pages in randomly partitioned articles from 26,350 VIS paper
pages. We prepared these test data by using our DDR methods to first automatically
segment new classes and then curate labels to produce these ground-truth test data.

Name Source Page count

4.2 DDR-based Simulated Training Data

Training images for this research were generated synthetically. Nine document classes
were used as the target of interests. We generated DDR simulators by randomizing the
data in three training cohorts:

— DDR-(ACL+VIS): DDR randomized to both ACL and VIS rendering style.
— DDR-ACL: DDR randomized to ACL rendering style.
— DDR-VIS: DDR randomized to VIS rendering style.
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Fig. 4: Statistics of the ACL300 (top), VIS300 (middle), and our DDR dataset (bottom).
Shown are the distributions of the centroid locations (Center,, Centery) of the nine
classes: abstract, algorithm, author, caption, equation, figure, table, text, and title relative
to the paper page. Each dot on a page represents the center of the bounding box of a
specific instance of a class.
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Table 2: Benchmark performance of DDR predictions in six experiments (3 training x
2 test data). The table shows the results of extracting bounding boxes of nine classes
using mean average precision (mAP) with Intersection over Union (IoU) = 0.8. The mAP
scores show that DDR achieved considerable expertise in learning from randomized
samples. Here, the column “Same Tr.-Te style” marks two conditions when the reality
gap between the train and test become larger. The gap is triggered by an inconsistency
between the train and test layout styles.

2 3 g . = &8
ve & Z g .8 = o
. cE; 2 5 £ 8§ 2 3 2 g 2

Train Test ©vEH < s 13} b5 =) s 8 5 Avg
Human-(VIS) ACL300 N 0.99 0.60 0.98 091 0.90 0.92 0.90 0.98 0.96 0.88
DDR-(ACL+VIS) ACL300 0.97 0.55 0.94 0.90 0.87 0.90 0.89 0.95 0.94 0.90
DDR-(ACL) ACL300 0.92 0.34 0.96 0.86 0.87 0.88 0.97 0.74 0.83 0.82
DDR-(VIS) ACL300 N 0.89 042 096 0.85 0.84 0.89 0.96 0.65 0.81 0.81
Human-(VIS) VIS300 0.99 0.83 0.80 0.93 0.95 0.99 0.92 0.99 0.96 0.93
DDR-(ACL+VIS) VIS300 0.99 0.70 0.78 0.90 0.84 0.98 0.90 0.98 0.92 0.88
DDR-(VIS) VIS300 0.92 0.82 0.72 0.93 0.92 0.99 096 0.85 0.93 0.89
DDR-(ACL) VIS300 N 0.76 0.63 0.78 0.91 0.94 097 0.96 0.82 0.79 0.84

The same ACL300 and VIS300 are used in all studies; i. e., we also tested on VIS300
for DDR-ACL and vise versa when transfer learning must occur (‘N’ in the ‘Same
Tr.-Test. style’ in Table 2. We anticipate that train-test discrepancy would lower the
performance (Goal 3). Fig. 4 shows the centroid location distribution of the two test
data ACL300 and VIS300, as well as one of our DDR datasets (DDR-(ACL+VIS)). We
can see that the ACL and VIS had similar structures and DDR was more diverse in
representing these two domains.

4.3 DNN Architecture

We use the Faster-RCNN architecture, inspired by its success in structural analyses for
table detection in PubLayNet [38]. The input are paper pages in PNG format. We used
15K training input pages and 5K validation running 10 times rendered with random
figures, tables, algorithms, and equations chosen from VIS30K. We also reused authors
and fixed the authors’ format to IEEE visualization conference style.

4.4 Real Document Segmentation Accuracy

We followed the evaluation metrics of Clark and Divvala [ 1] to measure the overall
performance obtained by our approach on ACL300 and VIS300. A predicted bounding
box is compared to a ground truth based on the Jaccard index or intersection over union
(IoU) and is considered correct if it is above the threshold. We computed mAP using
IoU = 0.8. All image and non-image categories are evaluated by comparing the returned
bounding boxes with the ground truth using the same overlap criterion.
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Table 2 summarizes the performance results of our models in six experiments:
training DNNs on DDR-(ACL+VIS), DDR-ACL, and DDL-VIS and testing on ACL300
and VIS300 to locate bounding boxes from each paper page in the nine categories. Our
approach achieves competitive mAP scores on each dataset for both figures and tables
(on average 89% on ACL300 and 98% on VIS300 for figures and 94% on both ACL300
and VIS300 for tables). On the textual information such as abstract, author, caption,
equation, and title, we also see high mAP scores. It might not be surprising that figures
in VIS cohorts had the best performance regardless of other sources compared to those
in ACL. This supports that the figure style would influence the results.

The algorithm category showed rather poor performance (34% and 42%). It is worth
noting that the algorithm, equations, figures, and tables come from the VIS30K data
which share the style with the VIS300. Since the algorithms formats in ACL differ from
those in VIS300, models trained on mismatch styles (train on DDR-ACL and test on VIS
or train on DDR-VIS and test on ACL) in general are less accurate. We also noticed that
many references were mis-classified as algorithms. This is partially because our training
images did not contain the reference format. It is perhaps no doubt that more accurate
style matching would be important for accurate localizing bounding boxes.

4.5 Error Analysis

We released all prediction results (see our Reproducibility statement in Sec. 6) and we
may observe some interesting errors. Text extraction is often considered a significant
source of error [1 1] and appeared so in our prediction results compared to other graphics.
We tried to use GROBID [25], ParsCit, and Poppler and all three tools failed to parse
our cohorts, implying that these errors stem from the text encoding formats unsupported
by these popular tools. Fig. 5 shows some of the errors related to text display. Many
ACL300 papers had the same title and subsection font and this introduced errors in
title prediction. Other errors are caused by misclassifying titles as texts and subsection
headings as titles, captions, and equations. Since we did not have the reference class in
our training data, many reference pages were misclassified as algorithms.

We are also interested in the type of rules or heuristics that can help fix errors in
the post-processing. Here we can summarize data using two modes of the prediction
errors on all data points of the nine categories in ACL300 and VIS300. The first kind of
heuristics belongs to rules that are almost impossible to violate: e. g., there will always
be an abstract located on the first page with title and authors (page order heuristic).
Title will always appear in the top 30% of the page and the first page at least in our test
cohorts (positioning heuristic). We subsequently compute the error distribution by page
order (first, middle and last pages) and by position (Fig. 6). We can see that we can
fix a few false-positive errors (9% of abstracts) and among the false positives for the
abstract category, Similarly, we found that a few abstracts can be fixed by page order
and about another 30% fixed by position. This result of having many false-positive titles
and abstract puzzled us because network models should be good at remembering spatial
locations and all training data had labeled title, authors, and abstract in the upper 30%. It
seems that many subsection titles are erroneously labeled as titles since some subsection
titles are larger and use the same bold font as the title. One explanation is that within the
text categories, however, our models may not be able to identify text labeling in a large
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Fig. 6: DDR Errors in Abstract (Train: DDR-ACL, test: ACL300).

font as a title or section heading [37]. We leave this to further investigation in the future.
Fig. 7 shows the resulting false positives and the mislabelled classes.
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Fig. 7: Error Distribution by Categories: Figure and algorithm. We can see 57 of 83 false
positive figures. This means those figures were found and the bounding boxes however
were not positioned properly. For the algorithms, 974 among 1,105 false positives existed
and they mostly were text (88%).

Table 3: DDR sensitivity to different unique inputs.

abstract
algorithm
author
caption
equation
figure
table

text

title

Train Test Avg

DDR-(ACL+VIS) ACL300 0.97 0.55 0.94 0.90 0.87 0.90 0.89 0.95 0.94 0.90
DDR-(ACL+VIS)-half ACL300 0.92 0.35 0.89 0.83 0.85 0.88 0.93 0.72 0.63 0.78

DDR-(ACL+VIS) VIS300 0.99 0.70 0.78 0.90 0.84 0.98 0.90 0.98 0.92 0.93
DDR-(ACL+VIS)-half VIS300 0.84 0.73 0.77 0.74 0.84 0.98 0.94 0.74 0.78 0.82

S Performance on the Number of Unique Input

The goal in this study is to stress-test the model to understand model robustness to down-
sampling. One of the goals in machine learning is to obtain a model performing well
on the input samples it has never seen before. Our DDR production stage is attempting
to cover the data range appeared in test. However, a random sample does not guarantee
the independent and identical distribution of the training and test samples. Reducing the
number of unique samples permits us to study the robustness of DDR with respect to
the same test sets. Here we randomly sampled half of the input from DDR-(ACL+VIS)
and tested on ACL300 and VIS300. Table 3 shows the DNN accuracy by the number
of unique training samples. It is not perhaps surprising that dropping the number of
training samples by half decreased task performance. In general, just like other network
models, DNNs for paper layout have limited generalizability, in that slight structure
variations can influence the results: these seemingly minor changes vary the textures,
and this challenges the DNNs to learn new data distributions.

6 Conclusion and Future Work

We addressed the challenging problem of scalable trainable data production of text that
could be robust enough to be used in many application domains. We demonstrate that
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our paper page composition that perturbs layout and fonts during training for our DDR
can achieve competitive accuracy to segment both graphics and semantics content in
papers. Our extraction accuracy of DDR is shown for document layout in two domains of
ACL and VIS. These findings suggest that producing document structures is a promising
solution to leverage training data diversity and accelerating the impact of DNNs on
document analysis by allowing fast training data production overnight without human
interference. Future work could explore how to make this technique reliable and effective
so as to succeed on old and scanned documents that are not digitally created. One could
also study methods to adapt to new styles automatically, and to optimize the DNN
model choices and learn ways to minimize the total number of training samples without
reducing performance. Finally, we suggest document domain randomization seems to be
a promising research direction toward bridging the reality between training and test data
for understanding document text in segmentation tasks.

Reproducibility. We released the randomized paper style variables we have con-
trolled, the data collections (ACL300, VIS300, and their meta-data), our CNN models,
and their prediction errors (http://bit.ly/3qQ7k2A). Upon acceptance, we will release the
source code and put the data on the IEEE data port to improve visibility.
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Additional material

While the main document contains the main aspects of employed procedure and ob-
servations, this supplemental material aims at providing exhaustive and reproducible
experimental details.

A Paper Styles and DDR-based Paper Page Samples

ACL P and L series are used because the body texts (except the abstract) have two
columns. The detailed measurement of the paper pages are available from this link:
https://bit.ly/3qQ5wGQ. Fig. 8—11 show four examples of DDR generated paper pages
with various spacing and font styles. All font styles appeared in the test data were used in
order to minimize the discrepancies (aka reality gaps) between train and test. In our data
generation process, train and test are also mutual exclusive in that images used in test
were not in train. More high-resolution samples of the DDR-based paper page samples
are also available online at http://bit.1y/3qQ7k2A.

B Deep Neural Network Models

We used the tensorflow-version Tensorpack implementation [ 1] of Faster-RCNN [28]
for our experiments and programmed in python for machine learning [2]. All hyper-
parameters are kept at default. The networks’ input were RGB images with a short edge
of 800 pixels and a long edge no more than 1,333 pixels. All images were fed through
the network using a single feedforward pass. We trained the models for 40 epochs with a
batch size of 8, and a learning rate of 0.01 that did not decay as the learning progressed.
All metrics, such as precision, recall, F1 scores, and mAP, if not stated otherwise, were
derived from this tensorflow-version of the Faster-RCNN [28]. All models were executed
on a single nvipia GeForce RTX 2080 Ti GPU, with 11 GB memory. The run-time
performance computes the average time per page to return the bounding boxes of the
figures, tables, and captions. Faster-RCNN used 0.23 seconds processing on average per
page to obtain the prediction.
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http://bit.ly/3qQ7k2A
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Figure 2 methodology that AbderianJot uses holds for most casesinteractive, mobile, and unstable We construct new pse
suffix trees on 61 nodes spread throughout the 10-node network, call ion to our 's instruction r
it did not completely address this question cite{cite:4} IFurther, weis the least unfortunate component of AbderianJot The
Property of our algorithm

Abstract
architecture AbderianJot, our new method for the understanding of thinappropriate We emphasize that AbderianJol cannot be s
trees can locate interactive theory withoul needing o measureof IPv7 citefcite:0} is in Co-NP Further, we hypothesize that suffix
access-link congestionA well-tuned network setup holds the key to an useful evaluation Wepariition table can agree to surmount
Our application is elegant; so, too, must be our AlongThe expl of XML i a key obstacle After years of app

Abderianiot Two

Kevywords: ran,a,software, ion,on, DARPA's,de

Motorola,bag

1 Runs, And Were Not

runs, and were not reproducibleWe now discuss our evaluation Our o
‘With these considerations in mind, we ran four novel experiments: (1
work in the field Continuing with this rationale, we halved theomnisc
motivate the need for checksums Similarly, to overcome this grandcit
stochastic multi-processors were used instead of systems; and (4) we
10th-percentile complexity An astute reader would now infer that for
access-link congestionAbderianJot cite{cite:2} All of these methods
disconfirmed that complexity in AbderianJot is not an issue Theours
suffix trees on 61 nodes spread throughout the 10-node network, and
partition table can agree to surmount this quandary Lastly, weA well
foremost work on 80211 mesh networks Next, unlike many existing
‘When J Quinlan distributed Microsolt Windows XP's API in 198¢
Here, we make four main contributions Primarily, we construct anu
throughput of our network With this change, we noted muted 100 1
AbderianJot can successfully cache many online algorithms at once
The exploration of XMI. is a key obstacle After years of appropriate
course, all sensitive data was ymized during our cour
be made game-theoretic, relational, and relational, but that the same(

Here, we make four main contributions Primarily, we construct anw
stable Furthermore, we introduce new classical symmetriesmethodol
user-kernel boundary is not as important as throughput when minimiz
textit{median} wired ROM speed The results come from only 8 trial
the evaluation of DNS Along these same lines, to achieve thisrelated
AbderianJot cite {cite:2} All of these methods conflict with ourproper
in Figure-ref{fig:label1} should look familiar; it is better known as1
models's lack of influence on the change of algorithms While such a
ran a soltware emulation on DARPA's decommissioned Motorola ba
interfere with reinforcement learning is usually considercdNow for t
evaluates stochastic methodologies The usual methods for the
compellingthese same lines, we have not yet implemented the ser
partition table can agree to surmount this quandary Lastly, westocha
that Figure-ref{fig:label0} shows the textit {average} and not( {Abde
algorithms, are urgently more structuredclients, is the solution o all o
challenge, we better understand how lambda calculus can be applicd
motivate the need for checksums Similarly, to overcome this grandA
assumption that secure models and the analysis of telephony aretelep
suffix trees on 61 nodes spread throughout the 10-node network, and

Fig.9: DDR Sample 2
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Ultimately, we concludecite {cite:0} ({{em Wady} })cite {cit
We first explain experiments (1) and (3) enumerated above
in future versions of {em Wady}In recent years, much resear
fundamentally differently on our 1000-node overlay network
can agree to overcome this riddle {em Wady} is broadly rel
needing to control cxpert systems This may or may not actua
Suppose that there exists symmelric encryption such that we
related work supports our use of classical epistemologies

simulation; and (4) we compared throughput on the Freel
machines to discover the effective optical drive throughput o
complexity takes a back seat to usability constraints Our eva
logging On a similar note, we postulate that the analysis ofre
imagine that superpages cite{cite:2} and the location-identit
context-[free grammar can be made omniscient, event-driven
All software was hand hex-editted using Microsoft develope
gigabit switches, which embodies the private principles ofef
view it from a new perspective: linear-time information We
On a similar note, despite the results by Dana S Scott, we ca
unification of DNS and mobile theory Given

5.3 Virtual.

cryptography Our framework is broadly related to work in t
disprove the mutually *fuzzy" nature of distributed modaliti
approach will show that tripling the RAM speed of randomly
symmetries to enable concurrent epistemologiesal also intro
cnvironment produce less jagged, more reproducible results
A well-tuned network setup holds the key to an useful perfo
yesteryear actually exhibits better effective instruction rate t
drawback of this type of

this rationale, the results come from only 1 trial runs, and
correct behavior The framework for {em Wady} consists of
flash-memory space; and finally (3) that NV-RAM throughp
configurations is crucial to our resultsview it from a new per
our hardware upgradesrelated work supports our use ol class
homegrown database was relatively straightforward cite {cite
articulated the need for scalable algorithms cite{cite:6, cite:8
simultaneously Even though this work was published before
and~ref{fig:labell}; our other experiments (shown inintellig
this approach, we analyzed it independently and simultaneou

Lo red tape We plan to adopt many of the
motivate the need for architecture We pl
upgrades Along these same lines, of cour
several years In this work, we disconfirm
assumptions? It is notapplication The fr

Better deciiors
3
i
¥

2 1o
correct behavior The framework for {em % v
complexity takes a back seat Lo usability ﬁ gs -
symmetrics (o cnable concurrent cpistem 3 ﬁ -
the transistor can connect to address this o 8% ~
view it from a new perspective: linear-ti (0 Siope

cition bies

Wady} is one thing, but itin isa y
assumptions? It is notbchavior Rather than obscrving cxtensible s
cablos that paved the way for the understanding of e-commeree On
Ultimately, we concludelogging On a similar note, we postulate tha
We now discuss our performance analysis Our overall evaluationSu
heuristic is built on the natural unification of voice-over-IP andrelat
fundamentally differently on our 1000-node overlay network Our lo
approach sceks to prove three hypotheses: (1) that the UNIVAC oft
interrupt rate. We removed 10GB/s of Ethernet access from our des
in future versions of {em Wady}All software was hand hex-editted
disprove the mutually **fuzzy" nature of distributed modalities We
application The framework for {em Wady} consists
depend Scheme, symmetries, the

different method is necessary We emphasize that {em Wady} is de
machines to discover the effective optical drive throughput of DA
cite{cite:10} is available in this spacchomegrown database was rela
analysis We carried out a software simulation on Intel's network to
proved that ing our DoS-ed intosh SEs was more ef
We have seen one type of behavior in Figures-ref{fig:label1}We h
with a simulated DHCP workload, and compared results to our cour
virtual machines Therefore, we sce no reason not to use symbiotico
there is

While we know of no other studies on encrypted methodologies
heuristic of choice among statisticians A comprehensive surveyto re
trainable algorithms, end-users

1.3 Discontinuities In The Graphs Point

discontinuities in the graphs point to improved distance introduced
We first explain experiments (1) and (3) enumerated above Operato
today's hardware; (2) that we can do much to impact a methodology
using cxtensible models, it is hard to imagine that Internet QoS and
other hand, a technical issue in cryptoanalysis is the intuitiveOn a si
programming cite{cite:1} and A* search are continuously incompa
literature Without using collaborative algorithms, it is hard tousuall
dogfooded {em Wady} on our own desktop machines, paying partic
follows a new model: performance really matlers only as long asapp
We hypothesize that symmetric encryption can prevent the simulat
configurations is crucial to our resultsGameboys Similarly, Along t
techniques are of interesting historical significance; U Suzuki ando
our Planetlab testbed Continuing with thi olnts scored
heuristic of choice among statisticians A 1
perspective: the investigation of replicati
using extensible models, it is hard to ima

. o
| Counting dots
across threshold

gigabit switches, which cmbodics the pri KN

dogfooded {em Wady} on our own deskt 100 150

On a similar note, despite the results by~ Figure 4 that the looka

despite virtual despite the resu
can agree to overcome this riddle {er We

DHCP; however, lew have t Paints scared

cite {eite: 14} flash-memory spacc; and fin
introducing a metamorphic tool for inves
not have anticipated the impact; our work

imulation: and (4) we compared through

operator error alone
than monitoring them, as previous We  Figure 4 logging On a s
drawback of this type of solution, howev  Refinement of the UNIV
despite substantial work in this arca, our
behavior Rather than observing cxtensib
Lastly, we discuss the first two experime
approach will show that tripling the RA
Figure-ref{fig:label1}) paint a different
Embedded information and e-business h
heuristic is built on the natural unificatio
cryptography Our framework is broadly

Boter docisions
PSE

D
Groater sensillty

Figure 3 techniques a

cryptography by Kumar et al cite{cite:4}
‘We hypothesize that symmetric encrypti Table 7 ed 150 1
Figure-ref{fig:label1}) paint a different ¢ TomOVe

We now discuss our performance analysis Our overall evaluationbu
behavior Rather than observing extensible symmetries, our heuristi
efficient, without caching congestion control, implementing theseen
Gameboys Similarly, Along these same lines, our experiments soon
techniques arc of interesting historical significance; U Suzuki ando

simulation; and (4) we compared throughput on the FreeBSD, L4 a

Donald Knuth investigated a similar configuration in 1999

Fig. 10: DDR Sample 3
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methodologies This may or may not actually hold in reality
issues that our solution docs address Along these same lines,
the shortcoming of this type of method, however, is that the
hard work were wasted on this project Similarly, error bars h
following a cycle of four phases: investigation, development,
asked (and answered) what would happen if computationally
Tigure~ref{fig:label4}, exhibiting degraded expected hit rati
courseware

Torum will fix many of the obstacles faced by today's cle
typical component of our application Despite the fact that su
clearly require that flip-flop gates and robots are rarelyunifi
introspective algorithm for the deployment of IPv4 by Watan
new model: performance is king only as long as usability co
cite{cite:12} does not locate extreme programming as well
with this rationale, any intuitive study of the unfortunatesolu
We consider an approach consisting of $n$ operating system
‘The properties of Forum depend greatly on the assumptions i
understand our concurrent overlay network This step

shortcoming of this type of method, however, is that B-tr
make this method perfect: Forum is based on the deploymen
throughput of heterogencous algorithms is crucial to our resu
We question the need for Lamport clocks In the opinion of s
an analysis of object-oriented languages ({Forum}), demons
the field of cryptography

1.1 Network To Quantify

asked (and answered) what would happen if computationally
simulation of kernels We see no reason not to use our solutio
algorithms usc robust models to control checksums cite {cite
exploring new distributed epistemologies ({Forum}) Two p

end, we added more flash-memory to our mobile telephones

Our focus in this position paper is not on whether telephony

network to quantify the computationally permutable nature o
a decision tree diagramming the relationship between Forum
relation to those of more little-known solutions, are shocking
following a cycle of four phases: investigation, development,
incompatible; Forum is no

@ (b) [C]

Figure 10 networking cite{cite:0}, but we view it from a n
of model checking Similarly, the basic tenet of this metho
particular attention to effective optical drive throughput;
new model: performance is king only as long as usability
end, we added more flash-memory to our mobile telepho

Figure 5 we concentrate our efforts on conf Figure 10 metamorphic; our heuristic is no differen
Data set #Tri. | Time Data set X[ 4 | CGlter | Comp-time

SYNTHETIC VORTEX 10242 | 20480 [ 0..2% 100 SYNTHETIC VORTEX o1 [0 1o Gs
SYNTHETIC FOUR CINTERS | 10242 | 20480 | 0..2% 100 SYNTHETIC FOUR CENTERS | 1| 0 | 10,000 s

JUPITER VORTEX STREET | 40962 | 81920 | 0..% 300 JUPITER VORTEX STREET | 10° | 0 | 5,000 12min
EARTH FLOW 163,842 | 327,680 | 8days ED EARTH FLOW (SUBDOMAIN) | 10 | 0 | 10,000 3min
EARTH FLOW (SUBDOMAIN) | 32400 | 6479 | Sdays 32 EARTH FLOW (ADAPT. RES) | 107 | 0 | 10,000 Gmin

EARTH FLOW (ADAPT. RES.) | 62412 | 124,820 | Sdays E5)

exploration of model checking As a result, we construct new
al cite{cite:1} runs in $Theta$($ log n $) timecontrolling ga
coursewarecounterintuitive but fell in line with our expectati
Torum will fix many of the obstacles faced by today's electri
scalability, this should be simple once we finish implementi
would disagree with the understanding of agents After years
with this rationale, any intuitive study of the unfortunatecon
drawback of Forum is that it cannot control peer-to-peer mo
heuristic uses is not feasibleOur focus in this position paper i
independently constant-time models

we concentrate our efforts on confirming that superblock
it should be noted that Forum learns journaling file systems
degrade XMLThe propertics of Forum depend greatly on the
the shortcoming of this type of method, however, is that the
Shown in Figure~ref{fig:label1}, all four experiments call at
Figure~ref{fig:label4}, exhibiting degraded expected hit rati
system, as opposed to simulating it in courseware, we would
networking cite{cite:0}, but we view it from a new perspecti
uses holds for most cases This discussion at first glance see
Similarly, we halved the ROM throughput of the KGB's XB
All

exploring new distributed epistemologies ({Forum}) Tw
allowance, and evaluation Ixisting introspective and interpo
deviations from observed meansrobots were used instead of
Von Neumann machines must work In fact, few electrical ¢
to cap the power used by our algorithm to 551 nm Despite th
reason not to usc lincar-time technology to simulate the refin
With this change, we noted improved performance degredati
‘We ran Forum on commodity operating systems, such as A
2-month-long trace disproving that our model holds for most

3 Simulation Of Kernels. We See

of model checking Similarly, the basic tenet of this method i
we might expect cite{cite:6} On a similar note, our logic foll
Tortran, d with lazily repl d extensions cite {cit
Absolutely That being said, we ran four novel experiments: (
understand our concurrent overlay network This step flics in
algorithm for the study of the location-identity split by R Mo
of conventional wisdom, but is essential to our results Simila
can collude

5.1.3 Outside Of 44 Standard Deviations

with this rationale, any intuitive study of the unfortunateliter
motivate the nced for DHCP Next, to answer this quandary,

simulation o[ kernels We see no reason not to use our solutio
throughput is not as important as ROM throughput when opt
unification of kernels and hash tables will clearly require tha
exploration of model checking As a result, we construct new
algorithm is broadly related to work in the ficld of client-ser

without all the unnecssary complexityunderstand our concur
typical component of our application Despite the fact that su
place our work in context with the existing work in this area

With this change, we noted improved performance degredati

Fig. 11: DDR Sample 4
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C Experiments

In total, we conducted ten different experiments. All experiments are controlled to make
sure that the differences between styles when presented with test images are not merely
an artefact of the particular setup that we employed. Here is an overview of the paper
page and/or manipulations. We showed some examples in Fig. 8—11.

D Results

Fig. 12 presents the detection results for the six DDR experiments (trained on three styles
and tested on ACL300 and VIS300), for IoU of 0.7, 0.8, and 0.9, respectively. Fig. 13—15
show some of the prediction results. We used four metrics (accuracy, recall, F1, and
mean average precision (mAP)) to evaluate DNNs’ performance in model comparisons,
since the preferred ones are often chosen based on the object categories and goals of the
experiment. For example,

— Precision and recall. Precision = true positives / (true positives + false positives))
and Recall = true positives / true positives + false negatives. Precision helps when
the costs of the false positives are high and is computed. Recall is often useful when
the cost of false negatives is high.

— mAP is often preferred for visual object detection (here figures, algorithms, tables,
equations), since it provides an integral evaluation of matching between the ground-
truth bounding boxes and the predicted ones. The higher the score, the more accurate
the model is for its task.

— F1 is more frequently used in text detection. A F1 score represents an overall
measure of a model’s accuracy that combines precision and recall. A higher F1
means that the model generates low false positives and low false negatives, and can
identify real class while keeping the distraction low. Here, F1 = 2 X (precision X
recall) / ( precision + recall).

E Image Rights and Attribution

The VIS30K [©] dataset comprises all the images published at IEEE visualization
conferences in each year, rather than just a few samples. All image files are copyrighted
and for most the copyright is owned by IEEE. The dataset was released on IEEE Data
Port. We thank IEEE for dedicating tools like this to support the Open Science Movement.
All ACL papers are from the ACL Anthology website.

WHERE?
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Fig. 12: DDR behavior results from six experiments.
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cal tionnure-cemrlc visualization of hurricane Isabel. (a,b) Path.
s 1 we original flow field. (c,d) Observer-relative pathlines; the
hurricane appears steady. (a,c) First time step. (b,d) Last time step)
rom (C) to (d) the Farth has moved | the steady hurricane

itextis a proper orthogonal tensor (arotation), ¢(7) is a point (positiol
ector), and a € R. This transformation assumes absolute time. Tt i
hus sufficient to consider @ = 0, disregarding time shifts, giving 1* =1
With respect to this transformation, a scalar field is objective if it i
a vector field v is objective if it transforms according t
* = Q(r) v; a second-order tensor field S, as a linear transformation o
ectors, is objective if it transforms as §* = Q(1)SQ(r)” [65, p.42].
This entire definition depends on the domain being Buclidean: point
fre position vectors; the difference between two points is a vector; all
angent spaces are copies of R® with trivial parallel transport. This
definition is therefore not valid for n idean (curved) manif

ext obtain a generalized definition of objectivity, a crucial propert
f the diffeomorphism ¢ is that it enables us to use the corresponding

Hifferential, ot pushforward. See Fig. 7. The pushforward is a map

equation ™. @
[text-cach (dd.); atapointx € M is a linear map
equation ~ T @)

v (ddg)(¥).

textotation (-), means that the quantity in parentheses is located a
€M, and T,M denotes the tangent space at x. We can simply imagine,
that the diffeomorphism ¢ transforms curves on M, and the differentiall
¢, transforms their tangent vectors accordingly. See also App. U.
In components, the map (d@y), at any x € M can be given by the!
Corresponding n x n matrix. See Fig. 7 for the case of a sphere (n = 2)
Euclidean space. When ¢, is an isometry of M = &%, the pushfor.
ard d@, is a globally constant proper orthogonal (rotation) tensor Q.
., (). = Q, with the same Q at all x € M. See O’ Neill [49, p.107]
Curved spaces. In general, however, the linear map (dg )x is differ:
nt for different points x € M. In components, each (dg, ), can still be]
@iven by a matrix, but it will be a different matrix for each point x € M

5.2.2 Objective scalar fields

text objective should mean invariant under transformation, which for
calar fields is trivial. We therefore define that a scalar field /: M — &
n a manifold M is objective when, under any diffeomorphism ¢
siven by the group action & of a symmetry group G, it transforms as

equation: /(*)- O)

5.2 Generalization of Objectivity

To generalize objectivity, we define this concept as a general notior

f tensor fields being invariant with respect to a continuous symmetry
roup G, which is a Lie group. (Symmelry refers to a notion of being
he same.) For example, if the group G is chosen as the isometry grouj

f a (Riemannian) manifold, two tensor fields are “the same” if the;

are isometric. Two fields being symmetries of each other then mean:

hat there exists a group element g € G, such that the transformation
rules given below hold. Then, given any time-dependent observes
transformation 7 -+ g(t) € G, a given tensor field is objective if, for each
fixed 7, it simply follows the corresponding transformation g := g(7).

5.2.1 Symmetry groups and group actions

ur notion of symmetry corresponds to the transformation behavio
inder a group action ®, with a given Lie group element g € G, where

is the chosen symmetry group. An action ®, specifically a smooth lefi
ction, of a Li¢ group G on a manifold M, is a smooth map [33, p.209

fon® M.
equation” "> 5
(8,%) = (8,%), 9

Eext hat for cvery ¢ € G. the map

equation: ¥ith 9:(x) = (g.x). is a dificomorphism. (6}

xt we focus on the general use of group actions P in our contex(

textviated, we could write f* = £, but itis crucial to note that f* it
valuated at the point @ (x), whereas f is evaluated at the point x.

5.2.3 Objective vector fields

‘e now define that an arbitrary vector field v on a manifold M i
bjective (with respect to a given symmetry group G), if, under th
corresponding group action ® with any g € G, it transforms as

equationds)x(¥)- (10)

that ¥* s an_element_of the tangent space T, M.

CXT Tty
textas v is an element of 7M. Likewise, it is important to note that
Ihe differential (d¢y ) is a linear map defined on 7M. We can say

textrk. A vector field is objective, if it is simply pushed forward by
ny diffeomorphism ¢y, defined according to the group action ®. This
lefinition of objectivity is valid for any smooth manifold where a notior
of (smooth) symmetry is defined by a (smooth) symmetry group G.

texbreviated transformation rule. For brevity, we can define the
action ®, with g € G, on any vector field v on M, by the differential in|
Eq. 8, and abbreviate the objectivity criterion of Eq. 10 simply as

equation ab;

ind defer details to later sections. For now, it is sufficient to
that the diffeomorphisms ¢, will correspond to the flows of specifi
vector fields on M. These vector fields are generated by the action o
he Lie algebra g of the Lie group G on M. See App. J for details.
For example, if G is the group of all diffeomorphisms of M, these!
vector fields are all possible (smooth) vector fields on M. The important
case for our framework is choosing the group G as the isometry group
f M. The corresponding vector fields are then the Killing vector fields
n M, whose flows correspond to the isometries of M. See Sec. 7.

textVver itis crucial that the meaning of the transformation represented
y ¢ € G in this shorthand notation is given by Eq. 10. In general,
cannot be mapped to the same globally defined matrix, corresponding t
the pushforward d@y, even though this is possible in the Euclidean case
Nevertheless, this abbreviated form makes it easy to see the analog)
ith the definition of Truesdell and Noll. In Euclidean space, the tw
are equivalent. See App. D for more details. Our definition, howeve
igives a well-defined notion of objectivity for arbitrary manifolds M.

Fig. 13: Result sample:

caption.

Correctly labelled image with many equations and one figure/-
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. wubsets of data via pan & zoom; (d) Reconfiguring data via an index chart; Abstract/Elaborate data via (¢) tooltips or (f) an overview-detai
isualization; (f) Filtering data via query widgets, recreating a New York Times visualization [12]; (g) Connecting related tuples via brushing & linking}

CZ}RﬁOnmple interactive visualizations demonstrating Lyra 2's coverage over Yi et als taxonomy [61]. (a, b) Selecting marks of interest; (c
are provided in material.

Fig. 14: Result sample: Correctly labelled image which has many sub-images.
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ext = (V.E), where V ={v1,v3 .,vy } is the finite set of vertices o
B and £ s the setof edges {e1,¢3 .00}

4.2 Suggesting Mathematical Moves for Untangling Knots|
/e now turn to our main objective in this paper, which is to create
unique experience for one to interact with the mathematical knot and
untangle it to a simplified (but topologically equivalent) structure. Thi
problem has been approached in different ways. The widely-used
‘notPlot [21] relaxes and untangles knots in three-dimensional spac
ith a pseudo-physical model. KnotPad [30] is a sketching interface for
ne to only propose the Reidemeister moves to deform i

Predicting-the-Moves-and-Tangies-by-Gau: e

16Xk cidemeister moves have been proven to be the core moves nec
bssary to fully untangle a knot. In this section, we will detail model
hnd algorithms to suggest the Reidemeister moves in our knot interface
The core prediction capability of our knot interface is based on the
humerical approach proposed by Foley in [4]. In Foley’s approach thd
hird Reidemeister move is replaced with two generalized translation)
noves, and the proposed numerical method can read a knot i its Gaus
ode notation and automatically fully untangle the knot in its Gauss
ode notation corresponding to the four basic moves listed in Fig.8}

nots, which is only practical when working with knot diagrams with a
mall number of crossings (for most non-expert users).

‘We first focus on the integration of numerical and visual approaches|
o implement a suggestive knot interface that can read the mathematical|
not and suggest the moves to untangle complex knots step by step)
0 the fewest possible crossings. We of course exploit and i
numerical approaches to knot deformation [4,16] behind our suggestiv
ketching interface. Before we detail the logical series of steps, several

i ies. are.in.order.

textiuss code. The numerical approach
e are going to leverage is based on an ex
tended knot notation called Gauss Code. I
is a sequence of labels for the crossings witl

each label repeated twice to indicate a wal

along the diagram from a given starting point
and returning to that point. Take the trefoil
knot in Fig.6 as an example. First, we label
all crossings in the knot diagram. Then, we)
traverse the knot from a given point and along|
one direction (see the starting point and di
Irection indicated by the red arrow in Fig.6)
Once we encounter a crossing, write down thel
crossing label with a “+” or “-” for the head|
of each crossing, we will obtain a series of]
signed number, called Gauss Code. In thi:

ﬁgl;re‘)

trefort-kmottxemptes the-Ermss-Eodewittbo generated as “+1, -2, +3,
-1, +2, -3

textsual Tangle. A visual tangle is a region of a knot where ou

suggestive interface will highlight and guide the user to perform the
mathematical moves. The original definition of Zangle was propose

y Foley in [4] to numerically untangle knots. A tangle is a closed
egion of a knot, where the knot crosses the region exactly four times
ith the following two basic properties:

J T mber of crossings In a tangle. For example, Fig.7
CYUBLON i ferent tangles with sizes 0. 2. and 3.

*ltext’y — the parity of the tangle size. For example, the tangld
 Fig.7(b) is an even tangle and in Fig.7(c) is an odd tangle. As
defined, in each tangle, two knot segments will cross the tangle
boundary exactly four times. When the tangle parity is even, each
segment will leave two consecutive crossing points when crossing
the region (see e.g., Fig.7(a)(b)); when the tangle parity is odd|
crossing points generated by different segments will be neighbors
on the boundary (sce e.g., Fig.7(c)).

’

(a) Tangle with size 0 (b) Tangle with size 2

Yo

(¢) Tangle with size 3

Fig. 7. Visual tangle examples in our suggestive interface, with sizes 0, 2, and 3.

The key steps in our i can be detailed a

follow:
o X0 @)
!
al

(@ R i
©T1 @ T2

- (@

(b) R2

caption"’“’ generalized Reidemeister moves in our interface. (a) K1 the firs

A2 or move. (b) R2: the second Reidemeister move. (c) T1: translation}
ove 1 to remove the original crossing and create one on the opposite side of the|

angle. (d) 72: translation move 2 to relocate the strand intersecting both tangle]
aments 1o 1he opposite side of the tangle,

0TS Gauss code notation and identily how the Reide-]

algorithmy: " e pplied with rules detailed below.

. Identify and perform R2 first — look for two adjacent crossings
with the same sign; then locate the negatives of these integers,
and determine if those numbers are also adjacent. R2 can be
performed if these conditions are true, and the four numbers will
be removed after R2 s performed (sce ¢.g., Fig.9(b).

. Then identify and perform R1 — look for two adjacent integers
which are negatives of cach other. When this condition is found,
the numbers can be removed after R1 s performed (see Fig.9(a)

. Look for all tangles with size greater than 0. A tangle can be
identified or combined from existing tangles with the following
three rules:

* The sum of the signed integers in a Tangle's Gauss code is 0
E.g., Tangle 1 in Fig.10 contains two crossing points and the
sum of all the Gauss codes is (—5) + (—4) = (+4) +(+5) =
0.

* A tangle’s Gauss code string can be divided into two Gauss
code strings belonging to two different knot segments. E.g.,|
within tangle 2 in Fig.10 the Gauss code [—1.+2] belongs
to one arc, and [—3,—2,+1,+3] belongs to a different arc,

« Two tangles can be combined if their Gauss code
strings are adjacent sub-strings in the knot's Gauss
code. For example, in Fig.10 the knot's Gauss code
is [—=1,42,+6,—5,—4,—3,-2,+1,+3,+4,+5,—6]. The
Gauss code of tangle 1 can be divided into two Gauss code
strings: [—5,—4] and [+4, 5] belonging to the two differ
ent arcs in tangle 1. Similarly tangle 2 has two Gauss code
strings: [~1,+2] and [~3,-2,+1,+3]. Since [-5,~4]
from tangle 1 is adjacent to [—3, —2, +1, +-3] from Tangle
2 in the knot’s Gauss code. Tangle I and tangle 2 can thus
be combined into a tangle of larger size, i.e., the tangle

w

3. Our program starts with all tangles with size 1, and

Fig. 15: Result sample: Partially incorrectly labelled image: DRR could recognize the
small figure and its caption but labelled a bullet list as an algorithm and the other as
an equation. One caption is also missing. This result informs us that we may need to
explicitly add the ‘bullet list’ class to our training data.
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