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Abstract. A hybrid architecture is presented capable of online learning from
both labeled and unlabeled samples. It combines both generative and discrimi-
native objectives to derive a new variant of the Deep Belief Network, i.e., the
Stacked Boltzmann Experts Network model. The model’s training algorithm is
built on principles developed from hybrid discriminative Boltzmann machines
and composes deep architectures in a greedy fashion. It makes use of its inher-
ent “layer-wise ensemble” nature to perform useful classification work. We (1)
compare this architecture against a hybrid denoising autoencoder version of itself
as well as several other models and (2) investigate training in the context of an
incremental learning procedure. The best-performing hybrid model, the Stacked
Boltzmann Experts Network, consistently outperforms all others.

Keywords: restricted boltzmann machines, denoising autoencoders, semi-supervised
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1 Introduction

When it comes to collecting information from unstructured data sources, the challenge
is clear for any information harvesting agent: to recognize what is relevant and to cate-
gorize what has been found. For applications such as web crawling, models such as the
competitive Support Vector Machine are often trained on labeled datasets [6]. However,
as the target distribution (such as that of information content from the web) evolves,
these models quickly become outdated and require re-training on new datasets. Sim-
ply put, while unlabeled data is plentiful, labeled data is not [28]. While incremental
approaches such as co-training [15] have been employed to face this challenge, they
require careful, time-consuming feature-engineering (to construct multiple views of the
data).

To minimize the human effort in gathering data and facilitate scalable learning, a
model capable of generalization with only a few labeled examples and vast quanti-
ties of easily-acquired unlabeled data is highly desirable. Furthermore, to avoid feature
engineering, this model should exploit the representational power afforded by deeper
architectures, which have seen success in domains such as computer vision and speech
recognition. Such a multi-level model could learn feature abstractions, arguably captur-
ing higher-order feature relationships in an efficient manner. In pursuit of this goal, our
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contribution is the development of a novel hybrid Boltzmann-based architecture and
its hybrid denoising autoencoder variant as well as their incremental, semi-supervised
learning algorithms and prediction mechanisms. The learning process makes use of
compound learning objectives, balancing, in a parametric fashion, the dual goals of
generative and discriminative modeling of data. We further experiment with relaxing
our approach’s strict bottom-up scheme to better handle the online data-stream setting.

The rest of this paper is organized in the following manner. First, we review relevant
previous work applying deep models to categorization problems in Section 2. Following
this, in Section 3, we describe the algorithmic mechanics of our two incremental, semi-
supervised deep architectures. Experimental results of using these deep architectures in
a variety of data contexts are presented in Section 4. We sum up our work in Section 5
and consider model limitations and potential algorithmic improvements.

2 Related Work

Our algorithms fall in the realm of representation-learning, designed to learn, “...trans-
formations of the data that make it easier to extract useful information when building
classifiers or other predictors” [2]. Shallow learning methods, which require extensive
prior human knowledge and large, labeled datasets, have been argued to be limited
in terms of learning functions that violate restrictive assumptions such as smooth-
ness and locality [4]. Moreover, architectures with a single unobserved layer require
an exponentially increasing number of units to accurately learn complex distributions
that deeper architectures, composed of multiple layers of non-linearity, potentially can.
Deeper models “exploit the unknown structure” of the input data distribution to gener-
ate high-level features that are invariant to most variations in the training examples and
yet preserve as much information regarding the input as possible [1].

In both large-scale, image-based [18, 39] and language-based problems [31, 24, 14,
26], deep architectures have outperformed popular shallow models. However, these
models operate in a multi-stage learning process, where a generative architecture is
greedily pre-trained and then used to initialize parameters of a second architecture that
is discriminatively fine-tuned. To help deep models deal with potentially uncooperative
input distributions or encourage learning of discriminative information earlier in the
learning process, some approaches have leveraged auxiliary models in various ways [3,
41,22]. A few methods have been proposed for adapting deep architecture construction
to incremental learning settings [5, 42]. Furthermore, an interesting approach combined
the simple idea of pseudo-labeling with training deep neural architectures composed of
rectified linear activation functions [13], a recent advancement [23].

While fundamentally different compared to purely generative or discriminative ones
[21], we hypothesize that deep hybrid models that balance multiple objectives similar
to the shallow one in [19] can make good, semi-supervised incremental models for
classification. Motivated by this hypothesis, we design two model candidates, building
on principles and successes of previous work: the Stacked Boltzmann Expert Network
(SBEN) and the Hybrid Stacked Denoising Autoencoders model (HSDA). Furthermore,
we introduce the idea of layer-wise ensembling, a simple prediction scheme we shall
describe in Section 3.3 to utilize layer-wise information learnt by these models.



Online, Semi-Supervised Deep Hybrid Architectures 3
3 Deep Hybrid Architectures

In this section, we describe the implementations of our deep hybrid architectures.

3.1 The Stacked Boltzmann Experts Network (SBEN)

Our proposed variant of the Deep Belief Network (DBN), the Stacked Boltzmann Ex-
perts Network, follows an approach to construction and training similar to the DBN
itself. The key is to, in an efficient, greedy manner, learn a stack of building-block mod-
els, and, as a layer is modified, freeze the parameters of lower layers. In practice, this
is done by propagating data samples up to the layer targeted for layer-wise training and
using the resultant latent representations as observations for constructing a higher level
model. In contrast to the DBN, which stacks restricted Boltzmann machines (RBM’s)
and is often used to initialize a deep multi-layer perceptron (MLP), the SBEN model is
constructed by composing hybrid restricted Boltzmann machines and is directly applied
to the discriminative task and potentially fine-tuned directly'.

The hybrid restricted Boltzmann machine (HRBM) [34, 19, 20], originally referred
to as the ClassRBM, formalized the RBM extended to handle classification tasks di-
rectly. The model has been studied and used in a wide variety of applications [25, 12,
8, 38] including the top of a DBN [36], most of which focus on the directly super-
vised facet of the model. With defined parameters’> © = (W, U, b, ¢,d), the HRBM is
designed to model the joint distribution of a binary pattern vector x = (z1,---,2p)
and its corresponding target variable y € {1,---,C?} utilizing a set of latent variables
h = (hy, -+, hy). The HRBM assigns a probability to the triplet (y,x,h) using:

e" Py 1 —E(y,x,h)
Py, %, h) = ————, with, p(y,x) = S e B 0
h

where Z = (y.%.h) e~ P(u:xh) is the partition function meant to ensure that the value

assignment is a valid probability distribution. Noting that the e, = (lz-zy)icz1 is the
one-hot vector encoding of y, the model’s energy function may be defined as

E(y,x,h) = —h"Wx —b"x — ¢’h — d”e, — h' Ue,. 2)

It is often not possible to compute p(y, X, h) or the marginal p(y, x) due to the in-
tractable partition function. However, we may leverage block Gibbs sampling to draw
samples of the HRBM’s latent variable layer given the current state of the visible layer
(composed of x and e,) and vice versa, owing to the graphical model’s bipartite struc-
ture (i.e., no intra-layer connections). This yields implementable equations for condi-
tioning on various layers of the model as follows:

! We have developed an algorithm to fine-tune the SBEN jointly, but leave usage and evaluation
of this for future work.

2 W is the input-to-hidden weight matrix, U the hidden-to-class weight matrix, b the visible bias
vector, ¢ the hidden unit bias vector, and d the class unit bias vector.



4 Online Learning of Deep Hybrid Architectures for Semi-Supervised Categorization

p(hly,x) = [ [ p(hily,x), with p(h; = 1]y, x) = o(c; + Ujy + Y Wiiz:)  (3)
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p(y/h) =

where o(v) = 1/(1 4+ e~?). Furthermore, to perform classification directly using the
HRBM, one uses the model’s free energy function F'(y,x) to compute the conditional

e~ Fly:x)

(6)

p(ylx) = S oo o—F(yx)

where —F'(y,x) = (dy + 3_;log(1 + exp (¢; + Ujy + > Wjiz:))).

The hybrid model is trained leveraging a supervised, compound objective loss func-
tion that balances a discriminative objective L4, and generative objective Lg,,, de-
fined as follows:

|Dt7‘a'in‘ ‘DtTuivzl
£disc(Dtrain) = - Z IOgP(y\Xt) ‘Cgen(Dtrain) = - Z IOgP(ynXt)
t=1 t=1
(7 (3)

where Dyrain = {(yt,Xt)}, the labeled training dataset. The gradient for £g;5. may be
computed directly, following the general form

dlog p(y:|x)

0
50 = 7Eh|ytaxt l(‘)@ (E(ye, x¢,h)) | + IE:y,h\,x

0

implemented via direct formulation (see [20] for details) or a form of Dropping, such
as Drop-Out or Drop-Connect [37]. The generative gradient follows the form

dlog p(y¢, x)

0 0
PULY) — By x, [wm«:(yt,xt,h» ae@@(y,x,h))] (10)

+E,xh

and, although intractable for any (y;,X;), is approximated via contrastive divergence
[17], where the intractable second expectation is replaced by a point estimate using one
Gibbs sampling step (after initializing the Markov Chain at the training sample).

In the semi-supervised context, where D,y is small but a large, unlabeled dataset
Duniap 1S available, the HRBM can be further extended to train with an unsupervised
objective Ly sup, Where negative log-likelihood is optimized according to

|’Dunlab|

Eunsup(Dunlab) = - Z IOgP(Xt)~ (11)

t=1
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Algorithm 1 Contrastive Divergence: Single update for HRBM generative objective.

Input: training sample (y:, x:), HRBM current model parameters ©
// Note that “a <+ b” indicates assignment and “a ~ b” indicates a is sampled from b
function COMPUTEGENERATIVEGRADIENT(y¢, Xt, ©)
if y¢ = () then
ye ~ p(y|x) > Obtain a pseudo-label for the unlabeled sample.
// Conduct Positive Phase
0 <y, x° ¢ x4, h° < o(c + Wx° 4 Ueyo)
// Conduct Negative Phase
h® ~ p(hly®,x°), y* ~ p(yh®), z* ~ p(x/h°)
h' « o(c+ Wx' + Ue,)
// Compute Gradient Update
for 0 € © do - .
o %E(yo,xo,h ) — %E(yl,xl,h )

return \/

The gradient for £,,,5, can be simply computed using the same contrastive divergence
update for L4, but incorporating an extra step at the beginning by sampling from
the model’s current estimate of p(y|u) for an unlabeled sample u. This form of the
generative update could be viewed as a form of self-training or Entropy Regularization
[23]. The pseudo-code for the online procedure for computing the generative gradient
(either labeled or unlabeled example) for a single HRBM is shown in Algorithm 1.
To train a fully semi-supervised HRBM, one composes the appropriate multi-objective

function using a simple weighted summation:

Esemi (Dtrain 5 Dunlab) = 7£disc (Dt7’ain) + a‘cgen (Dtrain) + Bﬁunsup (Dunlab) (12)

where o and (8 are coefficient handles designed to explicitly control the effects that
the generative gradients have on the HRBM’s learning procedure. We introduced the
additional coefficient y as a means to also directly control the effect of the discrimina-
tive gradient in model training. Setting v = 0 leads to constructing a purely generative
model of Dyyqipn, and Dypsup, and further setting 5 = 0 leads to purely supervised gen-
erative modeling of labeled dataset Dy,.q;y,. If the target task is classification, then ~
may be set to any value in (0, 1] (for simplicity, we chose v = 1, although future work
shall investigate building models with values of this coefficient that shift the balance to
models that favor generative features a bit more). These free parameters, though mak-
ing model selection a bit more challenging, offer an explicit means of controlling the
extent to which the final parameters discovered are influenced by generative learning
[20], much in contrast to simple generative pre-training of neural architectures.

As mentioned before, to compose our N-layer SBEN (or N-SBEN), one follows the
same greedy, layer-wise procedure of a DBN. However, unlike DBN’s, where stacking
RBM’s warrants only a direct feedforward operation (since RBM’s contain only a sin-
gle set of inputs), modifications must be made to account for the architectural design of
the HRBM graphical model. In order to unify the SBEN architecture while respecting
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Fig. 1. Architecture of the SBEN model. The flow of data through the system is indicated by
the numbered arrows. Given a sample x, the dash-dotted arrow indicates obtaining an estimated
label by using the current layer’s conditional via Equation 6 (i.e., Step # 1, dash-dotted red arrow).
The latent representation is computed using this proxy label and the data vector via Equation 3
(i.e.,Step # 2, dashed green arrow). This procedure is repeated recursively, replacing x with h,,.

HRBM building block design, one must combine Equations 3 and 6 to properly com-
pute intermediate data representations during training and prediction. This gives rise to
the architecture as depicted in Fig. 1 and its corresponding learning procedure in Algo-
rithm 2, where the representation for the layer above cannot be computed without first
obtaining an estimate of the current layer’s p(y|x). > Each HRBM layer of the SBEN is
greedily trained using the frozen latent representations of the one below, generated by
using lower level expert’s inputs and predictions.

The generative objectives (for both unlabeled and labeled samples) of our model
can be viewed as a form of data-dependent regularization acting on the discriminative
learning gradient of each layer. One key advantage of SBEN training is that each layer’s
discriminative progress may be tracked directly, since each layer-wise expert is capa-
ble of direct classification using Equation 6 to compute the conditional p(y|hpeiow)-
Note that setting the number of hidden layers equal to 1 recovers the original HRBM
architecture (a /-SEBN). One may notice some similarity with the partially supervised,
layer-wise procedure of [3] where a simple softmax classifier was loosely coupled with
each RBM of a DBN. However, this only served as a temporary mechanism for pre-
training whereas the SBEN leverages the more unified framework of the HRBM during
and after training. Note that inputs to the SBEN, like the DBN, can be trivially extended
[40,29].

A useful property of the SBEN model is that it also contains a generative model
“facet” due to its hybrid nature. One could treat this facet as a directed, top-down gen-

3 One may sample from this prediction vector as one would for hidden activations, however, we
found that simply using this mean in forward propagation step yielded best results.
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Algorithm 2 Greedy, layer-wise construction of an N-SBEN, where N is the desired
number of layers of latent variables.
Input: Dirain, Duniab, learning rate A and hyper-parameters v, «, 3, numSteps, and initial
model parameters © = {O1,02,...,On}
function CONSTRUCTMODEL(D:rqain, Duniab A, 7> @, B, numSteps, O)

Divain < Dirain> Diniap < Duniab > Initialize subsets to low-level representations
for ©, € © do
t<0
while ¢t < numSteps do
(yt,%X¢) ~ Dirain > Draw sample from Dy.,;,, without replacement
(u¢) ~ Dy ras > Draw sample from Dy,,,;,, Without replacement

(Vdisc, Vgen, Vunsup) < UPDATELAYER(yz, X¢, Uz, Or)
Qn — @n + A(_'\/ Vdisc +a Vgen +5Vunsup)yt —t+ 1
h h
Dt’rain — (Z)’ Dunlab — (Z)
for (y:,x¢) € D}yyin, do > Compute latent representation dataset for DL,
D win < COMPUTELATENTREPRESENTATION(y:,Xt, ©7)

for (0, u;) € DI,,10p do > Compute latent representation dataset for Dy, ;.
D! 1ub < COMPUTELATENTREPRESENTATION (), uz, ©,)

h h
’D;ﬂ'rain — Dtrain’ ’Danab — Dunlab
function UPDATELAYER(y¢, X¢, U, O,)

Vdise < COMPUTEDISCIMINATIVEGRADIENT (y¢, X¢, O ) > See [20] for details
Vgen COMPUTEGENERATIVEGRADIENT(yt,Xt, 6n) > See Algorithm 1
Vunsup  COMPUTEGENERATIVEGRADIENT (0, us, ©5,) > See Algorithm 1

return (Vaisc, Vgen, Vunsup)

function COMPUTELATENTREPRESENTATION(Y¢, X¢, ©)
yl — p(ye|xs, On) > Equation 6 under the layerwise model
h; ~ p(h|y!, x:, O,) > Equation 3 under the layerwise model
return (y:, h:)

erative network and generate fantasy samples for specific, clamped class units. In addi-
tion, one could generate class-specific probabilistic scores for input features by adapting
the procedure in [37] and, since each layer contains class units, potentially uncover the
SBEN hierarchy extracted from the data.

3.2 Hybrid Stacked Denoising Auto-encoders (HSDA)

The auto-encoder variant of the SBEN is the Hybrid Stacked Denoising Autoencoders
model. Instead of building a direct model of the joint distribution of (y, x;) as in the
HRBM, the hybrid Denoising autoencoder (hDA) building block, with parameters © =
(W, W’ U,b,b’,d), may be viewed as a fusion of a generative model of p(x), or an
encoder-decoder reconstruction model, with a conditional model of p(y|x), or a single-
layer MLP. The reconstruction model learns a corrupted version of the feature vector
x¢, which is created via stochastic mapping X; ~ ¢p(X:|x), where ¢p is a function that
stochastically corrupts an input vector (i.e., randomly masking entries by setting them
to zero under a given probability). The reconstruction model is defined as
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h = fy(x) =c(Wx+b) (13) z=go(h) =c(Wh+b') (14
where parameters W and W’ may be “tied” by setting W/ = W' The encoder deter-
ministically maps an input to a latent representation h (Equation 13) and the decoder
maps this h back to a reconstruction z (Equation 14). The coupled neural network is
tasked with mapping input x to y while sharing its latent layer h with the encoder-
decoder pair. To compute the conditional p(y|x), one uses Equation 13 followed by
Equation 5 of the HRBM. While the discriminative objective of an hDA is defined sim-
ilarly to the HRBM (Equation 7), where gradients of the log loss are computed directly
(as in an MLP), the generative objective L., proceeds a bit differently:

[Dirainl
ﬁgen(Dtrain) - - Z Xt IOth + (1 - xt) IOg(l - Zt) (15)

t=1

This is the cross-entropy of two independent multivariate Bernoulli distributions, or
cross-entropy loss. Unlike the HRBM, training an hDA under this generative objective
is notably simpler since it uses back-propagation combined with the loss as defined
in Equaton 15. A full hDA is trained using the weighted, tri-objective framework de-
scribed in Section 3.1, Lyey; (Equation 12), where its unlabeled objective L.,y syp Uses
the same cross-entropy function as L., but operates on samples drawn from Dypi45.
The semi-supervised hDA differs from the HRBM complement in not only gradient
calculation but also in that its unsupervised components do not require a corresponding
sample of the model’s estimate of p(y;|u;) for an unlabeled sample w;. This is advan-
tageous since generative gradients are computed independently of the existence of a
label, saving computational time and avoiding one drawback of self-training schemes:
Reinforcement of incorrect predictions through model-generated pseudo-labels.

In the same greedy, layer-wise fashion as the SBEN, the N-layer HSDA (N-HSDA)
may be composed by stacking hDA’s. By replacing the procedure for generative gra-
dients (Algorithm 1) and the discriminative gradient with the appropriate autoencoder
cross-entropy back-propagation alternatives and substituting Equations 6 and 3 with
Equation 13 (for computing hidden activities in COMPUTELATENTREPRESENTA-
TION of Algorithm 2), one may build an HSDA using Algorithm 2. The most useful
property of the HSDA is that required computation for training and prediction may be
reduced since dimensionality of each latent representation in auto-encoder architectures
can be gradually decreased for upper levels of the network.

One may notice that the architectures of [42] and [30] may be recovered from our
framework by manipulating the coefficients 7, o, and g in the Lg.,,; objective func-
tion for the HSDA. Both these studies made use of dual-gradient models, which either
focused on a hybrid objective that balanced a discriminative and weighted generative
objective on a single sample (where the objective collapsed into a single generative
objective when no label was available) [42] or where a generative objective was used
as the primary objective and combined with a weighted discriminative objective [30].
Since our HSDA architecture can be viewed as a more general formulation of these
original models, it is also amenable to their own particular extensions (such as feature
growth/pruning, alternative input units for handling different types of data, etc.).
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3.3 Ensembling of Layer-Wise Experts

Both the SBEN and the HSDA models, in addition to unique strengths, possess the
interesting property where each layer, or expert, of the model is capable of classification
given the appropriate latent representation of the data. This implies that the model is
ensemble-like in its very nature but differs from standard ensemble methods where
many smaller models are horizontally aggregated using well-established schemes such
as boosting [33] or majority voting. Traditional feedforward models simply propagate
data through the final network to obtain an output prediction from its penultimate layer
for a given x;. In contrast, these hybrid models are capable of a producing a label y;* at
each level n for x4, resulting from their layer-wise multi-objective training.

To vertically aggregate layer-wise expert outputs, we experimented with a vari-
ety of schemes in development, but found that computing a simple mean predictor,
D(Y|X) ensembie Worked best, defined as:

N
1
p(y|x)ensemble = N ;p(mx)n (16)

This ensembling scheme allows for all components of the hybrid model to play a role
in classification of unseen samples, perhaps leveraging acquired discriminative ‘“knowl-
edge” at their respective level of abstraction in the model hierarchy to ultimately im-
prove final predictive performance. This scheme exploits our model’s inherent layer-
wise discriminative ability, which stands as an alternative to coupling helper classifiers
as in [3] or the “companion objectives” of [22] to solve potential exploding gradients in
deep convolution networks for object detection.

4 Experimental Results

We present experimental results on several classification problems in both optical char-
acter recognition and document categorization.

Character recognition Two experiments were conducted. The first experiment uses the
Stanford OCR dataset, which contains 52,152 16 x 8 binary pixel images labeled as 1
of 26 letters of the English alphabet. Training (~ 2% of source), validation (~ 1.9%),
unlabeled (~ 19.2%), and test sets (~ 77%) are created via a seeded random sam-
pling without replacement procedure that ensured examples from each class appeared
in roughly equal quantities in training and validation subsets. The second experiment
makes use of a (seeded) stochastic process we implemented that generates 28 x 28 pixel
CAPTCHA images of single characters based on the CAGE model #, where one of 26
English characters may be generated (26 classes), of either lower or upper-case form
in a variety of fonts as well as orientations and scales. We make use of this process
in two ways: 1) create a finite dataset of 16,000 samples with (~ 3.125% in training,
~ 3.125% in validation, ~ 31.125% in unlabeled, and ~ 62.25% in test) and perform

* https://akiraly.github.io/cage/index.html
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an experiment similar to the OCR dataset, and 2) use the process as a controllable data-
stream, which allows for compact storage of a complex distribution of image samples.
The only pre-processing applied to the CAPTCHA samples was pixel binarization.

Text categorization We make use of a pre-processed WEBKB text collection (i.e., font
formatting, stop words removed, terms stemmed, and words with length less than 3 re-
moved) [7], which contains pages from a variety of universities (Cornell, Texas, Wash-
ington, and Wisconsin and miscellaneous pages from others). The 4-class classification
problem as defined by this dataset will be to determine if a web-page can be identified
as one belonging to a Student, Faculty, Course, or a Project. The dataset was already
pre-partitioned into a training set (2,803 samples) and a test set (1,396 web pages), so
using the same sampling scheme as the OCR data, we built from the training split a
smaller training (~ 20.2%) and validation (~ 14.2%) subset, and put the rest into the
unlabeled set (~ 62.5%), discarding 87 document vectors that contained less than 2
active features. The test set contained 1,344 samples, after discarding 52 samples with
less than 2 active features. We simplified the low-level feature representation by using
the top 2000 words in the corpus and binarizing the document term vectors.

Models We compare the HSDA and SBEN models to the non-linear, shallow HRBM
(which, as described in Section 3.1, is a /-SBEN). For a simpler classifier, we imple-
mented an incremental version of Maximum Entropy (which, as explained in [32], is
equivalent to a softmax classifier), or MaxEnt. Furthermore, we implemented the Pega-
sos SVM algorithm (SVM) [35] and extended it to follow a proper multi-class scheme
[9]. This is the online formulation of the Support Vector Machine, trained via sub-
gradient descent on the primal objective followed by a projection step (note that for
simplicity we built the linear-kernel version of the model, which is quite fast). Evaluat-
ing the Pegasos SVM algorithm in the following experiments allows us to compare our
deep semi-supervised models against the incremental version of a strong linear-kernel
classifier. To provide some context with previously established deep architectures also
learnable in a 1-phase fashion like our own, we present results for a simple sparse
Rectifier Network, or Rect. [13]. ° Note that we extended all shallow classifiers and
the Rectifier Network to leverage self-training so that they may also learn from unla-
beled examples. To do so, we implemented a scheme similar to that of [23] and used
a classifier’s estimate of p(y|u) for an unlabeled sample. However, a 1-hot proxy en-
coding using the argmax of model’s predictor was only created for such a sample if
maz[p(ylu)] > p. We found that by explicitly controlling pseudo-labeling through p
we could more directly improve model performance.

Model Selection Model selection was conducted using a parallelized multi-setting
scheme, where a configuration file for each model was specified, describing a set of
hyper-parameter combinations to explore (this is akin to a course-grained grid search,
where points of model evaluation are set manually a priori). For the HSDA, SBEN,

5 Model implementations were computationally verified for correctness when applicable. Since
discriminative objectives entailed using an automatic differentiation framework, we checked
gradient validity via finite difference approximation.
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Table 1. Character identification results on the CAPTCHA simulated dataset. Classification re-
sults are reported as 10-trial averages with single standard deviation from the mean.

Error Precision Recall F1-Score
MaxEnt 0.475 £ 0.010 0.535 4 0.011 0.524 + 0.010 0.522 £ 0.010
SVM 0.461 £+ 0.011 0.564 + 0.010 0.537 £ 0.011 0.526 + 0.011

2-Rect [13,23] 0.365 £ 0.011 0.651 = 0.011 0.634 £ 0.011 0.627 £ 0.013
HRBM [20]  0.368 £ 0.009 0.643 £ 0.010 0.631 £ 0.009 0.629 £ 0.009
5-SBEN 0.324 £ 0.008 0.681 + 0.009 0.675 + 0.008 0.671 £ 0.009
5-HSDA 0.359 £ 0.011 0.650 £ 0.011 0.640+ 0.011 0.633 £ 0.011

Table 2. Character identification results on the Stanford OCR dataset. Classification results are
reported as 10-trial averages with single standard deviation from the mean.

Error Precision Recall F1-Score
MaxEnt 0.425 £ 0.009 0.508 £ 0.006 0.563 + 0.005 0.512 4 0.006
SVM 0.428 + 0.008 0.504 4+ 0.004 0.582 4+ 0.011 0.510 £ 0.007

3-Rect [13,23] 0.387 £ 0.009 0.549 £ 0.009 0.592 £ 0.014 0.548 £+ 0.011
HRBM [20]  0.399 £ 0.019 0.565 £ 0.009 0.606 4= 0.016 0.552 4= 0.014
3-SBEN 0.333 + 0.009 0.602 £ 0.009 0.668 £ 0.009 0.610 £ 0.012
3-HSDA 0.399 £+ 0.012 0.546 £+ 0.007 0.601 £ 0.012 0.537 £ 0.009

Table 3. Text categorization results on the WEBKB dataset.

Error Precision Recall F1-Score Error Precision Recall F1-Score
MaxEnt 0.510 0.386 0.387 0.384 3-SBEN 0.210 0.788 0.770 0.769
SVM  0.524 0.404 0.378 0.387 3-HSDA 0.219 0.757 0.780 0.765

HRBM, and Rect we varied model architectures, exploring under-complete, complete,
and over-complete versions, as well as the learning rate, «, and /3 coefficients (holding
v fixed at 1.0). If a model was trained using its stochastic form (i.e., HRBM, SBEN,
or HSDA), to ensure reproducible model behavior, we ran it in feedforward mean-field,
where no sampling steps were taken when data vectors were propagated through a net-
work model when collecting layer-wise predictions (we also found that this yielded
lowest generalization error). For the SVM, we tuned its slack variable A. The rectifier
network’s training also involved using a L2 regularization penalty (0.002), initializa-
tion of hidden biases to small positive values (|IV(0,0.25)]) [13], and the use of the
improved leaky rectifier unit [27].

For all finite dataset experiments, model performance is reported on the test set us-
ing the model with lowest validation-set error found during the training step. ® General-
ization performance was evaluated by calculating classification error, precision, recall,

® For the SVM, \ was varied in the interval [0.0001,0.5] while the learning rate for all other
models was varied in [0.0001, 0.1]. For HRBM, SBEN, & HSDA, 8 was explored in the
interval [0.05, 0.1], and for HRBM, SBEN, & HSDA, a: was explored in [0.075, 1.025]. The
threshold p was varied in [0.0, 1.0] and the number of latent layers N for deeper architectures
was explored in [2, 5] where we delineate the optimal number with the prefix “/N-".
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and F-Measure, where F-Measure was chosen to be the harmonic mean of precision and
recall, F'1 = 2(precision - recall) /(precision + recall).

Since the creation of training, validation, and unlabeled subsets was controlled
through a seeded random sampling without replacement process, the procedure de-
scribed above composes a single trial. For the Standford OCR and CAPTCHA datasets,
the results we report are 10-trial averages with a single standard deviation from the
mean, where each trial used a unique seed value.

4.1 Finite Dataset Learning Performance

On all of the datasets we experimented with, in the case when all samples are available
a priori, ranging from vision-based tasks to text classification, we observe that hybrid
incremental architectures have, in general, lower error as compared to non-hybrid ones.
In the CAPTCHA experiment (Table 1), we observed that both the SBEN and HSDA
models reduced prediction error over the SVM by nearly 30% and 22% respectively.
Furthermore, both models consistently improved over the error the HRBM, with the
SBEN model reducing error by ~ 12%. In the OCR dataset (Table 2), we see the SBEN
improving over the HRBM by more than 16% and the SVM by more than 22%. In
this case, the HSDA only marginally improves over the SVM model (~ 6%) and equal
to that of an HRBM, the poor performance we attribute to a coarse search through a
meta-parameter space window as opposed to an exhaustive grid search. For WEBKB
problem, over the MaxEnt model (which slightly outperformed the SVM itself), we see
a ~ 57% improvement in error for the HSDA and ~ 58% for the SBEN (Table 3). Note
that the rectifier network is competitive, however, in both image-based experiments, the
SBEN model outperforms it by more than 11% on CAPTCHA and nearly 14% on OCR.

4.2 Incremental Learning Performance

In the online learning setting, samples from D,,,,;,, may not be available at once and
instead available at a given rate in a stream for a single time instant (we chose to ex-
periment with one example presented at a given iteration and only constant access to a
|Dtrain| = 500). In order to train a deep architecture in this setting, while still exploit-
ing the efficiency of a greedy, layer-wise approach, one may remove the “freezing” step
of Algorithm 2 and train all layers dis-jointly in an incremental fashion as opposed to
a purely bottom-up approach. Using the same sub-routines as depicted in Algorithm 2,
this procedure may be implemented as shown in Algorithm 3, effectively using a sin-
gle bottom-up pass to modify model parameters. This approach adapts the training of
hybrid architectures, such as the SBEN and HSDA, to the online learning setting.

As evidenced by Fig. 2, it is possible to train the layer-wise experts of a multi-level
hybrid architecture simultaneously and still obtain a gain in generalization performance
over a non-linear, shallow model such as the HRBM. The HRBM settles at an online
error of 0.356 whereas the 5-HSDA reaches an error of 0.327 and the 5-SBEN an error
of 0.319 in a 10,000 iteration sweep. Online error was evaluated by computing classifi-
cation error on the next 1,000 unseen samples generated by the CAPTCHA process.

While the simultaneous greedy training used in this experiment allows for con-
struction of a deep hybrid model in unity when faced with a data stream, we note that
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

= 3-SBEN HRBM === HSDA

Fig. 2. Online error (y-axis) of 3-SBEN, 3-HSDA, & HRBM (or /- SBEN) evaluated every 100
time steps (x-axis). Each curve reported is a 4-trial mean of the lowest validation error model.

Algorithm 3 Online variant of layer-wise construction of a deep hybrid architecture.

Input: (y¢,%X¢) € Dirain, (W) € Dunias, learning rate A, hyper-parameters -, o, 3, & model
parameters © = {01,002, ...,0On}
function CONSTRUCTMODEL(y¢, X¢, Uy, A, 7, @, 3, O)
X xp, ul —wy > Initialize samples to low-level representations
for ©, € © do
(Vdises Vgen, Vunsup) < UPDATELAYER (y:, X', ul, ©,,)
Qn — @n + A(_'Y Vdise TQ Y gen +ﬁVunsup)9t —t+1
// Compute latent representation of data samples
(¢, X)) < COMPUTELATENTREPRESENTATION (¥, X', O,)
(@, u}) + COMPUTELATENTREPRESENTATION((), ul, ©,,)

instability may occur in the form of “shifting representations”. This is where an upper
level model is dynamically trained on a latent representation of a lower-level model that
has not yet settled since it has not yet seen enough samples from the data distribution.

5 Conclusions

We developed two hybrid models, the SBEN and the HSDA, and their training algo-
rithms in the context of incremental, semi-supervised learning. They combine efficient
greedy, layer-wise construction of deeper architectures with a multi-objective learn-
ing approach. We balance the goal of learning a generative model of the data with
extracting discriminative regularity to perform useful classification. More importantly,
the framework we describe facilitates more explicit control over the multiple objectives
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involved. Additionally, we presented a vertical aggregation scheme, layer-wise ensem-
bling, for generating predictions that exploit discriminative knowledge acquired at all
levels of abstraction defined by the architecture’s hierarchical form. Our framework
allows for explicit control over generative and discriminative objectives as well as a
natural scheme for tracking layer-wise learning.

Models were evaluated in two problem settings: optical character recognition and
text categorization. We compared results against shallow models and found that our hy-
brid architectures outperform the others in all datasets investigated. We found that the
SBEN performed the best, improving classification error by as much 58% (compared to
Maximum Entropy on WEBKB). Furthermore, we found that improvement in perfor-
mance holds when hybrid learning is adapted to an online setting (relaxing the purely
bottom-up framework in Section 3.1). We observe that we are able to improve error
while significantly minimizing the number of required labeled samples (as low as 2%
of total available data in some cases).

The hybrid deep architectures presented in this paper are not without potential lim-
itations. First, there is the danger of “shifting representations” if using Algorithm 3
for online learning. To combat this, samples could be pooled into mini-batch matrices
before computing gradients and minimize some of the noise of online error-surface de-
scent. Alternatively, all layer-wise experts could be extended temporally to Conditional
RBM-like structures, potentially improving performance as in [43]. Second, additional
free parameters were introduced that require tuning, creating a more challenging model
selection process for the human user. This may be alleviated with a parallelized, auto-
mated approach, however, a model that adapts its objective weights during the learning
process would be better, altering its hyper-parameters in response to error progress on
data subsets. Our frameworks may be augmented with automatic latent unit growth for
both auto-encoder [42] and Boltzmann-like variants [10] or perhaps improved by “ty-
ing” all layer-wise expert outputs together in a scheme like that in [11].

The models presented in this paper offer promise in the goal of incrementally build-
ing powerful models that reduce expensive labeling and feature engineering effort. They
represent a step towards ever-improving models that adapt to “in-the-wild” samples, ca-
pable of more fully embracing the “...unreasonable effectiveness of data” [16].
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