
Web Crawler Middleware for Search Engine Digital
Libraries: A Case Study for CiteSeerX

Jian Wu†, Pradeep Teregowda‡, Madian Khabsa‡, Stephen Carman†, Douglas Jordan‡, J
Jose San Pedro Wandelmer†, Xin Lu†, Prasenjit Mitra† and C. Lee Giles†‡
†Information Sciences and Technology ‡Department of Computer Science and Engineering

University Park, PA, 16802, USA
jxw394@ist.psu.edu

ABSTRACT
Middleware is an important part of many search engine web
crawling processes. We developed a middleware, the Crawl
Document Importer (CDI), which selectively imports doc-
uments and the associated metadata to the digital library
CiteSeerX crawl repository and database. This middleware
is designed to be extensible as it provides a universal inter-
face to the crawl database. It is designed to support input
from multiple open source crawlers and archival formats,
e.g., ARC, WARC. It can also import files downloaded via
FTP. To use this middleware for another crawler, the user
only needs to write a new log parser which returns a resource
object with the standard metadata attributes and tells the
middleware how to access downloaded files. When importing
documents, users can specify document mime types and ob-
tain text extracted from PDF/postscript documents. The
middleware can adaptively identify academic research pa-
pers based on document context features. We developed a
web user interface where the user can submit importing jobs.
The middleware package can also work on supplemental jobs
related to the crawl database and respository. Though de-
signed for the CiteSeerX search engine, we feel this design
would be appropriate for many search engine web crawling
systems.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures

Keywords
search engine, information retrieval, web crawling, ingestion,
middleware

1. INTRODUCTION
Crawling is a prerequisite and an essential process for op-

erating a search engine. A focused crawler should be able

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’12, November 2, 2012, Maui, Hawaii, USA.
Copyright 2012 ACM 978-1-4503-1720-7/12/11 ...$15.00.

to efficiently harvest designated documents from the inter-
net. The CiteSeerX [3] digital library and search engine is
designed to provide open access to academic documents in
PDF and postscript formats. While a well designed vertical
crawler can efficiently select documents based on their con-
tent types, it is also desirable to crawl all potentially useful
files first and then selectively import documents of certain
formats to the search engine repository.

Most available open source crawlers at present are de-
signed for general purposes and are not customized for a
particular search engine. Some web crawlers, such as Her-
itrix [2], have been well maintained and widely used by dig-
ital libraries, archives, and companies1. To take advantage
of these crawlers to serve for a digital library which mainly
indexes academic documents, it is necessary to define a clear
interface to integrate these crawlers to the ingestion system
of the search engine. Besides, this interface should also be
able to import documents which are directly downloaded by
FTP service.

Here, we develop a middleware, named Crawl Document
Importer (CDI), to import documents of selected formats
from files harvested by an open source crawler or from FTP
downloads to the crawl database and repository before in-
gesting them into the CiteSeerX search engine. Heritrix is
one of the highly rated and widely used open source crawlers,
so we take it as an example application. However, the mid-
dleware is designed to be extensible, i.e., for another web
crawler, the user only need to write a log parser/extractor
which returns the standard metadata tuple and tells the
middleware how to access the downloaded files.

The Python crawler written by Shuyi Zheng (hereafter
the SYZ crawler) has been the dedicated harvester for the
CiteSeerX project since 2009. This crawler is able to crawl
about 5000–10000 seed URLs daily with a depth of two us-
ing a breadth-first policy. As a focused crawler, a number
of filter rules are applied to selectively download free access
online documents in PDF and postscript formats. As the
CiteSeerX is expanding its service to other types of doc-
uments, switching to other more reliable and well main-
tained crawlers can be more efficient and desirable. The
SYZ crawler is not able to import documents directly down-
loaded from FTP service. In addition, it is a necessity to
define an interface to the crawler system in order to com-
bine the crawler to the CiteSeerX code to make it more
integrated. These considerations drive us to design a mid-
dleware which can work with multiple open source crawlers.

1https://webarchive.jira.com/wiki/display/
Heritrix/Users+of+Heritrix

57

In the text below, the files include any types of resources
downloaded from the web, while the term documents refers
to files in user specified formats, e.g., PDF/postscript. The
repository is a directory which stores physical academic doc-
uments and database refers to the records managed by a
database management system. We use MySQL to manage
the database.

2. FUNCTIONALITIES
The current version of CDI has the following features and

functionalities:

1. Extensibility. The middleware defines a standard
interface to the crawl repository and database, so it
minimizes the amount of coding to import documents
downloaded by other web crawlers.

2. Multiple input file formats. The CDI middleware
is capable of handling input files written by Heritrix
mirror writer, the ARC and WARC writers. It also
supports importing documents from FTP downloads.

3. Multiple mime type support. The desired mime
types can be specified in the configuration file. For
CiteSeerX purposes, we focus on PDF and postscript
formats.

4. Control options. The users have options to turn
on/off the document content filter (DCF), and the
database writer. The DCF checks if the document
is academic or not. If the database writer is turned
off, the documents that pass all filters are saved to a
separate folder.

5. Standard MySQL table. The middleware creates
standard database tables automatically. All database
operations are implemented using the cursor object,
so the user do not need to edit the models.py.

6. Web user interface. A web console is developed on
top of the Django project2 [1] to provide a user friendly
interface to the middleware.

7. Command line mode. The user can also run the
importing jobs from the linux console using a single
command.

8. Multiple functionalities on database query. Be-
sides document importing, the CDI middleware can
also transfer documents which meet a certain condi-
tions out of the crawl repository and generate the seed
list (whitelist) for future web crawling.

9. On-screen information prints. The middleware
prints processing status for each file in color on the
linux console. It automatically counts the numbers of
files with different flags and prints them in a table at
exit.

3. DESIGN AND CODING
This middleware is designed to provide a universal inter-

face for multiple crawlers and input file mime types to min-
imize the extra coding when a new crawler is used. The role

2https://www.djangoproject.com

of this middleware in the crawler architecture is illustrated
in Fig. 1. The CDI plays as a “bridge” between the crawler
and the crawl repository/database. In this figure, Heritrix
crawler can be replaced with another crawler or FTP down-
loads, which may have a different log formats. The SYZ
crawler was designed specifically for the CiteSeerX project,
so it does not require the CDI middleware.

Figure 1: The role of the CDI middleware with the
crawler, the repository and the database.

3.1 Work Flow
The work flow of the CDI middleware in form of pseudo

code is illustrated in Algorithm 1. The middleware first
checks the user configurations, including the accessibility
of the input and output directory. If the crawl files were
saved in ARC/WARC formats, they are decompressed and
files/folders are saved in hierarchical order as a site mirror.
The crawl log file is then loaded and each line is parsed
according to its specific format. The goal is to extract
the resource URL (ui), its parent URL (pi), the time it
was crawled (ti), the file format (content-type) as identified
from the HTTP response header (if available), and the crawl
depth (hi). Some log records are skipped because they do
not provide actual file downloads, e.g., the DNS checking re-
quest. After parsing all log records, the middleware creates
database tables if they do not exist. Then it loops over and
processes all the files it identifies in the log file.

First, all the resource attributes of File i are encapsulated
into a single variable ri. The mime type filter is then applied
and only files that are among the mime types specified in
the configuration file can pass this filter. The program then
checks if these files physically exist in the local drive and
decompresses gzipped files if necessary. If the DCF is turned
on, the text information must be extracted from the original
files. Once the document content is accepted, it is saved to
the repository and/or the database.

The middleware has several counters which count the file
numbers that pass and fail at each filter. After finishing all
files, it prints the values of all counters (see Table 1). The
middleware also prints the execution time at exit.

In Fig. 2, we present the architecture of the CDI middle-
ware. Each part of the middleware is described below in
detail.

3.2 Log Parser
The log file and the crawl downloads provide the input.

The log parser (or log/metadata extractor) parses the crawl
log and is the only component which need to be replaced for
a new crawler. This component is responsible for parsing

58

Algorithm 1 The pseudo-code of the CDI program.

Require: Crawl log and documents
Ensure: Crawl database and repository
1: check configurations
2: decompress ARC/WARC files (if necessary)
3: parse the log file to get ui,pi,ti,fi,hi

4: create database tables
5: for File i from log do
6: ri=resource(ui, pi, ti, fi, hi)
7: if not mimetypeFilter.check(fi) then
8: continue
9: end if
10: if not i.fileExist then
11: continue
12: end if
13: if ri.mimetype == ‘x-gzip’ then
14: unzip file i
15: find the document path
16: end if
17: if document content filter == ‘ON’ then
18: if not i.extractText then
19: continue
20: end if
21: if not documentcontentFilter.check(i.text) then
22: continue
23: end if
24: end if
25: if save to database == ‘OFF’ then
26: save to repository(i)
27: continue
28: else
29: save to database(ri)
30: save to repository(i)
31: end if
32: end for
33: save verification()
34: counters.print()
35: print(processing time)

and extracting metadata from crawl logs. The output of
this extractor should at least provide a resource object with
the following attributes:

1. The document URL, i.e., the original URL where a
document is downloaded. For example, http://www.
example.edu/tom/pub/paper1.pdf. This attribute is
required.

2. The parent URL of the document URL, i.e., the page
where the paper is linked to. This is usually an HTML
or a text page, e.g., http://www.example.edu/tom/

home.htm. This attribute is also required.

3. A boolean variable indicating whether the document
URL is a seed or not. This attribute is optional.

4. The depth of the document URL with respect to its
seed URL. For Heritrix, the depth information can be
obtained by counting the letters in the discovery path
field3. This attribute is optional. The depths of seed
URLs are defined to be zero.

3http://crawler.archive.org/articles/user_manual/
glossary.html

Table 1: Counters printed when program exists.
Counter Name Description

all All files processed
saved New New documents saveda

saved Duplicate Duplicate URLsa

filtered All documents filtered out
filtered MTFc Documents filtered out by MTF

filtered DCFd Documents filtered out by DCF
failed TextExtract Failed to extract text
failed FileNotFound Files not found

failed PDFFilenotFound Zipped files not containing PDFsb

a This counter is set to zero if the user choose not to
write into the database.

b The gzipped files may exist, but no PDF/postscript
documents are found after they are decompressed.

c MTF=mime type filter.
d DCF=document content filter.

5. The crawl date and time, which is a Python date-

time object. This attribute is required.

6. The documentmime type, e.g., application/pdf. This
attribute is required.

Both of document and parent URLs are normalized so that
the relative paths are collapsed and the URL reserved char-
acters are quoted and converted to utf-8 encoding if needed.
The SYZ crawler itself can extract these attributes from the
HTTP response headers. Heritrix crawler (version 1.14.1 or
3.0.0 and above) log contains all the information above. The
FTP downloads may not generate a log file, but it is easy to
generate a text file which lists the file paths. The attributes
above can then be customized as constants (e.g., the down-
load date and time) or depending on file paths (e.g., parent
URL). If a new crawler is used, its log extractor should be
able to extract and aggregate these attributes into a resource
object.

3.3 Mime Type Filter
The metadata object is passed to the mime type filter

which filters out any files which are not among the mime
types specified in the configuration file. Mime types are
identified from the HTTP header by the crawler or by using
the ‘file -mime’ command. File extensions are not used for
mime type detection as they are not reliable. Documents
that pass the type filter will be renamed based on their mime
type before saving to the repository. Documents which pass
the mime type filter are processed by the DCF if it is toggled
on. Otherwise, they can be directly saved to the repository.

3.4 Document Content Filter (DCF)
The DCF attempts to classify a document based on text

contents extracted from PDF or postscript files. We use
PDFBox4 (version 1.5.0 and above) for PDF file text ex-
traction and ps2ascii (GPL Ghostscript 8.70) for postscript
file text extraction. At this time, we have not integrate the
optical character recognition (OCR) into this middleware,
so scanned PDF documents cannot pass this filter. A small
fraction of postscript files cannot be parsed most likely be-
cause they are converted from images.

The content filter module performs a binary classification.
The acceptance decision is made not just based on the con-
tent, but also by presence of sections such as References. The

4http://incubator.apache.org/pdfbox/

59

Figure 2: The architecture of the CDI middleware.
Arrows indicate data flow directions. The log parser
is the only component that needs to be replaced if
a new crawler is used.

Table 2: Top features for content filtering.

Feature Name
Title case words
Page one section count
Figure keyword
Sentences with title case beginnings
Self descriptors (this paper)

filter utilizes a cross section of features including keywords,
keyword positions, and typography extracted from the doc-
ument text. Top features identified by the information gain
metric are provided in Table 2. By iterating the process
of feature selection, we were able to reduce the number of
features from a few thousand keywords to 45. We trained a
simple logistic classifier with over 400 documents and a cross
validation accuracy of 91.3%. If a document is determined
to be an academic paper, it is passed for further processing.
Otherwise, it is dropped.

By default, the metadata is output in XML format, the
extracted texts and the documents are saved to the same
directory in the crawl repository.

3.5 Database Design
In Table 3 and 4, we present the database design. There

are two entities in this design: document and parent URL.
The encryption algorithms MD5 and SHA1 are used for du-
plicate detection. If a document passes all filters, its parent
URL MD5 value is calculated. The document itself is down-
loaded to the cache (but not saved yet, see Section 3.6) and
its SHA1 value is also calculated. If this document URL
is new (its MD5 is new), a new database record is created.
Otherwise, the SHA1 and the update date are both refreshed.
If a document is saved into the crawl database, its parent
URL must be saved or the last crawl datetime of the exist-
ing parent URL is updated. Similar to the document table,
the parent URL MD5 value is also calculated to ensure that
there is no URL duplication.

The state field indicates whether a document is ingested
or not. This field is reset to the default value if an updated
document version is identified. Ingestion is a post-crawl pro-
cess to examine, parse, classify, and index the documents
and make them searchable. There are three possible states
for a given document: ingested, failed to be ingested, or not
ingested (default).

Table 3: The document table design.
Field Type Description
id int(11) Document ID
url varchar(255) Document URL
md5 varchar(32) MD5 value of document URL
host varchar(255) host name of document URL
content_sha1 varchar(40) SHA1 value of crawled document
discover_date datetime First time to crawl this document
update_date datetime Last time to crawl this document
parent_id int(11) parent URL ID
state int(11) Ingested or not

Table 4: The parent URL table design.
Field Type Description
id int(11) parent URL ID
url varchar(255) parent URL
md5 varchar(32) MD5 value of parent URL
first_crawl_date datetime Time of the first visit
last_crawl_date datetime Time of the last visit

The database design is implemented using MySQL (ver-
sion 5.1 and above). The Django framework (version 1.3
and above) is applied for database interface. The database
can be located on the localhost or a remote server.

3.6 Repository Design
The repository is a directory to save filtered crawled doc-

uments. Subfolders are automatically generated in a hier-
archical order. Each subfolder is named using three digital
numbers corresponding to a piece of document ID (see Ta-
ble 3). For example, a PDF document with ID 1234567
is saved to 001/234/567/001.234.567.pdf. The associated
metadata and text files (optional) are named as
001.234.567.pdf.met and 001.234.567.txt, respectively and
saved to the same folder. If an updated version of a docu-
ment is identified from an existing URL, the old document
files in the repository is updated to ensure freshness.

3.7 Web Crawling from Heritrix
By default, Heritrix writes all its crawled contents to disk

using its ARCWriterProcesser. The ARC file format has
long been used by the Internet Archive5. Each ARC file
consists of a version block and a document block. The version
block identifies the metadata such as the original file name,
version and URL records, while the document block records
the body of the archive file. Heritrix can be configured to
output files in WARC format. The WARC format, which
has an ISO standard6, is a revision of the ARC file format
that has been traditionally used to store web crawls.

Although some ARC/WARC readers are developed, we
found that the most reliable ARC/WARC reader is the AR-
Creader andWARCreader developed by the Internet Archive
in Java7. Such readers are adopted by the YouSeer project8.
The YouSeer project provides software to ingest documents
harvested by Heritrix into the apache Solr9. Instead of in-
dexing and exporting the crawled content to Solr, we save

5http://archive.org/web/researcher/ArcFileFormat.
php
6http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=44717
7http://crawler.archive.org/apidocs/org/archive/
io/arc/ARCReader.html
8http://youseer.sourceforge.net/
9http://lucene.apache.org/solr/

60

extracted files to a temporary directory before they are ac-
cessed by the middleware document writer. The ARC/WARC
files are compressed and can take a significant overhead of
running time. It also require a large amount of temporary
storage for extracted files.

Heritrix can save crawled files in a MirrorWriterProcessor.
The files are arranged in a directory hierarchy based on the
URL, in which sense they mirror the file hierarchy that might
exist on the servers. Because of this, in most cases, the
location of a crawled file can be easily generated from the
resource URL. Although this writer may take more space
than the ARC/WARC writer, it saves a significant amount
of time used to decompress ARC/WARC files.

3.8 Coding
This middleware follows an agile development model. The

body is written in Python. Part of the package are adopted
from the SYZ crawler. Java commands are invoked and
executed within the Python code to handle ARC/WARC
files and extract text content from PDF files.

4. WEB USER INTERFACE
We developed a web user interface for the CDI middle-

ware, so that the user can create, modify and submit doc-
ument importing jobs quickly. This interface needs to be
deployed on the same server as the crawler and requires lo-
gin credentials, but the web pages are accessible from remote
computers. The web interface is based on the Django frame-
work which provides a light weighted server. A snapshot of
the dashboard (Main Menu) is presented in Fig. 3.

Figure 3: The dashboard (Main Menu) page of the
CDI web console.

The dashboard displays three groups of jobs.

4.1 Crawl document importing jobs
These are the main jobs of the CDI middleware. Two op-

tions are provided. The user can either create a new job or
view existing jobs. In Fig.4, we present the “Job Configu-
ration” page after clicking “Create a new job” button. Most
entries are in the configuration file. The “Blacklist file” con-
tains a list of host names which the user does not want to
import documents from. If the user choose HERITRIX/ARC

or HERITRIX/WARC for the “Crawler/Saver”, the middleware
first calls the ARC/WARD reader module to extract the
crawled documents before importing them.

The mime type filter is always applied. If the DCF is
turned off, all documents in the selected document types are
imported. If the“Save to database” is toggled off, documents

Figure 4: The job configuration page of the CDI web
console.

metadata are not saved to database and only imported to a
separate directory. After pressing the submit button, the job
configurations are saved to the database and the job starts
to run. The users can also view existing jobs and re-run
them.

4.2 Database query jobs
The “Clean the crawl document table” job cleans the doc-

ument URL table by removing documents that meet both of
these conditions: (1) the URL hosts are in the blacklist; (2)
the documents fail to be ingested. The goal of this job is
to remove crawl documents that are definitely not useful to
save disk space and speed up database queries.

The “Clean the parent URL table” job generates a paren-
turl.revised.csv file which contains the cleaned parent URL
list by removing low quality parent URLs that meet any of
the following conditions: (1) the URL host names match any
host names in the blacklist; (2) no document is found in the
document URL table corresponding to the parent URLs; (3)
the URL links are dead. The goal of this job is to obtain a
list of high quality seed URLs for whitelist generation.

The “Generate a whitelist” job generates a text file that
contains the URLs selected from the parenturl.revised.csv
file and ranked based on the number of ingested documents
and citation rates [4]. This whitelist represents the highest
quality seeds selected and ranked based on the crawl history
and can be re-crawled in the future.

4.3 Document retrieval jobs
The “Retrieve documents” job can retrieve a set of doc-

uments from the crawl repository or database which satis-
fies certain conditions. For example, the user can randomly
retrieve 1000 PDF/postscript documents crawled between
January, 2011 and June, 2011 as a sample for their research
purpose.

5. RUNNING CDI
It is easy to run the CDI code on a Linux terminal. There

is one configuration file for the CDI main program (run-
config.py) and one for the Django module (settings.py).
The configuration items in runconfig.py are listed in Ta-
ble 5. In the settings.py, the user only needs to configure
the database access. All the statements follow the standard

61

Python syntax. To run the program, just make cdi.py ex-

Table 5: Configuration terms.
Configuration
Term Description
django_settings_module Django setting module
logfile Full path of crawl log file
logparser Crawler log parser
inputdir Crawler download directory
outputdir Crawl repository
tempdir Temporary directory
crawler Crawler name
saver Crawler saver
allow_doc_type Accepted mime types
toggle_doc_content_filter Turn on/off DCF
toggle_save_to_db Turn on/off database saver
toggle_save_doc_separate Save documents to a separate folder
pdfboxpath PDFBox .jar file path
ps2asciipath ps2ascii command
dbt_document document table name
dbt_parenturl parent URL table name

ecutable and type

$./cdi.py

If there is not any problem in the configuration file, the pro-
gram outputs runtime information on the screen, including
the progress (number of files processes vs. total number of
files), the URL which is being processed, the full path of the
file, whether the file passes the mime type filter, whether the
text is successfully extracted, whether it passes the DCF,
whether it is a new document (or duplicate), and finally
whether this document is successfully saved.

Although Python 2.4 is supported, we recommend to run
the most recent version of CDI using Python 2.6+ and
Django 1.3+. To extract the text from PDF files, JDK 1.6+
and PDFBox 1.5+ need to be installed. The MySQL 5.1+
is required in the database server. The user needs to config-
ure the iptables if the database server is not the localhost.
The SELECT, UPDATE, CREATE and DELETE privileges should
be granted to the MySQL user account.

The middleware has been tested on a Redhat Enterprise
Linux (RHEL) 5.8 server with dual Intel Xeon E5440
@2.83GHz, and 32GB memory. The MySQL database server
is on another server with AMD Opteron Dual-Core Proces-
sor 2216 @1.00GHz, and 8GB memory. The database engine
is InnoDB and the main access table contains about 5 mil-
lion rows with all columns indexed.

The middleware was able to process 912 crawl records
from the SYZ crawler in about 22 minutes, all of which
are academic papers in PDF formats with the DCF turned
on. It was able to process 594, 260 crawl records from Her-
itrix 1.14.4 mirror writer for about 16 hours with the DCF
turned on. About 34, 390 (5%) are academic papers. It
was also able to process 1.6 million crawl records from Her-
itrix 3.1.0 mirror writer for about 8.35 hours.

The CDI middleware does not have a high requirement on
the processor. The most two time consuming units are the
text extractor and the DCF, but if the DCF toggle is turned
off, the text extractor is not used either. However, the CDI
middleware may have a high demand on the memory if the
crawl log file is large. With our server, we are able to im-
port a crawl log up to 10 million records (∼ 3GB) with the
crawling running in idle state.

6. TESTING

6.1 Scalability
To test the scalability of the CDI middleware, We per-

formed two series of experiments in which we import open
access medical and biological publications. In the first series
of experiment, we turn off the DCF so that all documents
are imported into the crawl database and repository. The
time T it spends as a function of documents (N(DCF off)))
imported are presented in Fig. 5, and the data are presented
in Table 6.

Figure 5: Processing time as a function of document
number with the DCF turned off. See data in Ta-
ble 6.

Table 6: Processing time for running each set of
documents after turning off the DCF.

N(DCF off) T/seconds
1 < 1
10 3
100 27
1000 285
10000 2605
100000 34413

A linear fitting in the logarithmic space yields a relation
of

log T = (0.93± 0.05) logN(DCF off) + (−0.27± 0.15).

The slope is very close to one, which indicates a linear rela-
tion between the T andN(DCF off), and the average time to
add a document without applying the DCF is about 0.24 sec-
onds (calculated by averaging the T/N(DCF off) of the last
five data points).

In the second series of experiments we turn on the DCF,
and import a different set of documents (so there is no du-
plication). In Fig. 6, we plot the processing time as a func-
tion of document number. Turning on the DCF requires
extracting text from PDF files which significantly increases
the running time, so we only import up to 100 documents.

Fig. 6 demonstrate that the running time is linearly cor-
related with the number of documents. The ordinary lease-

62

Figure 6: Processing time as a function of document
number with the DCF turned on. Data are listed in
Table 7.

Table 7: Processing time for running each set of
documents after turning on the DCF.

N(DCF off) T/seconds
1 4
10 22
20 48
30 70
40 77
50 103
60 146
70 165
80 194
90 220
100 225

square fit yields a linear regression of

T = (2.37 ± 0.08)N(DCF on) + (−2.86± 4.98),

which is consistent with a zero interception. It takes about
2.37 seconds to import a document by turning on the DCF.

This middleware was also able to import about 500 pow-
erpoint files from a Heritrix crawl in only less than a minute
without using the DCF. Actually, most of the time was spent
on text extraction process.

6.2 Document Content Filter
The Document Content Filter (DCF) is designed to iden-

tify academic papers from all documents downloaded. To
increase precision this filter applies a conservative algorithm
on document selection. Because of this, a small fraction of
academic documents may be misidentified as nonacademic.
In addition, the keywords and features used in DCF are
optimized for identifying computer science and information
technology papers. As a result, this filter may have a sys-
tematic different identification rate depending on the scien-
tific and academic domains. To test this, we run the CDI
middleware on a collection of documents provided by the
Cornell’s arXiv project. The data in arXiv is separated into
many disciplines of science ranging from various physics top-

ics to computer science and statistics. We test our filter
on three categories: computer science (CS), mathematical
physics (Math-Ph) and a mixed collection of arXiv papers
(arXiv). The arXiv category represents a general set of pa-
pers under no specific topic. It gives us a good spread of
papers in different domains. In addition, we supplement our
test data with our PubMed dataset, which represents a set
of medical science papers. For each category, we randomly
select 100 papers for ten times and count the number of pa-
pers that pass the DCF. Our result is presented in Table 8.

Table 8: Number of documents that pass the DCF.
In each run, 100 document files are input.

Run CS Math-Ph arXiv PubMed
1 90 80 83 36
2 90 82 83 50
3 87 79 84 51
4 90 77 86 33
5 93 75 80 32
6 93 75 89 38
7 94 71 86 44
8 88 71 87 40
9 92 73 79 50

10 94 74 88 39
Average 91.1 75.7 84.5 41.3

The testing results indicate that our DCF can identify
more than 90% of computer science papers. It can only
identify about 75% of mathematical physics papers and 40%
of medical science papers. The overall identification rate to
the arXiv paper is about 85%. Table 8 indicates that using
our DCF, the ingested document collection contains more
documents in computer science and engineering. Revision of
text features are needed to increase the relative proportion
of identificate rate in other domains.

7. DISCUSSION

7.1 Generalization
While the CDI middleware is designed for CiteSeerX web

crawling, the design approach is to define an interface that
takes advantage of general open source crawlers and that
can be generalized to other digital library projects which re-
quire focused crawling to feed their collections. The middle-
ware developed is an implementation that has shown to be
feasible and efficient. This middleware can be readily used
by other research or development groups in digital libraries
which are interested in implementing CiteSeerX or similar
systems to increase their number of crawled documents. For
other search engine efforts, both commercial and research,
the infrastructure of CDI basically outlines any web crawling
middleware which performs similar jobs.

As an example, one of the advantages of the CDI middle-
ware is that the users do not need to re-crawl URL seeds if
they just want to obtain files of different mime-types. This
is especially useful for digital libraries and other focused
crawling scenarios in which multiple media types are stored
in separate databases and repositories. Another side effect
is that content may have been updated since the last crawl
and may not be chronologically consistent with documents
obtained in previous crawls.

63

7.2 Improvements
The CDI middleware can certainly be improved. Here,

we discuss three possible improvements: importing from a
remote crawler repository, multiple thread processing, and
adding the OCR.

The current version of CDI must be run on the crawler
machine. This design requires the middleware to share hard-
ware resource with the the crawler (both of them are big
memory consumers). As a result, launching the middleware
while running the web crawler may slow down the crawling
progress. A direct solution is to increase the memory size,
but this is bonded by some hardware restrictions such as the
number of available memory sockets. A better solution is to
run the CDI crawler on a separate machine, only retrieving
the document files from the crawling machine. This can be
implemented by adding a module to transfer remote files via
the scp command. or using a light weight API running on
the crawling server.

Another improvement is to use multiple threading to par-
allelize the the entire job since each document is processed
independent of the others. Python supports multi-threading
and offers an interface to the MySQL database to perform
table locking. Applying multiple threading can significantly
increase the throughput of the CDI middleware.

An additional improvement is to add the OCR plug-in to
make this middleware to handle scanned PDF and postscript
files. Although most academic documents created nowadays
are text extractible, a significant fraction of old papers be-
fore 1990s only have scanned versions but may have high
citation rates. It is then important to ingest these papers to
the search engine repository.

8. SUMMARY
We introduce a CDI middleware which provides an in-

terface between multiple crawlers and the CiteSeerX crawl
repository and database. The Heritrix web crawler, FTP
downloads, the Mirror, ARC and WARC input files are sup-
ported. It uses a mime type filter to select documents with
desired mime types and a DCF to identify academic pa-
pers. The middleware has a web interface powered by the
Django framework where the user can create, modify or sub-
mit importing jobs. The middleware also has supplemental
functions such as cleaning the crawled document URL table
and the parent URL table, and generating the whitelist for
future web crawls. This middleware can import about 250
and 25 documents per minute with and without turning on
the DCF, respectively. Although this middleware design has
been motivated by the CiteSeerX digital library and search
engine, such a crawler can also be used by other academic
search engines.

9. ACKNOWLEDGMENTS
We thank previous CiteSeerX group members Shuyi Zheng,

Juan Pablo Fernández Ramı́rez and Saurabh Kataria and
acknowledge partial support from NSF.

10. REFERENCES
[1] A. Holovaty and J. Kaplan-Moss. The Definitive Guide

to Django: Web Development Done Right (Pro).
Apress, Berkely, CA, USA, 2007.

[2] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic.
Introduction to Heritrix, an archival quality web
crawler. In Proceedings of the 4th International Web
Archiving Workshop (IWAW’04), Sept. 2004.

[3] P. B. Teregowda, I. G. Councill, R. J. P. Fernández,
M. Khabsa, S. Zheng, and C. L. Giles. Seersuite:
developing a scalable and reliable application
framework for building digital libraries by crawling the
web. In Proceedings of the 2010 USENIX conference on
Web application development, WebApps’10, pages
14–14, Berkeley, CA, USA, 2010. USENIX Association.

[4] J. Wu, P. Teregowda, J. P. F. Ramı́rez, P. Mitra,
S. Zheng, and A. C.Lee Giles. The evolution of a
crawling strategy for an academic document search
engine: Whitelists and blacklists. In ACM WebSci,
2012.

64

