
The Vigenère Cipher is similar in principle to the Caesar Cipher, 
however, the shift is determined by a code word or phrase. 

As an example, if you wish to encrypt the phrase “ABC” with the 
code word “CAT” by hand, the original Vigenere Square would give 
an encrypted phrase of “DCW.”

The Vigenère Square Cipher was originally implemented using a 
26x26 grid of the alphabet. A user would take the next letter to be 
encrypted as well as the corresponding letter from the code word, 
and find their intersection on the grid to encrypt the message. 
This code was significantly more secure than the Caesar Cipher, 
however, when the code word or phrase is significantly shorter 
than the message, frequency analysis methods can allow a third 
party to decrypt the message with enough time and encoded text 
to examine. 

In the particular case that you choose a code phrase equal in 
length to the message to be encrypted and use that code phrase 
only once, this method becomes a variant of the one-time pad 
method, and it unbreakable as long as the code phrase is kept 
secret.

Encryption and Decryption with a Raspberry Pi Device
Winning Entry in Fall 2020 RasPi Programming Competition

Taylor Powell - Old Dominion University
Competition Sponsors - Dr. Ayman Elmesalami & Dr. Soad Ibrahim

In this project, I aimed to design a program which allows a user to 
securely encrypt and decrypt messages using a variety of 
historically significant techniques in the development of 
cryptology. The specific encryption methods I decided to explore 
are:

A Caesar Cipher
A Modified Vigenère Square
A Stream Cipher
Steganography

In addition, I aimed to provide the user with the ability to choose 
from a combination of these encryption techniques as well as 
input and output methods.

For my program, I used the Python programming language inside 
the Raspberry Pi specific development environment Thonny. The 
program prompts the user to choose to either encrypt or decrypt 
a message, and to decide whether to use the Caesar, Vigenère , or 
Stream Cipher. The program then splits based on the user’s 
selects and implements accordingly.

Encryption
For encryption, the user can choose between three output 
options: text in the execution window, outputting to a .txt file, or 
encoding the information into a user-selected picture 
(steganography). 

For both the Caesar and Vigenère Ciphers, the encryption is done 
by converting letters in the message (and the code word/phrase 
for Vigenere) to their representative ASCII values. For the Caesar 
Cipher, the shift value is added to the ASCII value for the message, 
and the resulting value is converted back into its character 
representation. The program allows for positive and negative 
values, and the program acts to ensure the created value is within 
the printable character set. For the Vigenère Cipher, both the 
message letter and the code letter are converted into ASCII values 
and added together, resulting in a new ASCII value which is 
handled similarly to the Caesar Cipher case.

For the Stream Cipher, I convert the message into its bitwise 
representation. I then use Python’s ‘random’ library to generate a 
bit string encryption key of equal length. The two are then added 
together in a XOR operation (as shown to the right), resulting in an 
encrypted bit string. 

If the user encodes the encrypted message into a photo, the 
program prompts them to select a photo file. For the Caesar and 
Vigenère Ciphers, the encrypted message is broken into its bitwise 
representation. For the Stream Cipher, the encryption key is 
appended to the encrypted bitstring to create the string to be 
encoded. The program also generates a 64 bit string to represent 
the bit-length of the encoded message to assist with decoding the 
photo. This bit string is appended to the front of the encrypted bit 
message.

Each bit is encoded into one pixel’s red color value. In order to do 
so, I alter the least significant bit of the pixel’s red color value to 
match the bit for the bit being encoded. Using this process, the 
entire bit string is encoded into the photo file (assuming there is 
adequate space to do so). 

For a standard iPhone X photo with 4032x3024 pixels, a single 
photo could hold over 500 pages of single-spaced 12pt writing 
encoded into its pixels using this technique!

Decryption
For decryption, many of the processes previously mentioned are 
simply done in reverse-order. 

The user informs the program whether the encrypted message is 
stored: direct input to the execution window, a .txt file, or encoded 
into a photo. In the case of the Stream Cipher, the program 
assumes the message is in the stored format provided by 
encryption (i.e. the encryption key is appended to the encrypted 
message). For either the Caesar or Vigenère Ciphers, the program 
additionally prompts the user for the shift value or the code 
word/phrase.

Since the Caesar and Vigenère Ciphers are additive ciphers, the 
decryption is simply done using subtraction instead of addition. 

Since the Stream Cipher is a symmetric-key cipher, the encrypted 
message and the encryption key are again added together using 
an XOR operation to generate the unencrypted message.

To decode a photo, the program first retrieves the values from the 
first 64 pixels to determine the length of the message. The 
program then uses the recovered length to retrieve the 
appropriate number of additional pixel values to recover the 
entire encrypted bit string from the encoded file.

Future Work
In portions of the code, this initial project was approached as a 
proof-of-concept design, and thus is not as secure as possible. 
There are therefore a few aspects I intend to alter in future 
iterations:

1. Implement use of Python’s library ‘secrets’ instead of 
‘random’ to generate the bit string for the Stream Cipher

2. Encode the photos with a fully encrypted 64 bit string for 
the message length, as well as an additional bit string to 
represent a starting location for the encrypted message.

3. Separate the encrypted message from the encryption key 
for the Stream Cipher while encoding the photos to make 
the information more secure.

4. Implement a public-key type encryption algorithm to 
enhance security

5. Work with different media types for steganography (i.e. 
audio and video files, puzzle-type encoding techniques, etc)

The Stream Cipher works on the principle of bit-by-bit encryption. 
For a given message, the individual letters are broken into their 
bit-representations. The encryption program will then generate a 
“random” bit string (comprised of 0’s and 1’s) equal in length to 
the message’s bit string. The two bit strings are then combined 
using an XOR operation. 

The Stream Cipher is a symmetric-key encryption. This means that 
once the message is encrypted, the user attempting to decrypt the 
message will use the same random bit string to conduct the 
decryption.

Since the Stream Cipher is based on bitwise operations, it is a 
technique which was developed early in the computer era. The 
main potential issue for security is whether the generated bit 
string is truly random. Most programming languages are either 
deterministic or only pseudo-random, thus third parties with 
knowledge of the techniques used to encrypt the message could 
be able to replicate the encryption key and break the code.

The Caesar Cipher is based on the principle of shifting the letters 
of the message being encrypted a set number of “places” at a time 
(e.g. shifting “ABC” by 2 produces “CDE”).

A Caesar Cipher is one of the earliest known encryption 
techniques since it is fairly simple to employ in written 
communications and give the user some minor degree of security 
since the original message is not immediately obvious. However, 
even simple decryption techniques can readily break this code, 
and it is not at all suitable for modern encryptions.

Steganography is the practice of hiding information in media. 
Steganography can take many different forms, and has been in 
practice in various ways for centuries. A classic example of 
steganography is writing in “invisible ink” which requires some 
special process to reveal. 

In digital media, information can be hidden in innumerable ways: 
manipulating pixel values, embedded information in video or 
audio files, or even manipulating rate at which network data is 
received on a computer. Using modern applications, the ability to 
hide encrypted information in plain sight is only limited by the 
programmer’s technical capabilities and imagination.

Of particular interest for this project, I worked with manipulating 
the least significant bit of the byte of information representing the 
color values of individual pixels. 

Introduction

Caesar Cipher

The Program Stream Cipher

Steganography
Vigenère Square Cipher

R G B

0
1

1 1 1 0 0 1 0 1

{

Hello World!
QWERTY123!@#
:]R_dy)BF.ED


