Diabetic Foot Exam System

Old Dominion University Fall 2021 Stephanie Trusty

Table of Contents

- 1. Problem Description
 - a. Background
 - b. Project Goals
 - c. Dataset
 - d. Limitations and Constraints
- 2. Solution and Implementation
 - a. Algorithm Flow
 - b. Accuracy and Loss
 - c. Test Cases
- 3. Future Considerations
 - a. Recommendations for Improvement
- 4. Conclusion

Problem Description

What is a Diabetic Foot Exam?

A 3-minute professional evaluation to identify a diabetic patient's risk of foot ulceration. Exam components include:

- Patient history
- Dermatological assessment
- Musculoskeletal assessment
- Neurological assessment

Project Goals

Dermatological Assessment

- Calluses
- Blisters

Musculoskeletal Assessment

- Foot Deformities
 - Clawtoe
 - Hammertoe
 - Bunion

Project Equipment

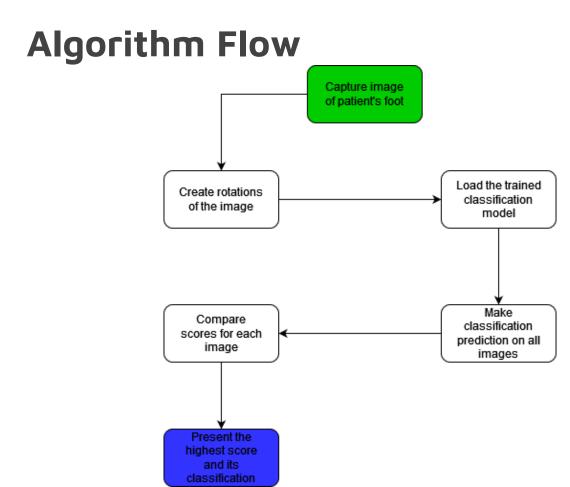
- Raspberry Pi 3 Model B
- Raspberry Pi Camera Module v2
- Keyboard
- Mouse

Python Libraries and Packages

- PiCamera
 - Controlling the Raspberry Pi Camera Module
- Matplotlib
 - Python plotting library
- Python Imaging Library
 - Open, save, rotate image files
- TensorFlow
 - Software library for machine learning and AI

Image Dataset

- The dataset consists of 420 images placed into three categories.
 - Callus
 - Blister
 - Deformation
- Training images: 336
- Validation images: 84

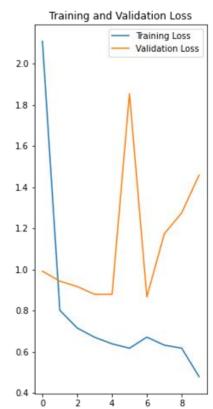

Limitations and Constraints

- Limited Dataset Size
 - Ideal size: 1,000 images per class
 - Actual size: 140 images per class
- Lack of Diversity in Data
 - $\circ \qquad {\sf Skin \ tone} \qquad$
 - Foot Placement
 - Aging Skin
- Address the most predominant condition

Solution and Implementation

Implementation Challenges

- TensorFlow version and Raspberry Pi compatibility
- Data uniqueness
- Dataset selection
- Camera position and lighting

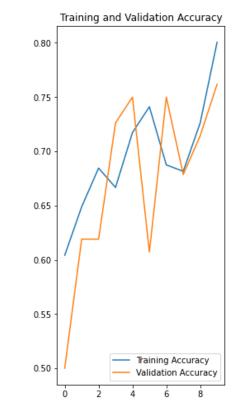

Training and Validation Loss

Training Comparison

- Training Loss (start): 2.1089
- Training Loss (end): 0.4783

Validation Comparison

- Validation Loss (start): 0.9912
- Validation Loss (end): 1.5483


Training and Validation Accuracy

Training Comparison:

- Training Accuracy (start): 0.6042
- Training Accuracy (end): 0.8006

Validation Comparison

- Validation Accuracy (start): 0.5000
- Validation Accuracy (end): 0.7619

Loss and Overfitting

Total params: 47,341,091 Trainable params: 47,341,091 Non-trainable params: 0

Epoch 1/10 Epoch 2/10 Epoch 3/10 34/34 [=========== ======] - 146s 4s/step - loss: 0.7147 - accuracy: 0.6845 - val loss: 0.9164 - val accuracy: 0.6190 Epoch 4/10 34/34 [=========== ======] - 146s 4s/step - loss: 0.6700 - accuracy: 0.6667 - val loss: 0.8786 - val accuracy: 0.7262 Epoch 5/10 ============] - 147s 4s/step - loss: 0.6380 - accuracy: 0.7173 - val loss: 0.8786 - val accuracy: 0.7500 Epoch 6/10 34/34 [====== ===] - 146s 4s/step - loss: 0.6167 - accuracy: 0.7411 - val loss: 1.8535 - val accuracy: 0.6071 Epoch 7/10 34/34 [======= ===] - 147s 4s/step - loss: 0.6706 - accuracy: 0.6875 - val loss: 0.8663 - val accuracy: 0.7500 Epoch 8/10 Epoch 9/10 34/34 [===============================] - 147s 4s/step - loss: 0.6168 - accuracy: 0.7262 - val loss: 1.2744 - val accuracy: 0.7143 Epoch 10/10

Evidence of some overfitting

Case Study: Raspberry Pi Image

Bottom View

- Prediction: Deformation
- Confidence: 84.54%
- Correct classification: Callus

Side View

- Prediction: Deformation
- Confidence: 96.45%
- Correct classification: Callus

Case Study Results: Dermatological

Prediction: Deformation

Confidence: 92.36%

Correct Classification: Callus

Prediction: Callus

Confidence: 80.73%

Correct Classification: Callus

Case Study Results: Musculoskeletal

Prediction: Deformation

Confidence: 78.41%

Correct Classification: Deformation

Prediction: Callus

Confidence: 99.62%

Correct Classification: Deformation

Future Considerations

Recommendations for Improvement

- Build data set with original images
- Verify data for uniqueness
 - Ensure each image is unique
- Separate deformation categories
 - Determine more accurate characteristics for a class
- Address patients with multiple areas of concern

Conclusion

- Inaccurate results with high confidence levels
- Evidence of overfitting
- Larger, more diverse dataset is needed
- Additional study needed to determine impact of lighting and camera position

References

- <u>https://care.diabetesjournals.org/content/31/8/1679</u>
- <u>https://diabetesed.net/wp-content/uploads/2017/05/3-minute-foot-exam.pdf</u>
- <u>https://www.ibm.com/cloud/learn/overfitting</u>
- <u>https://www.tensorflow.org/</u>
- <u>https://keras.io/</u>