



# Exploring Parallelization with a RasPi Cluster

### Taylor Powell 2021 CS RasPi Contest







- 1. Building a Raspberry Pi cluster
  - Physically assembling the cluster
  - Get the cluster networked together and communicating through passwordless-SSH

- 1. Exploring parallelization
  - Develop a few test programs with parallelization through MPI
  - Examine the quantitative benefits of parallelization







## **Building the Cluster**

Leaders For Life



#### Assembly







#### Assembly

SAMSUNG

EVO Plus



• Install Operating Systems

• System Updates

Cable Management





### Networking



- Set static IP addresses
- Generate RSA keys and share between nodes
- Enable SSH and ensure master node can access all slave nodes passwordlessly
- Did the same process to get my Windows PC to communicate with the master node



## **RasPi Cluster - Conclusions**



- Raspberry Pis are cheap and accessible tools for practicing developing more complicated computer architecture.
- Steep learning curve but teaches all the foundational concepts which are essential to larger clusters.
  - Power, heat, memory, communication, data access, etc
- Plenty of opportunity for growth
  - More nodes, sophisticated data-sharing, alternate networking setups, etc







## **Exploring Parallelization**



## Parallelization



 Subdivide large task and distribute across a network of processors instead of a single processor.





## Simple Integration



 The value of an integral for a continuous function over an interval a<x<b can be approximated using the Riemann integral formulation

$$\int_a^b f(x) dx = \lim_{N o \infty} \sum_{i=1}^N f(x_i) \Delta x_i$$









## Simple Integration - Results



N = 1,600,000 steps

Time vs Nodes

Program: Simple Integrate

▲ — 0.993x^-0.978





### Adaptive Integration



Image courtesy of <a href="https://www.math.umd.edu/~petersd/460/html/adapt\_test.html">https://www.math.umd.edu/~petersd/460/html/adapt\_test.html</a>

Leaders For Life





## Adaptive Integration















- Parallelization is an extremely powerful computational tool
- Requires careful consideration of the underlying tasks and ways to ensure work is distributed evenly across all nodes
  - Naïvely subdividing tasks evenly only works if the tasks are equally computationally intensive





# Thank you for your attention!

# Any questions?

Leaders For Life





# **Backup Slides**



# Gaussian Quadrature



 Gauss-Legendre integration is based on the roots of Legendre Polynomials.



Image courtesy of https://en.wikipedia.org/wiki/Gaussian\_quadrature

Leaders For Life



# Gaussian Quadrature

- We approximate a definite integral with a sum of function values over a series of weights, which are computed from the roots
- These roots are computed using a bisection root-finding algorithm



 $\int_{-1}^{1}f(x)dx\simeq\sum_{i=1}^{n}w_{i}f(x_{i})$ F(x)F(a<sub>1</sub>) F(a<sub>2</sub>) F(a<sub>3</sub>) a F(b<sub>2</sub>) F(b<sub>1</sub>)

Image courtesy of https://commons.wikimedia.org/wiki/File:Bisection\_method.svg



# Gaussian Quadrature



 For integrals on an interval other than [-1,1], we can do a change of interval using a standard prescription,

$$egin{aligned} &\int_a^b f(x)dx = \int_{-1}^1 f\left(rac{b-a}{2}x+rac{a+b}{2}
ight)\left(rac{b-a}{2}
ight)dx \ &\simeq rac{b-a}{2}\sum_{i=1}^n w_i f\left(rac{b-a}{2}x_i+rac{a+b}{2}
ight) \end{aligned}$$