Exploring Parallelization with a RasPi Cluster

Taylor Powell

2021 CS RasPi Contest
Project Overview

1. Building a Raspberry Pi cluster
 – Physically assembling the cluster
 – Get the cluster networked together and communicating through passwordless-SSH

1. Exploring parallelization
 – Develop a few test programs with parallelization through MPI
 – Examine the quantitative benefits of parallelization
Building the Cluster
Assembly
Assembly

- Install Operating Systems
- System Updates
- Cable Management
Networking

- Set static IP addresses
- Generate RSA keys and share between nodes
- Enable SSH and ensure master node can access all slave nodes passwordlessly
- Did the same process to get my Windows PC to communicate with the master node
RasPi Cluster - Conclusions

• Raspberry Pis are cheap and accessible tools for practicing developing more complicated computer architecture.

• Steep learning curve - but teaches all the foundational concepts which are essential to larger clusters.
 – Power, heat, memory, communication, data access, etc

• Plenty of opportunity for growth
 – More nodes, sophisticated data-sharing, alternate networking setups, etc
Exploring Parallelization
Parallelization

- Subdivide large task and distribute across a network of processors instead of a single processor.
Simple Integration

• The value of an integral for a continuous function over an interval \(a < x < b \) can be approximated using the Riemann integral formulation

\[
\int_{a}^{b} f(x) \, dx = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_i) \Delta x_i
\]
Simple Integration

Simple Integration - Parallelized
Simple Integration - Results

\[\int_{-0.1}^{0.1} \ln(x^2 + 0.000000001) \, dx \]

\[N = 1,600,000 \text{ steps} \]
Adaptive Integration

Adaptive Integration

Function Plots

- $\sin(10x^3)$
- $\sin(10x^2)$
- $\sin(10x)$

Function Plots

- $\sin(10x^3)$
- $\sin(10x^2)$
- $\sin(10x)$
Adaptive Integration

Log Plot - Time vs Nodes

Program: Adaptive Integration of $\sin(10x)$ over $0 < x < 1,000$

- ▲ Max Time
- ▼ Min Time
Adaptive Integration

Log Plot - Time vs Nodes
Program: Adaptive Integration of $\sin(10x^2)$ over $0 < x < 100$

Log Plot - Time vs Nodes
Program: Adaptive Integration of $\sin(10x^3)$ over $0 < x < 20$
Parallelization - Conclusions

- Parallelization is an extremely powerful computational tool

- Requires careful consideration of the underlying tasks and ways to ensure work is distributed evenly across all nodes
 - Naïvely subdividing tasks evenly only works if the tasks are equally computationally intensive
Thank you for your attention!

Any questions?
Backup Slides
Gaussian Quadrature

• Gauss-Legendre integration is based on the roots of Legendre Polynomials.

Image courtesy of https://en.wikipedia.org/wiki/Gaussian_quadrature
Gaussian Quadrature

- We approximate a definite integral with a sum of function values over a series of weights, which are computed from the roots

\[\int_{-1}^{1} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i) \]

- These roots are computed using a bisection root-finding algorithm

Image courtesy of https://commons.wikimedia.org/wiki/File:Bisection_method.svg
Gaussian Quadrature

- For integrals on an interval other than \([-1, 1]\), we can do a change of interval using a standard prescription,

\[
\int_a^b f(x) \, dx = \int_{-1}^1 f \left(\frac{b - a}{2} x + \frac{a + b}{2} \right) \left(\frac{b - a}{2} \right) \, dx
\]

\[
\approx \frac{b - a}{2} \sum_{i=1}^n \omega_i f \left(\frac{b - a}{2} x_i + \frac{a + b}{2} \right)
\]