
ODU Big Data, Data Wrangling Boot Camp
Software Overview and Design

Chuck Cartledge

September 23, 2018

Contents

List of Tables ii

List of Figures ii

1 Introduction 1

2 Software system design 3
2.1 Twitter software front and back ends . 3

2.1.1 Details . 3
2.1.2 Design limitations . 5

2.2 NASA reports . 7
2.3 Configuration file . 10

3 References 12

A Database tables 13
A.1 Twitter related tables . 13
A.2 NASA related tables . 13

B Notational data structures 13
B.1 Twitter structures . 13
B.2 Senate bill structures . 14

C Software on each workstation 15

D Files 17

i

List of Tables

1 Frontend and backend algorithm cross matrix. 4
2 Configuration file entries. 10
3 Tables to support Twitter analysis. 13
4 Tables to support NASA analysis. 13
5 Notional plotting data structure. 14
6 Notional plotting data structure. 14

List of Figures

1 Notional data science data flow. 2
2 Twitter system design. 4
3 Image from the “checkPostgres.R” script. 18

List of Algorithms

1 Process configuration file. 5
2 Update database with new data. 6
3 Normalize text. 7
4 Evaluate text. 7
5 Update display with new data. 8
6 Plotting hash tag based Tweet sentiment. 9
7 NASA report processing. 9

ii

1 Introduction

The tweet sentiment analysis software used as part of the Old Dominion University College of
Continuing Education and Professional Development Big Data: Data Wrangling boot camp1

will be used to provide boot-camp attendees with hands-on experience doing data-wrangling
of textual data.

“We define such data wrangling as a process of iterative data exploration and
transformation that enables analysis. . . . In other words, data wrangling is the
process of making data useful.”

Kandel et al. [2]

In the boot-camp, we will be:

• Looking at tweets to conduct sentiment analysis relative to arbitrary hashtags,

• Extracting data from static web pages based on cascading style sheets (CSS), and

• Extracting data from a NASA textual archive using the Open Archives Initiative Pro-
tocol for Metadata Harvesting (OAI-PMH).

We will be focusing on data wrangling (see Figure 1) using the R programming language.
Each boot-camp workstation will have the same software load (see Section C), and almost

fully functional software in R. The twitter software will be complete, in that it will:

• Retrieve tweets from Twitter,

• Place tweets in a PostGres database,

• Retrieve tweets from the database,

• Tokenize the tweets,

• Qualify the tweets as positive, negative, or neutral, and

• Plot the results in different ways.

The CSS software will be complete, in that it will:

• Download a “hard coded” web page,

• Extract a data field based on a CSS selector,

• “Wrangle” the data as necessary,

1https://www.odu.edu/cepd/bootcamps/data-wrangling

https://www.odu.edu/cepd/bootcamps/data-wrangling

Figure 1: Notional data science data flow. Data wrangling requires domain specific knowl-
edge to cleanse, merge, adapt, and evaluate raw data. Image from [2].

2

• Present the data.

The chrome browser and the SelectorGadget plugin2 will be used to identify CSS selectors.
The OAI-PMH software will be complete, in that it will:

• Download technical report meta data from the NASA Technical Reports Server3,

• Insert document IDs, report titles, and report descriptions into a PostGres database,

• Generate a static web page based on searching the PostGres data.

The code will be modified to display information about the reports based on how the textual
data is wrangled.

Data wrangling will focus on:

1. Identifying problems with the tweet tokens,

2. Developing solutions to those problems, and

3. Reducing the number of problematic tokens.

The remaining sections layout in detail the overall system design, details of the major
algorithms, database tables, and the configuration file used to control the system.

2 Software system design

2.1 Twitter software front and back ends

2.1.1 Details

The sytem is logically divided into three parts (see Figure 2):

1. A “backend” that gets tweets from Twitter or a data file.

2. A database to hold tweets from the backend.

3. A “frontend” that retrieves data from the data base for analysis and display.

4. The frontend and backend processes are controlled by the contents of a configuration
file (see Section 2.3).

Details of the various algorithms used by the backend and frontend processes are outlined
in this section.

2https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?

hl=en
3https://ntrs.nasa.gov

3

https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en
https://ntrs.nasa.gov

Figure 2: Twitter system design. Both front and back ends read data from a common
configuration file, and use a shared library file of common functions.. The back end will
receive data from the internet or from a replay file, based on directives in the configuration
file and update the database with new data. The front end will connect to the database and
retrieve data based on directives from the configuration file.

Table 1: Frontend and backend algorithm cross matrix. Alogrithms that are used by both
the front and back ends are recommended for a “utillity” file or library that can be accessed
by both ends.

Num. Name Back end Front end

1 Process configuration file. X X

2 Update database with new data X

3 Normalize text X

4 Evaluate text X

5 Update display with new data X

6 Plotting hash tag based Tweet sentiment X

4

Input: Location of configuration file
Assign default values;
while not at the end of the file do

read line;
if not a comment line then

get token;
get value;
if is a Hashtag then

add value to list of hashtags;
else

structure token value = value;
end

end

end
Result: A language specific data structure, values from file override defaults.

Algorithm 1: Process configuration file.

2.1.2 Design limitations

The current design polls Twitter for new tweets on a periodic basis. The entire list of search
hash tags are polled, any returned tweets are stored in the database, and the system “sleeps”
for a number of seconds (as per the configuration file). There are a number of factors that
affect this processing cycle, including:

1. The number of hash tags being queried. Each poll takes a finite amount of time, even
if no tweets are returned, so the more hash tags being queried, the longer it will take
to service the complete list of tags.

2. Each tweet becomes a single row in the database. The more tweets that are returned
from the query, the longer it takes to update the database with all the tweets.

3. Each tweet has a unique serial number. Each query includes the serial number of the
earliest (the one furthest in the past) one of interest in order to get a complete and
continuous tweet stream for the hash tag. The earliest acceptable tweet is updated
after a successful query.

4. The no-cost query capability is limited to 100 tweets per query. If more than 100 tweets
are created between queries, then the polling process will continue to fall further and
further behind.

Because of these design and implementation limitations, if tweets are being created faster
than the polling process can collect them, then the system will fall further and further behind.

5

Input: Language specific configuration structure
start = first time in data file;
if Offset = TRUE then

diff = now() - start;
else

diff = 0
end
time end = start + SleepyTime + diff;
for Polls remaining do

if Live then
submit query to Twitter;
request data from Twitter;
for lines from Twitter do

extract time from JSON;
data = base64 encoding of entire JSON;
insert time and data into database;
if CollectionFile is not NULL then

append time and data to CollectionFile;
end

end
sleep SleepyTime;

else
read line from file;
parse line into time and data;
while time > time end do

time end = time end + SleepyTime;
sleep SleepyTime;

end
insert time and data into database;

end

end
Result: An updated database.

Algorithm 2: Update database with new data.

6

Input: Text to be “normalized”, “stop word list”
cleansed = Null;
for Text do

lower case Text;
remove non-ASCII;
stemming;
if Text not in “stop word list” then

append Text to cleansed
end

end
return cleansed ;
Result: Normalized text

Algorithm 3: Normalize text.

Input: sourceText, baseLineText
numberOfSourceWords = number of words in baseLineTex;
percentage = numberOfSourceWords / numberOfWordsInSourceText;
return percentage;
Result: Percentage of source text in baseLineText

Algorithm 4: Evaluate text.

The limitations imposed by a polling interface can be overcome by using a streaming
interface4. A polling interface was used because it is simple to design, simple to implement,
and simple to test. The back-end process could be replaced by a streaming interface without
affecting the front-end process.

2.2 NASA reports

Processing the NASA reports is straight forward (see Algorithm 7).

4 R example:http://bogdanrau.com/blog/collecting-tweets-using-r-and-the-twitter-streaming-api/

7

http://bogdanrau.com/blog/collecting-tweets-using-r-and-the-twitter-streaming-api/

Input: Language specific configuration structure
cleansedPositive = normalize positive words;
cleansedNegative = normalize negative words;
cleansedStopWords = normalize Stop words;
timeStart = minimum time from database ;
for Polls remaining do

timeEnd = timeStart + SleepyTime;
hash tag new data = NULL;
lines = query database from timeStart to timeEnd;
for lines do

tweet = base64 decode of data;
if parse Tweet is GOOD then

extract text;
extract hash tag from Tweet text;
cleansedText = normalized text less cleansedStopWords;
positive percentage = evaluate cleansedText vs. cleansedPositive;
negative percentage = evaluate cleansedText vs. cleansedNegative;
neutral percentage = 100 - positive percentage - negative percentage;
update plotting information (hash tag, source, location);

end

end
plot hash tag results;
timeStart = timeEnd;
sleep SleepyTime;

end
plot source information;
plot location information;
Result: An updated display.

Algorithm 5: Update display with new data.

8

Input: The previous/current plotting data, and new data
for Each Tweet type do

set the lower left polygon point as the previous poll and the last previous type
count;

set the upper left polygon point as the previous poll and the last previous type
count + next previous type count;

set the lower right polygon point as the current poll and the current type type;
set the upper right polygon point as the current poll and the current type count
+ next current type count;

plot the polygon, filling it with then Tweet type color
end
for Each Tweet type do

set previous Tweet count value to current Tweet count value;
end
Result: An updated display data structure, and display.

Algorithm 6: Plotting hash tag based Tweet sentiment. From the user’s perspective, a
stacked histogram is plotted. From a programatic perspective, each three filled polygons
are plotted where the left and right edges are the poll number, and the vertical component
is the number of Tweets per type (positive, neutral, and negative). The display will show
the absolute number of Tweets, and the color bands will show the proportions of each
type.

Input: The contents of the configuration file.
if Reset the database then

create necessary database tables ;
populate the database with report data ;

end
update the database tokens based on database data ;
define a search term ;
normalize the search term ;
search the database for documents that match the normalized term ;
create an html file based on the results ;
Result: An updated html file showing the query results.

Algorithm 7: NASA report processing.

9

2.3 Configuration file

Software processes are coordinated by control values in a shared configuration file.

1. A common configuration file to be used by both the data capture and the data presen-
tation programs.

2. The file will default to a “well known” name in a “well known” location.

3. An alternative file can be passed in as a command line argument.

4. Any line in the file starting with a hashtag (#) will be treated as a comment and not
processed.

5. File entries are case sensitive.

6. All entries are optional. Some are required for live operation capture.

7. If the same option appears more than once, the last option will be honored, except
for hashtags. Hashtags will be treated as a collective.

8. “White space” separates each token from its value.

Table 2: Configuration file entries. The default stop word file will be provided (source: http:
//xpo6.com/list-of-english-stop-words/). It can be modified or replaced as needed.

Token Meaning Default

APIPrivateKey Twitter private API key. Must be supplied for
live operation.

(None)

APIPublicKey Twitter public API key. Must be supplied for
live operations.

(None)

CollectionFile A file to collect raw Tweets during live opera-
tions.

(None)

ColorNegative The color used to indicate negative tweets. BLACK

ColorNeutral The color used to indicate neutral tweets. WHITE

ColorPositive The color used to indicate positive tweets. GREEN

Hashtag This is the hashtag used to search Twitter
without the leading hashtag (#).

(None)

LexiconFile A text file containing positive and negative
words.

lexicon.csv

(Continued on the next page.)

10

http://xpo6.com/list-of-english-stop-words/
http://xpo6.com/list-of-english-stop-words/

Table 2. (Continued from the previous page.)

Token Meaning Default

Offset Should the replay data be brought forward to
current time? Accepted values are TRUE or
FALSE.

FALSE

Poll How many times to add new data to the
database. If data is being replayed, the maxi-
mum number of database updates will be this
value, or the end of data from the file. If live
operations, then this is how many times Twit-
ter will be polled for new data.

10

PostgresTable The Postgres table containing the tweets. tweeets

PostgresUser The Postgres user name used to access the
database.

openpg

PostgresPassword The Postgres password associated with the
Postgres user.

new user password

PostgresTableNASA The Postgres table containing NASA technical
report related data.

NASAReports

ResetDatabase Should the database be reset, and all previous
data lost when the program starts. Accepted
values are TRUE or FALSE.

FALSE

ResetDatabaseNASA Should the NASA technical report database
be reset, and all previous data lost when the
program starts. Accepted values are TRUE or
FALSE.

FALSE

SleepyTime How many seconds between updates to the
database. It is possible that no data will be
added to the database if there isn’t any Twit-
ter activity for a hashtag.

5

SourceFile The file containing the data to be replayed.
If this option is not set, then the operation is
assumed to be “live.”

(None)

StopwordsFile The file containing “stop words” that will not
be considered in determining positive or neg-
ative sentiment.

stopword.txt

(Continued on the next page.)

11

Table 2. (Continued from the previous page.)

Token Meaning Default

ThresholdNegative The percentage of words in a tweet considered
negative for the tweet to be labeled negative.

0.33

ThresholdPositive The percentage of words in a tweet considered
positive for the tweet to be labeled positive.

0.33

(Last page.)

3 References

[1] Simon Josefsson, RFC 4648: The Base16, Base32, and Base64 Data Encodings, RFC
4648, RFC Editor, October 2006.

[2] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and Paolo
Buono, Research directions in data wrangling: Visualizations and transformations for
usable and credible data, Information Visualization 10 (2011), no. 4, 271–288.

12

A Database tables

A.1 Twitter related tables

These are the database tables/data structures to support Twitter analysis:

Table 3: Tables to support Twitter analysis.

Column Meaning
time Unix seconds as extracted from the Tweet.
data Base 64 encoding of the entire JSON Tweet.

A.2 NASA related tables

These are the database tables/data structures to support NASA analysis:

Table 4: Tables to support NASA analysis.

Column Meaning
id NASA document ID from NTRS.
title Base 64 encoded report title.
description Base 64 encoded report description.
tokens “Normalized” tokens based on raw title and description.

“Base encoding of data is used in many situations to store or transfer data
in environments that, perhaps for legacy reasons, are restricted to US-ASCII
data. Base encoding can also be used in new applications that do not have legacy
restrictions, . . . ”

S. Josefsson [1]

Base 64 encoding ensures that data can pass cleanly through PostGres operations.

B Notational data structures

B.1 Twitter structures

These are the notational data structures used by the various processes.

13

Table 5: Notional plotting data structure. A multidimensional structure indexed by hashtag.

Name Purpose
PositiveTweetSource A dictionary/hash table to keep track of the

number of positive Tweets by software source.
This is for the entire polling period.

NegativeTweetSource A dictionary/hash table to keep track of the
number of negative Tweets by software source.
This is for the entire polling period.

PositiveTweetLocation A dictionary/hash table to keep track of the
geographic location of a positive Tweet.

NegativeTweetLocation A dictionary/hash table to keep track of the
geographic location of a negative Tweet.

Table 6: Notional plotting data structure. This structure is indexed by hashtag.

Cell Use
0 Number of positive Tweets.
1 Number of neutral Tweets.
2 Number of negative Tweets.

B.2 Senate bill structures

These are the notional data structures associated with the Senate Bills application:

1. Each bill is stored in a separate file on the disk. These files may, or may not be
deleted when the R session ends. Hence, care must be taken with how the R script is
executed. If the script is executed within an IDE, files may persist for the duration of
that session. If the script is run using the CLI Rscript mechanism, then the files will
be deleted when the Rscript session ends.

2. Internally, all information of interest is maintained in the list “sponsors” which is
organized like this:

sponsors[[Billnumber]][1 = bill sponsor] [2 ...n cosponsors]

Party affiliation is included in the sponsor/cosponsor string.

14

C Software on each workstation

This section contains the assumptions about the operating system environment, and software
load out for each work station.

1. Operating system: Windows 7

2. Database

(a) Name: PostgresSQL

(b) Version: 9.5.3

(c) Source: http://www.postgresql.org/download/windows/ and http://www.enterprisedb.

com/products-services-training/pgdownload#windows

(d) Superuser password: ODUBootcamp

(e) Misc: It may be necessary to manually start the PostGres server using these
commands in a terminal window:

cd "\Program Files\PostgreSQL\9.5\bin"

.\pg_ctl -D "c:\Program Files\PostgreSQL\9.5\data" start

3. Software

(a) Chrome browser

• Version: 63.0.3239.132

• Available from: https://www.google.com/chrome/browser/desktop/index.
html

(b) Java

• Version: Java SE Development Kit 7u79 (assuming Windows 64 bit OS)

• Available from: http://www.oracle.com/technetwork/java/javase/downloads/
jdk7-downloads-1880260.html

(c) pgAdmin

• Version: 1.22.1

• Available from: https://www.pgadmin.org/download/

(d) R

• Version: 3.3.1

• Available from: https://cran.r-project.org/bin/windows/base/

• Packages:

15

http://www.postgresql.org/download/windows/
http://www.enterprisedb.com/products-services-training/pgdownload#windows
http://www.enterprisedb.com/products-services-training/pgdownload#windows
https://www.google.com/chrome/browser/desktop/index.html
https://www.google.com/chrome/browser/desktop/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://www.pgadmin.org/download/
https://cran.r-project.org/bin/windows/base/

– bitops

– DBI

– devtools

– ggmap

– ggplot2

– htmltools

– httr

– jsonlite

– mapdata

– mapplots

– mapproj

– maps

– methods

– NLP

– OAIHarvester

– openssl

– RCurl

– rdom

– rjson

– ROAuth

– RPostgreSQL

– rvest

– SnowballC

– streamR

– tm

– tools

– utils

– XML

– xml2

(e) R-Studio

• Version: 0.99.903

• Available from: https://www.rstudio.com/products/rstudio/download/

(f) SelectorGadget

• Version: 1.1

• Available from Chrome web store: https://chrome.google.com/webstore/
detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en

(g) wget

• Version: 1.*

• Available from: https://eternallybored.org/misc/wget/

The PATH environment variable should be updated to include the location of the R
interpreter.

16

https://www.rstudio.com/products/rstudio/download/
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en
https://eternallybored.org/misc/wget/

D Files

A collection of miscellaneous files mentioned in the report.

• installLibraries.R – an R script to install all necessary libraries/packages from “the

cloud”

• checkPostgres.R – an R script to test the PostGres installation (see Figure 3).

A complete collection of files (presentations, data, scripts, etc.) can be downloaded from
the boot camp web site using this command:

wget -np -r http://www.cs.odu.edu/~ccartled/Teaching/2018-Fall/DataWrangling/

The Windows version of wget sometimes leaves “trashy” files behind, like “index.html@C=D;O=A”
and so on. These files are not part of the boot camp web page, and can be removed or ig-
nored. None of the boot camp scripts use, or process these files. The *nix version of wget
does not leave trashy files.

17

https://gist.github.com/stevenworthington/3178163

rm(list=ls())

latexTable <- function(neededPackages, file="../libraries.tex")
{
 line <- "\\begin{multicols}{3}\\begin{itemize}"

 write(line, file=file, append=FALSE)

 for (line in sort(neededPackages))
 {

 write(sprintf("\\item %s",line), file=file, append=TRUE)

 }

 line <- "\\end{itemize}\\end{multicols}"
 write(line, file=file, append=TRUE)
}

ipak <- function(pkg){
 new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
 if (length(new.pkg))
 install.packages(new.pkg, dependencies = TRUE,
 repos="https://cloud.r-project.org/")
 sapply(pkg, require, character.only = TRUE)
}

neededPackages = c(
"bitops",
"DBI",
"devtools",
"ggmap",
"ggplot2",
"htmltools",
"httr",
"jsonlite",
"mapdata",
"mapplots",
"mapproj",
"maps",
"methods",
"NLP",
"OAIHarvester",
"openssl",
"RCurl",
"rdom",
"rjson",
"ROAuth",
"RPostgreSQL",
"rvest",
"SnowballC",
"streamR",
"tm",
"tools",
"utils",
"XML",
"xml2"
)

ipak(neededPackages)

print ("All packages installed.")

"Chuck Cartledge"

http://www.enterprisedb.com/products-services-training/pgdownload#windows
http://www.r-bloggers.com/getting-started-with-postgresql-in-r/

rm(list = ls())

require("DBI")
require("ggplot2")
require("RPostgreSQL")

source("library.R")

main <- function()
{
 configurationData <- parseConfigurationFile()

 drv <- dbDriver("PostgreSQL")

 con <- connectToDatabase(configurationData)

 # specifies the details of the table
 sql_command <- sprintf ("DROP TABLE IF EXISTS cartable; CREATE TABLE cartable (carname character varying NOT NULL, mpg numeric(3,1), cyl numeric(1,0), disp numeric(4,1), hp numeric(3,0), drat numeric(3,2), wt numeric(4,3), qsec numeric(4,2), vs numeric(1,0), am numeric(1,0), gear numeric(1,0), carb numeric(1,0), CONSTRAINT cartable_pkey PRIMARY KEY (carname))WITH (OIDS=FALSE);ALTER TABLE cartable OWNER TO %s;COMMENT ON COLUMN cartable.disp IS '';",
 configurationData[["PostgresUser"]])

 # sends the command and creates the table
 dbGetQuery(con, sql_command)
 # check for the cartable
 dbExistsTable(con, "cartable")

 data(mtcars)
 df <- data.frame(carname = rownames(mtcars),
 mtcars,
 row.names = NULL)
 df$carname <- as.character(df$carname)
 # writes df to the PostgreSQL database "postgres", table "cartable"
 dbWriteTable(con, "cartable",
 value = df, append = TRUE, row.names = FALSE)

 # query the data from postgreSQL
 df_postgres <- dbGetQuery(con, "SELECT * from cartable")

 # compares the two data.frames
 identical(df, df_postgres)
 # TRUE

 # Basic Graph of the Data
 print(ggplot(df_postgres, aes(x = as.factor(cyl), y = mpg, fill = as.factor(cyl))) +
 geom_boxplot() + theme_bw())

 dbDisconnect(con)

 for (d in dbListConnections(drv))
 {
 dbDisconnect(d)
 }

 dbUnloadDriver(drv)

 print (sprintf("The program has ended."))
}

main()

"Chuck Cartledge"

Figure 3: Image from the “checkPostgres.R” script. This image will be created (sans some
of the image decorations) after successful execution of the “checkPostgres.R” script. The
decorations will change based on how the script was executed.

18

