From C++ text

- Read chapter 1

Grand Problems in Computing

- Set of problems
 - That seem like they could be solved (at least helped) by computers
 - People have worked on them for a long time without success
 - Their solution would be very helpful
In biology: lots of challenges

- If we have supercomputers, what problems in biology could we solve that were impossible before?
- Biogeochemistry & membrane biology
- Bioinformatics and computational biology
- Computational cell biology

Programming Languages

- Lots of them
 - Different languages for different tasks
- Some are visual, some are textual
 - Many make heavy use of algebraic expressions
 - Since lots of the early uses were mathematical
 - And the early users were comfortable with algebra
- They’re often hard to use
 - For most people
 - Particularly at the beginning
 - Require too many details in an artificial language
- They’re designed to be easy to use
 - But it’s hard to give detailed instructions that cover all of the things that could happen

Focus on C++

- Widely used in the sciences
- Many of the computing challenges in the sciences are computationally intense
 - Need a language that can generate very time-efficient code
- Lots of people prefer Java to C++
 - More widely used
 - The two languages are similar in many ways
 - But usually C++ will be faster than Java
To code in C++
- You must know a solution in detail
- So you must understand the problem you are attempting to solve in detail

An insultingly simple (maybe) example
- Find the distance between two points
- Assume each point is represented as a (x, y) pair
- Then the distance can be computed as:
 \[d = \sqrt{a^2 + b^2} \]
 where a is |x₁-x₂| and b is |y₁-y₂|

Note:
- To do this is C++, we only have
 - equations – but not really
 - assignment statements
 - if statements
 - while statements
- In this programming language everything must be expressed at this level
- No knowledge of how to compute distances (or much of anything else)
C++ algebraic notation

- The first typing devices used with computers for writing programs required that everything be typed on individual lines
 - No subscripts
 - No superscripts (so nothing like x^2)
 - No special algebraic symbols (like $\sqrt{\cdot}$)

So some code pieces that do the computations

- From text, pg. 17
  ```
side_1 = x_2 - x_1;
side_2 = y_2 - y_1;
distance = \sqrt{side_1^2 + side_2^2};
  ```

Some C++ rules - 1

- The names of memory locations in which I can store the results of computations are called variables
- There are rules about how you make up variables names
 - Mostly they must be letters and numbers (see text)
 - Many computer programs have 100’s of variables so use of one letter (like algebra) doesn’t work
 - Hard to remember what a variable is used for so it’s a good idea to use a name that I can relate to
 - Doesn’t matter to the C++ compiler, but people are often easily confused
More rules - 2
- Must tell the compiler:
 - The variables that will be used in the program
 - What kinds of things (integers, floats, letters, strings) will be stored in each variable name

More rules - 3
- Use comments
 - Again, like helpful variable names, not for compiler but for people who may need to understand the program

More rules - 4
- C++ has the facility to use program parts that others have written
 - Saves time; I don’t have to write them
 - Lots of people need to do the same things so if written once, everyone can use them
- Examples:
 - How to send text to the computer screen, how to read what’s typed on a keyboard
 - How to do some common mathematical computations like square roots
Let’s do an example

Observations

- The C++ program doesn’t look much like English. This is both good and bad.
 - English is much too ambiguous for scientific purposes.
- The C++ program doesn’t look much like algebra. Sorry
 - Algebra used for equations and expressing mathematical relationships
- C++ is a set of commands telling the CPU to perform some simple tasks.
 - Reserve some memory space for variables
 - The variable type tells how much space is needed
 - Include some libraries (that is, libraries of computer code previously written and stored on the computer’s disk)
 - Do some computations and store the results in a variable
 - Test a condition and if true do something