some terms

Quality metrics: accuracy, efficiency, maintainability, portability, reusability, usability (CHI). Here only accuracy is of concern.

Model Verification: model is correctly transformed from one representation to another

Model Validation: the model, within a particular domain, behaves with satisfactory accuracy consistent with M&S objectives.

Model testing: checking for inaccuracies or errors

Accreditation: US military term: “the official certification that a model or simulation is acceptable for use for a specific purpose.” DoD Directive 50000.29, http://triton.dmsa.mil/docslib/mspolicy/directive.html
DoD effect

US DoD is big player in this area. On the web Defense Modeling & Simulation Office, (www.dmso.mil) but each branch (Army, Navy, Air Force) also on Web. “Properly” done, can be expensive. Few organizations can afford “proper” V&V

General Comment

Large complex problem. One approach not appropriate for all. Much business simulation is short and quick (gain insight). Industry (like Boeing, NASA) builds “engineering models” as design tools.

Common Approaches

Development does V&V.
adv: they understand assumptions, model, code
disadv: objectivity? blind spots?
Independent V&V: done by independent group.
adv: objectivity (maybe) independent of schedule, budget, biases
disadv: costs. independent of schedule, budget, objectives human tendency to find something regardless
V&V Principles (Balci)

- V&V must be conducted throughout life cycle
- V&V outcome not binary
- Based on M&S objectives
- Requires independent assessment
- Requires creativity & insight
- Early error detection better
- Complete testing not feasible
- Type I, II, & III errors must be avoided
- Successful V&V of all submodels does not imply Model V&V
- Validity does not imply credibility and acceptability
- Having well-formulated problem essential

V&V Techniques

- **Informal**
 - audit
 - desk checking
 - documentation checking
 - face validation
 - inspections
 - reviews
 - Turing tests
 - walkthroughs

- **Static**
- **Dynamic**
- **Formal**
Static

Cause-effect graphing
Control analysis
 calling structure analysis
 concurrent process analysis
 control flow analysis
Data analysis
 data flow and data dependency analysis
Interface analysis
Structural analysis
Traceability assessment

Dynamic

Acceptance testing
Assertion checking
Compliance testing
 performance, security standards
Execution testing
 execution monitoring, profiling, tracing
Software testing
 Black box: equivalence partitioning, extreme input, trace-drive input, stress testing, ...
 White box (structural): branch, condition, data flow, ...
Statistical techniques
Visualization/animation

Formal

Induction
Lambda Calculus
Predicate Calculus
Proof of Correctness
Some pragmatic approaches

- Compare with other models if possible
- Use degenerate tests - (where you know the answer)
- Event validity - does the right sequence of events occur when triggered?
- Compare model generated events with system events
- Use fixed values (constants) - similar to degenerate tests, but requires code change
- Drive model with real system traces to compare model output with system output
- Determine internal variability of model. If high, may require model revision
- Sensitivity analysis/accuracy requirements
- Predictive validation: model used to forecast system behavior which can be checked (e.g. weather models)

data validity

- not really different, but often a time-consuming, complex issue
- outputs no better than data used to build model
- on many projects, the data costs much more than the model
- many models are “data driven” ModSAF reads about 300,000 of data on start-up.
- data are needed to:
 - build conceptual model
 - validate model
 - perform experiments to model

need to validate:

- **conceptual model**
 - underlying theories and assumptions are correct/acceptable
- **computerized model**
 - all software testing techniques apply, and then some
- **operational model**
 - the world changes over time. are assumptions/behaviors still valid? (is the world still flat?)
<table>
<thead>
<tr>
<th>Category Item</th>
<th>Technique used</th>
<th>Justification for technique</th>
<th>Reference to supporting report</th>
<th>Result/Conclusion</th>
<th>Confidence in result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pgm correctness</td>
<td>Static testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strengths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weaknesses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>