ENER-G VIEW

Team Crystal
CS 410
April 28, 2021
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>(1)</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>(2)</td>
</tr>
<tr>
<td>Team Biography</td>
<td>(3-4)</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>(5)</td>
</tr>
<tr>
<td>Problem Characteristics</td>
<td>(6-8)</td>
</tr>
<tr>
<td>Customers & Users</td>
<td>(9)</td>
</tr>
<tr>
<td>Current Process Flow</td>
<td>(10)</td>
</tr>
<tr>
<td>Indirect Competition</td>
<td>(11-12)</td>
</tr>
<tr>
<td>Direct Competition</td>
<td>(13-14)</td>
</tr>
<tr>
<td>Solution Characteristics</td>
<td>(15-16)</td>
</tr>
<tr>
<td>User Stories</td>
<td>(17-18)</td>
</tr>
<tr>
<td>Solution Process Flow</td>
<td>(19)</td>
</tr>
<tr>
<td>Aspects of Solution</td>
<td>(20)</td>
</tr>
<tr>
<td>Required Hardware</td>
<td>(21)</td>
</tr>
<tr>
<td>Application Technologies</td>
<td>(22)</td>
</tr>
<tr>
<td>Development Tools</td>
<td>(23)</td>
</tr>
<tr>
<td>Major Functional Component Diagram</td>
<td>(24)</td>
</tr>
<tr>
<td>Work Breakdown Structure</td>
<td>(25)</td>
</tr>
<tr>
<td>GUI Breakdown and mockups</td>
<td>(26-29)</td>
</tr>
<tr>
<td>Algorithms breakdown and design</td>
<td>(30-34)</td>
</tr>
<tr>
<td>Database Schema</td>
<td>(35)</td>
</tr>
<tr>
<td>Work Breakdown: Testing</td>
<td>(36)</td>
</tr>
<tr>
<td>Agile Methodology</td>
<td>(37)</td>
</tr>
<tr>
<td>Risk Analysis</td>
<td>(39-42)</td>
</tr>
<tr>
<td>Conclusion</td>
<td>(43)</td>
</tr>
<tr>
<td>References</td>
<td>(44-48)</td>
</tr>
</tbody>
</table>
Biographies

Sergiy Yermak is a senior at Old Dominion University and expected to graduate in December of 2021. He is working to attain a Bachelor of Science in Computer Science. Before attending college he served in United States Navy. He enjoys a variety of things from skateboarding, diving, hiking, playing video games, and reading books.

Aubrie Davie is a senior at Old Dominion University pursuing a Bachelor’s in Computer Science with a minor in Energy Engineering. She currently leads efforts to achieve sustainability goals set forth by the Department of Energy at Jefferson Lab in Newport News, Virginia. She lives with her husband, daughter, Labrador (Curie), and her Pithuahua (Rocker) on the James River.

Shyam Dhingani is a senior Undergraduate student at Old Dominion University majoring in Computer Science and minoring in Cyber Security. He is also working as a fulltime Python Developer in New York City. He loves to play video games in his free time with his friends and enjoys hiking/biking during the weekends.
Biographies

Kyle Chappell is a Second Degree student at Old Dominion University and is a part of the Computer Science Linked BS/MS program. He is expected to complete the Bachelor’s by end of Summer 2021. He works at Fort Belvoir, VA providing data analysis, algorithm development, and other technical services. His hobbies include cooking, audio engineering, drumming, and low-voltage electronics.

Michael Aspinwall is a senior at Old Dominion University majoring in Computer Science. He hopes to graduate in the Winter of 2021. He loves working with computers, programming, and playing video games.

Naresh Khadka is a senior at Old Dominion University pursuing a BS in computer science. He is expected to graduate in the summer of 2021. He also graduated with his first undergraduate degree from ECPI northern Virginia. He lives in Austin, Texas, and works for Samsung Austin Semiconductor as a Senior Technician. He loves to travel and explore new places. He has two kids: one daughter and one son.
Problem Statement

A typical U.S. family spends $2,060 on average per year for home utility bills[1] and the cost continue to rise[2]. With 31\% of U.S. households struggling to pay energy bills and an expected cost increase of 2.4\% by 2022[3], there is a financial strain on families. Furthermore, there is no cohesive way to track all utilities in one location.
Problem Characteristics

 - Avg. Monthly Electric: $124.54
 - Avg. Monthly Water: $70.39
 - Avg. Monthly Natural Gas: $74.32
- Natural Gas provides historical data visual on bill
 - Waterworks and Dominion do not
- Data is not centrally located
 - Must have a separate app/website page per utility for data visualization.

[^4]: Virginia Natural Gas Bill

Figure 1: Virginia Natural Gas Bill
Problem Characteristics Case Study: Water

- Average family in the U.S. uses more than 300 gallons/day\(^6\)
 - 70% indoor usage
- Household leaks waste nearly 10,000 gallons/year\(^7\)
 - 10% of homes waste at least 90 gallons/day
- Delivery, treatment, and heating of water energy intensive
 - EPA estimates letting a faucet run for 5 minutes is equivalent to 60-watt light bulb running for 22 hours\(^8\)
- Most energy efficient improvements require spending money upfront
 - Energy efficient appliances
 - Dishwasher
 - Washing machine

Figure 2: How Much Water Do We Use?
Problem Characteristics: High Cost of Smart Devices

- Home automation costs an average of $757[^7]
 - Most users spend between $182 and $1347
- Installation for complete home automation can cost around $3000[^7]
- National Average for smart thermostat: $300[^8]
- Smart Faucets:
 - Moen: $430+
 - Delta: $506+
 - Kohler: $875+
- Smart lighting:
 - Bulbs: ~$10+ per bulb
 - Some bulbs require a hub
- Smart hub:
 - HomeAssist: $140
 - Google: $89.99+
 - Amazon: $99.99+
 - Phillips Hue Bridge: $60

[^7]: Source: [17]
[^8]: Source: [18]

Figure 3: Moen Smart Faucet
Figure 4: Delta Smart Faucet
Figure 5: Kohler Smart Faucet
Figure 6: Honeywell Smart Thermostat
Figure 7: Google Nest Smart Thermostat
Figure 8: Ecobee Smart Thermostat
Customers & Users

- **Customers:**
 - Environmental Nonprofits
 - Insurance Companies
 - Property Management Companies
 - Local Governments
 - Utility Providers

- **Users:**
 - The average adult who pays utility bills
Current Process Flow

Characteristics:

- Time consuming
- Requires base skills, e.g., Excel Spreadsheet
- Requires manual analysis to be useful
- Data provided is vague due to several factors
Indirect Competition

- **Nest Learning Thermostat**
 - The Nest thermostat has its own application on which they collect the hours of cooling and heating used each month.

- **Water Companies**
 - Waterworks: provides numerical historical data on bill, “in-house” designed app with simple usage data (does indicate low, average, and high data), provides no reduction suggestions

- **Electric Companies**
 - Dominion Energy: application only for electric bill data, their “personalized energy updates” are self-reported home or appliance updates that may or may not reduce cost, bill reminder
Indirect Competition Matrix

<table>
<thead>
<tr>
<th>Features</th>
<th>Ener-G View</th>
<th>Waterworks</th>
<th>Dominion Energy</th>
<th>Nest Learning Thermostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides Utility Usage Data</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Centralizes data for ALL utilities</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides Historical Billing Data</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Provides Cheap Tips to Reduce Utility Use</td>
<td>✔</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Provides FREE tips to reduce utility use</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direct Competition

- **Flow Assessment System (F.A.S) and Sense:**
 - Separate devices used to track electricity and water consumption; F.A.S monitors water usage through a wireless sensor; Sense is connected to a home’s main panel box to monitor electricity usage and requires a professional electrician to install the device.

- **Honeywell Home:**
 - Aggregates Honeywell smart devices into a centralized location to monitor electricity used for heating and cooling as well as security monitors, doorbells, humidifiers, and air purifiers; Provides an alert when a device is in use; Exclusively for the Honeywell brand ecosystem.

- **Home Assistant:**
 - Aggregates smart devices into one user interface regardless of device brand; Provides a home automation hub to integrate smart devices and allow for centralized device control; Requires a considerable amount of set up and understanding of programming to format the hub to user’s unique ecosystem.
Direct Competition Matrix

<table>
<thead>
<tr>
<th>Features</th>
<th>Ener-G View</th>
<th>Flow Assessment System + Sense</th>
<th>Honeywell Home</th>
<th>Home Assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expensive external devices are supported but not required</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides FREE tips to reduce utility use</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centralizes data for ALL utilities</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Will NOT cause damage due to installation</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Alert user to sharp usage increases</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Solution Characteristics

What we'll do:

- Monthly usage visual for all utilities
- After 1-month, historical usage
 - Historical data per utility
 - Monthly variance as a whole
 - Alert to sharp increases
 - Possible leaks and what to do
- Centralized data
 - All utility data (e.g. usage and consumption)
 - Visualization provided for all utilities
- Include incidental data
 - Outside temperature causes different utility usage
 - Include these factors in analysis by recording local temperature on that day

What we won’t do:

- Ener-G View is not designed for paying bills
- Ener-G View will not provide an actual discount
- Ener-G View will not provide real-time usage monitoring
- Ener-G View will not be able to diagnose any type of leak or equipment malfunction
Solution Characteristics: Bright Ideas

- Avoid using electricity in the early morning and late at night in the winter[^12]
- Avoid using hot water in the early morning and late at night in the winter[^12]
- Only wash a full load of dishes in dishwasher[^13]
- Use cold water as much as possible when doing laundry[^16]
- Only wash a full load of clothes[^13]
- Consider hand washing small amounts of clothing[^13]
- Hang clothes to dry[^16]
- Take colder showers in the summer[^8]
- Take advantage of windows for natural lighting[^14]
- In the spring and fall, use windows to regulate house temperature[^14]

- Fill sink to do dishes to reduce water usage[^8]
- Reduce shower by 3 minutes[^8]
- Reduce peak usage[^15]
- Unplug small appliances and devices when not in use[^10]
- Turn off lights when exiting a room[^11]
- Use lamps instead of overhead lighting[^13]
- Avoid using electricity from 1-7pm in the summer[^12]
- Avoid using hot water from 1-7pm in the summer[^12]
- Use LED light bulbs instead of incandescent or CFL bulbs[^11]
- Replace HVAC filters regularly (Every three months)[^13]
User Stories: End-User

I **must** be able to:
- Create a new user account.
- Upload my utility bills as any common image file format (JPG, PDF, etc.).
- Be able to add data manually.
- View the usage data of each of my utilities from a centralized location.
- See a graphical representation of my usage of each of my utilities.
- Receive alerts whenever a sharp jump in utility usage occurs.
- Receive tips on how to reduce utility usage.

I **wish** to be able to:
- Connect my smart home devices to Ener-G View.
- View the data from my smart home devices from a centralized location.
- Use Multi-Factor Authentication to keep my account secure.

I **must not** be able to:
- View or alter the personal details of other users.
- View or alter the utility usage of other users.
User Stories: Administrator

I **must** be able to:
- Update the layout or design of the website to improve functionality.
- Apply updates and patches to the back end systems.
- Assist users in troubleshooting issues surrounding the use of Ener-G View.
- Add or remove “Bright Ideas.”

I **wish** to be able to:
- Use Multi-Factor Authentication to keep my account secure.

I **must not** be able to:
- View or alter the personal details of users.
- View or alter the utility usage data of users.
Solution Process Flow

1. Login to Ener-G View
2. Multi-factor Authentication
3. Take picture? Yes → JPG
 No → Submit
4. Submit Or View?
5. Scanned document? Yes → PDF
 No → Submit
6. Link smart device data? Yes → External Utility Account Data
5. Data Extraction Algorithm collects data
6. Visualization Algorithm processes collected data
7. Ener-G generates graph

Key:
- Comment
- Decision
- Input/Output
- Start
- End
- Process
Aspects of Solution

- User can submit a pdf file or picture
- Optional smart device compatibility
- Notification when bill due date approaching
 - In-app notifications
 - Website alert
- Type of Software:
 - Web Application
- Required Tools:
 - Server and Database: AWS/Amazon RDS for MySQL
 - Third-party Python libraries: PyTesseract for optical character recognition on images, PyPDF for PDF parsing, and NumPy for analytics
 - Multi-factor Authentication: Duo
Required Hardware

● Client device:
 ○ Desktop Computer
 ○ Smartphone

● Internet Access:
 ○ Router
 ○ Mobile hotspot

● *Smart devices optional*
Application Technologies

- Language(s): Python
- Front end: HTML, CSS, Bootstrap, JavaScript
- Back end: Python, PHP
 - API: **Wink API** (Nest, GE, Philips, Honeywell, and more), **Domoticz API** (electrical devices, electronic gadgets, water, and gas as well as weather monitoring instruments)
- Database: MySQL
- Deployment: Docker
- Multi-Factor Authentication: Duo
Development Tools

- Code Repository: cs.odu GitLab
- IDE: PyCharm / VS Code
- Prototyping: PSD Repo
- Testing Framework: PyTest/PyHamcrest
- API Testing: PyTest/PyHamcrest
- Documentation: PyDoc/Doxygen
- Issue Tracker: GitLab
Major Functional Component Diagram

Icons:
1. https://www.flaticon.com/authors/smalllikeart
2. https://www.flaticon.com/authors/gregor-cresnar
3. https://www.flaticon.com/authors/phatplus
4. https://www.flaticon.com/authors/dave-gandy
5. https://www.flaticon.com/authors/xnimrodx
Work Breakdown Structure - GUI

- Account Creation
- Login
- User Dashboard
GUI Mockup

Account Creation

Ener-G View

Sign Up

Please fill this form to create an account.

First Name

Last Name

Address

Phone Number

Email

Password

Confirm Password

Select the utilities you would like to monitor:
- Electric
- Natural gas
- Water
- Other

Submit Reset

Already have an account? Login here.
GUI Mockup

Login Page
GUI Mockup

User Profile

Dashboard

Overall Consumption

Year-to-Date Cost

Recent Bills

Utility Usage Cost Cycle Start Date Cycle End Date
Electric 4150 kWh $250.00 03/10/2020 04/11/2020
Natural Gas 251 CCF $267.87 03/10/2020 04/06/2020
Water 2633 Gallons $80.73 03/10/2020 04/06/2020

Showing 1 to 3 of 3 entries
Work Breakdown Structure - Algorithms

Algorithms

- Sign Up
- Data Extraction
- Visualization
Algorithm Design: Sign Up

- Users must create a new account.
- User authentication is confirmed using third-party API such as Duo.
 - Users need to create a Duo account if they do not have one.
- User must verify identity through Duo using their username and password for each session.
Algorithm Design: Data Extraction

1. Upload New Data
 - Yes: Pick method to Upload data.
 - No: Go to homepage

2. Take Picture?
 - Yes: Pytesseract module to extract text from uploaded Picture
 - No: Scan Document?

3. Scan Document?
 - Yes: PyPDF module to extract text from uploaded PDF
 - No: Link smart devices data?

4. Link smart devices data?
 - Yes: Add your smart devices from the local wifi network
 - No: Gather data from Wink and Domoticz API

Database
Work Breakdown Structure - Database

Database

Bright Ideas

User Accounts

User Info

Utility Usage
Work Breakdown Structure - Testing

- Testing
 - Unit Testing
 - Integration Testing
 - System Testing
 - Acceptance Testing
Agile Methodology

- Iterative approach to software design and development\[^{19}\]
 - Smaller requirement, building, and testing phases
 - Delivers working software quickly and frequently
- Flexible
- Collaborative
- Feedback driven development

Figure 9: Agile Development Cycle
Agile Sprints

Sprint 1
- Setup development environment
- Acquire libraries and licenses
- Set up Database
- Login/Account Creation
- Testing

Sprint 2
- Implement minimal UI
- Implement database schema
- Testing

Sprint 3
- Finish Implementing UI
- Gather data from API
- Testing

Sprint 4
- Implement data from API to UI
- Testing

Sprint 5
- Finalize GUI
- Finalize API to UI
- Testing
Legal Risks

L1: Compromise of personally identifiable information.

Mitigation:

- Reduce probability: Utilize database security best practices
- Reduce impact: Do not collect personal information such as: names, account number, DoB.

Initial Risk: HIGH -> Mitigated Risk: MEDIUM

L2: Buy-in from utilities required for syncing accounts to Ener-G View.

Mitigation:

- Reduce probability: Manually input data from utility bill
- Reduce impact: Offer incentive for utility companies to partner with Ener-G View.

Initial Risk: HIGH -> Mitigated Risk: LOW
Customer Risks

C1: User will discontinue use of service if data extraction isn't accurate.

Mitigation:
- Reduce probability: Optimize the recognition algorithm.
- Reduce impact: Allow user to identify the data they would like to be extracted.

Initial Risk: **MEDIUM** -> Mitigated Risk: **LOW**

C2: Product is not useful to utility customers.

Mitigation:
- Reduce probability: Provide useful energy saving solutions.
- Reduce impact: Regularly perform surveys to ensure end-user satisfaction.

Initial Risk: **MEDIUM** -> Mitigated Risk: **LOW**

Customer Risk Matrix

<table>
<thead>
<tr>
<th>Probability</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

![Risk Matrix Diagram]

- **C1**: Initial Risk: MEDIUM, Mitigated Risk: LOW
- **C2**: Initial Risk: MEDIUM, Mitigated Risk: LOW

Design Presentation

CS 410 Crystal
Technical Risks

T1: Security threats against user data (confidentiality, integrity, and availability).

Mitigation:

- **Reduce probability:** Implement best practice security features to protect against passive and active attacks
 - Encryption in transit (HTTPS)
 - At-rest encryption
 - Multi-Factor Authentication (MFA)
- **Reduce impact:** Implement secure data backup and restoration using AWS

Initial Risk: HIGH \(\rightarrow\) **Mitigated Risk:** LOW

<table>
<thead>
<tr>
<th>Impact</th>
<th>Very Low</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td>T3</td>
<td>T1</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial Risk

Mitigated Risk
Technical Risks

T2: Reliance on third-party APIs/Utilities (AWS).

Mitigation:
- Reduce Probability: Perform troubleshooting, proof of concept, and prototyping to ensure functionality
- Reduce impact: Third-party resources may need to change if desired functionality is not initially achieved.

Initial Impact: HIGH → **Mitigated Impact:** MEDIUM

T3: Differing structures of bills may cause problems for automatically extracting billing information.

Mitigation:
- Reduce probability: Identifying key phrases for system to recognize and extract
- Reduce impact: Users may also define what information they would like the system to extract.

Initial Risk: MEDIUM → **Mitigated Risk:** LOW

Technical Risk Matrix

<table>
<thead>
<tr>
<th>Probability</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
</tr>
</tbody>
</table>

- **T2**
- **T3**
- **T1**

Design Presentation

CS 410 Crystal
Conclusion

● Current solutions:
 ○ Require logging in to multiple accounts
 ○ Place the burden on the customer to monitor and reduce usage
 ○ Place a financial burden on the customer to invest in energy efficient technology to lower their monthly costs

● Ener-G View:
 ○ Aggregates data from monthly utility bills in one location
 ○ Allows users to visualize their usage and costs
 ○ Provides low-cost tips for reduction leads to a decrease in consumption and cost
References

7) Environmental Protection Agency. (2021, January 11). Fix a Leak Week. EPA. [Link]
8) 4 Ways to Measure a 5 Minute Shower. Sustainability at Harvard. (2020, February 4). [Link]
References for “Bright Ideas”

List of Figures

8) [Ecobee Smart Thermostat]. (2021). Amazon Listing for Ecobee Smart Thermostat. [Screenshot]. https://www.amazon.com/ecobee-SmartThermostat-Voice-Control-Black/dp/B07NQT85FC/ref=sr_1_1_sspa?dchild=1&keywords=smart+thermostat&qid=1617019034&sprefix=smart+thermo%2Caps%2C155&sr=8-1-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEt1cyStY3SkdVVzVFJmVuY3JScHRIZEkPUEwNk3OTl0V1A0Q1pCUjHTDYZJmVuY3JScHRIZEkSWQ9QTA1ODM0MjkzUFLigk1HTDvOVOJYJndpZGdidEBvWU9c3BFYXRMjMjFjEDLjVhGjI1aJIZGlwZWN0JmRvTM9OTG9Q2xyY2s9dHZJQ==
Glossary

- Applicable Riders: temporary rate changes (fluctuate based on weather or demand on the supply system)
- Delivery: cost of materials to transmit natural gas to residence
- Distribution Service: cost of equipment to deliver electricity
- Electricity Supply Svc (ESS): cost of generation, transmission, and fuel to deliver electricity
- Hcf: hundred cubic feet (1 hcf=748 gallons) (measurement for water and natural gas; also known as ccf)
- kWh: kilowatts per hour (measurement for electricity)
- Sales and Use Surcharge: fee charged to recover Energy company’s purchase and leases, based on personal consumption
- Supply: cost of the amount of utility delivered ($/unit of measurement)