

Before We Begin...

• Download buttons available on website for:

- All presentations.
- User stories.
- Risks.
- All docs also available in deliverables.

All Downloads

<u>https://www.cs.odu.edu/~410yello/alldownloads.html</u>

Main Site

• <u>https://www.cs.odu.edu/~410yello/</u>

Meet Our Team

Cody Anning Presentation Co-Lead, Software Developer

Zachary Raidl Presentation Co-Lead, Software Developer

Justin Howlett Software Engineer/Developer

Dr. David Gauthier Project Mentor

John Edgar Quiambao Computer Resource Manager, Editor

Aran Barzanji Team Co-Lead, Web & Software Developer, Database Admin

Chuck Fischer

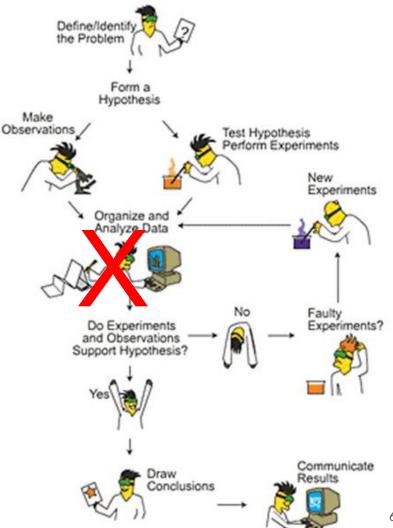
Software Engineer,

Database Admin

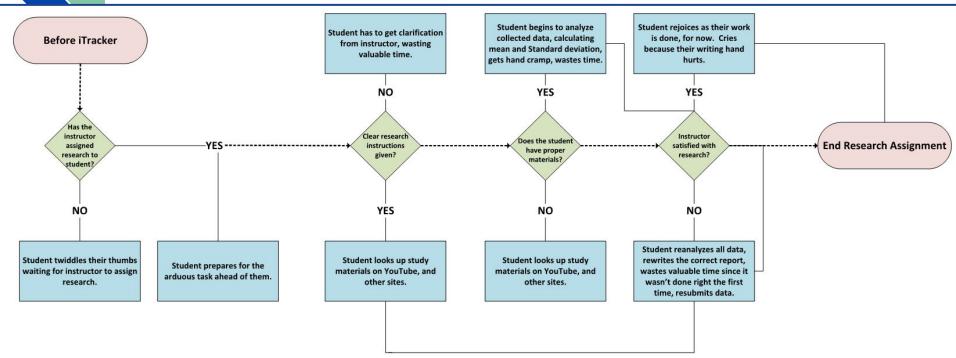
Joshua Leigh Team Co-Lead, Head Software Engineer

Table of Contents

Problem Statement5	Identification of Software and Management
Research Process Before	Tools
iTracker6	Site Maps23-25
Current Process Flow7	Mockups (Student View)26-27
Our Solution8	Mockups (Instructor
A Day in the Life of a Biology Student with	View)
iTracker9	iTracker - Implementation
What does iTracker	Overview
do?10	iTracker - Interface31
Customers11	iTracker - Old System32
End Users12	iTracker - Databases ER
Major Functional Components13	Diagram
Risks Overview14	iTracker - Databases
Technical Risks & Mitigation	Schema
Methods15-18	iTracker - Databases35
Customer Risks & Mitigation	iTracker - Algorithms
Methods19-21	Summary40



Problem Statement


There is a need to automate the processing of scientific experiment observations, and to facilitate efficient analysis of raw data by students and faculty.

Research Process Before iTracker

- ~1000 students take Intro Biology every semester at ODU.
- Missed opportunity to utilize software for data collection.
- Analysis of data is currently not in real time.
- Major delay between recording observations and analysis.

Current Process Flow


LEGEND: Pink - iTracker Start / End Greenish - Decisions Blue - Processess

Our Solution

By streamlining the analysis portion of the scientific process, iTracker will allow Old Dominion University's Biology department to efficiently gather, organize, and visualize data and trends in an intuitive manner.

This will allow ODU's biology students to analyze their collected data and start to draw conclusions at a much faster pace than before.

What does iTracker do?

The Program Will:

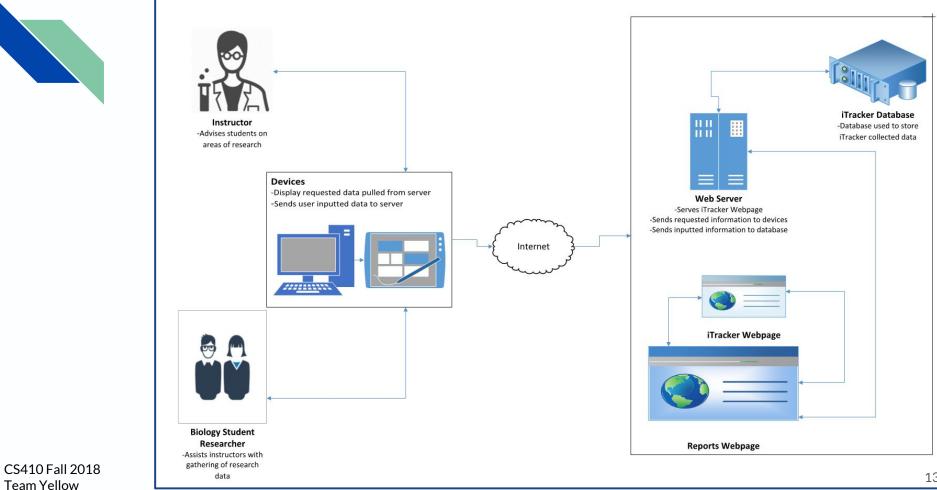
- Allow students and faculty to input scientific data and access it in real time.
- Take advantage of the massive amounts of data collected by the ~1000 Biology students at ODU.
- Display pertinent data and graphs from previous collection time periods.
- Give information pertaining to possible trends.
- Highlight the significance of accessing historical data.
- Flag outlier data.

The Program Will Not:

- Do your homework for you.
- Make any conclusions for the student.
- Automate the collection of data.

Colleges and Universities

- That offer classes in biological research.
 - Case study: Biology department at Old Dominion University.


Students:

- Helps come to a conclusion in the experiment.
- Discover what is unique with their findings.
- Provides a better understanding of the scientific process.

For Faculty:

- Aid in keeping track of scientific data.
- Meaningful real time data examples.
- Provides added levels of accessible information.
- Provides convenient methods for sharing educational materials.
- Provide timely feedback to students.

Major Functional Components

Risks Overview			Very Rare	Rare	Possible	Likely	CS410 Fall 2018 - Team Yellow
RISKS Overview		Extremely Damaging		тз		C1	
	С	Very Damaging			Т1	C2	
	Impa	Moderately Damaging		C3	Т2		
	Е	Slightly Damaging		Т4			
	_	Negligible					
Technical				Prob	ability	/	Customer
• T1 - Software proves incompa of iOS/Android with previous				•			y customers (Biology instructors) decide ne program, due to any reason.
• T2 - Backward compatibility o versions with old survey data.		er software		•			ts/instructors are not able to efficiently rogram, due to any reason.
• T3 - Software reliability due to device) issues.	oloca	l (single smart	t	•	C3 - optio		ptable time required to manage software
• T4 - Software reliability due to (communication) issues.	o cent	ral server					14

Impact

Very Rare	Rare	Possible	Likely
	Т3		C1
		Т1	C2
	C3	T2	
	T4		
	Very Rare	T3 C3	T3 T1 C3 T2

Probability

T1 Risk

 Software proves incompatible to newer versions of iOS/Android with previous software versions.

T1 Mitigation

• Web-application is planned in addition to mobile applications; all versions should be adequately tested before release.

Impact

	Very Rare	Rare	Possible	Likely	
Extremely Damaging		Т3		C1	
Very Damaging			T1	C2	
Moderately Damaging		C3	T2		
Slightly Damaging		Т4			
Negligible					
	Probability				

T2 Risk

• Backward compatibility of newer software versions with old survey data.

T2 Mitigation

• Ensure adequate beta testing has been performed on the software with old survey data before new version releases.

Impact

	Very Rare	Rare	Possible	Likely	
Extremely Damaging		тз		C1	
Very Damaging			т1	C2	
Moderately Damaging		C3	Т2		
Slightly Damaging		T4			
Negligible					
	Probability				

T3 Risk

• Software reliability due to local (single smart device) issues.

T3 Mitigation

• Software testing and follow through on all user reported bugs.

Impact

	Very Rare	Rare	Possible	Likely	
Extremely Damaging		Т3		C1	
Very Damaging			T1	C2	
Moderately Damaging		C3	T2		
Slightly Damaging		Т4			
Negligible					
	Probability				

T4 Risk

• Software reliability due to central server (communication) issues.

T4 Mitigation

• Allow for local storage of all data and reports in case of server downtime.

Customer Risks - C1

Impact

	Very Rare	Rare	Possible	Likely
Extremely Damaging		Т3		C1
Very Damaging			т1	C2
Moderately Damaging		C3	T2	
Slightly Damaging		T4		
Negligible				
		Droh	ability	

Probability

C1 Risk

• Primary customers (Biology instructors) decide not to use the program, due to any reason.

C1 Mitigation

• Acquire feedback from instructors and make necessary changes; ensure adequate beta testing has been performed.

Customer Risks - C2

Impact

		Likely
 Т3		C1
	Т1	C2
C3	Т2	
T4		
	СЗ	C3 T2

Probability

C2 Risk

• Students/instructors are not able to efficiently utilize the program, due to any reason.

C2 Mitigation

• Acquire feedback and make necessary changes. Interface should be simple and intuitive.

Customer Risks - C3

Impact

	Very Rare	Rare	Possible	Likely
Extremely Damaging		Т3		C1
Very Damaging			Т1	C2
Moderately Damaging		C3	Т2	
Slightly Damaging		T4		
Negligible				
		Droh	ahility	,

Probability

C3 Risk

• Unacceptable time required to manage software options.

C3 Mitigation

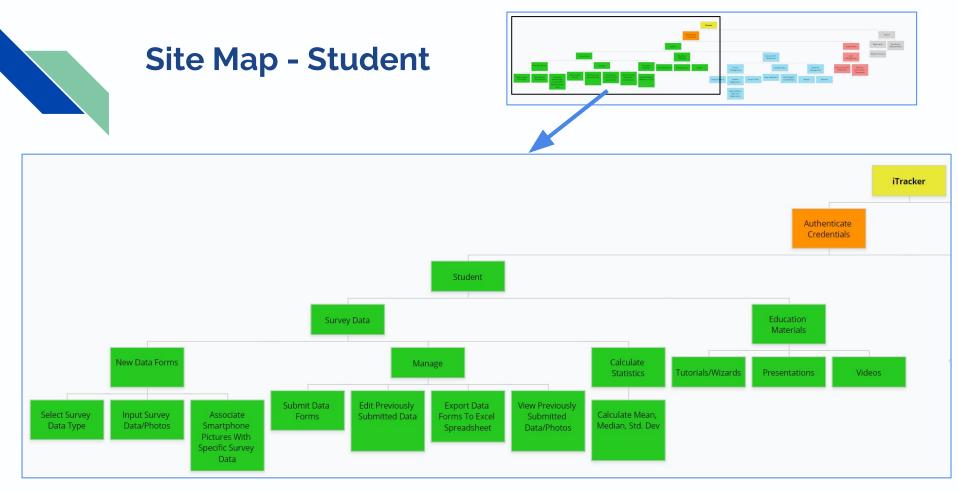
• Ensure adequate beta testing has been performed and acquire feedback from primary customers (instructors).

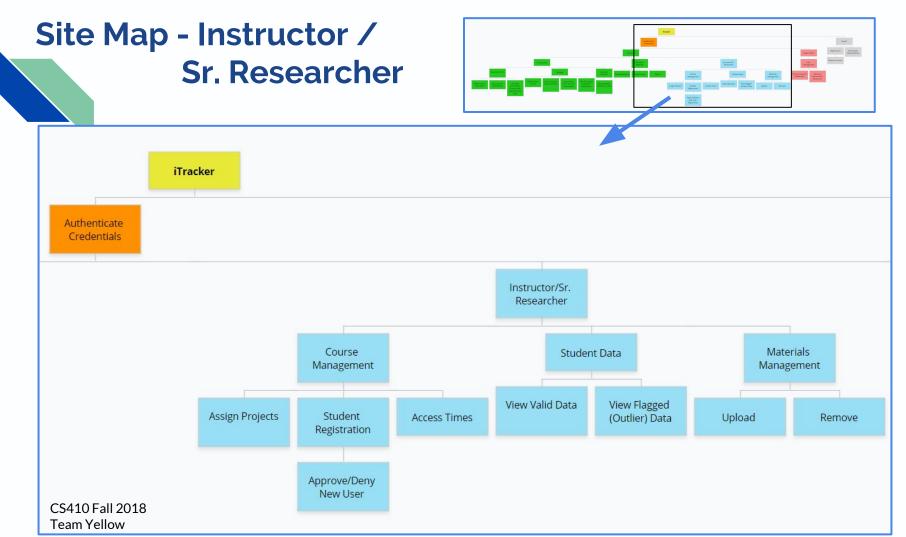
Identification of Software Development

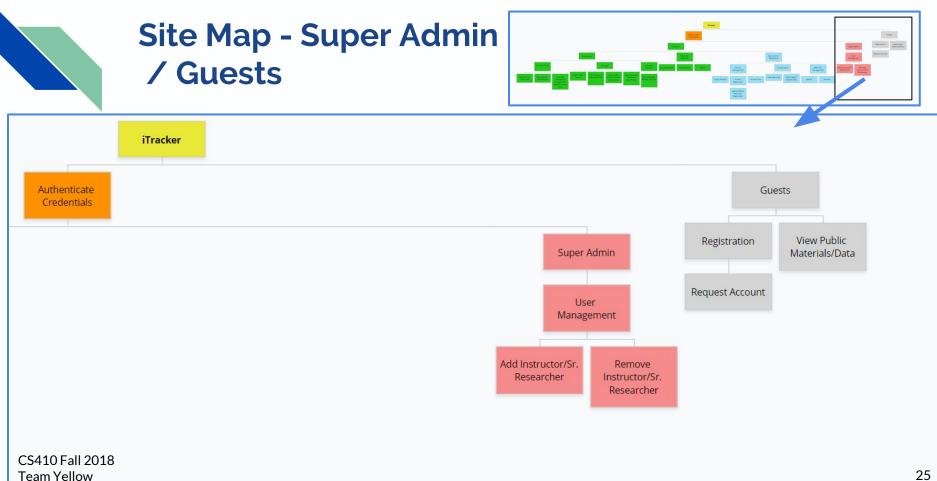
Project Management Tools

- Git for version control
- JavaDocs for documentation and analysis

Programming Languages/Libraries

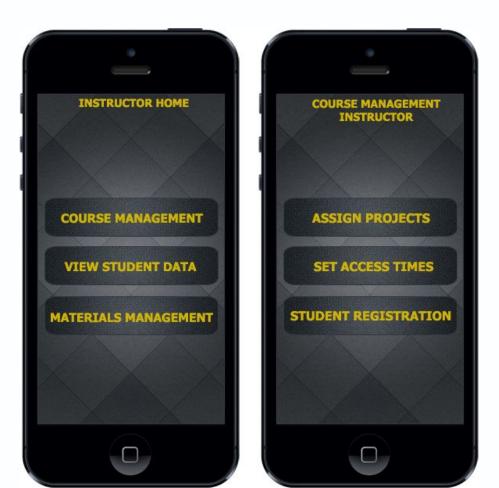

- C#, Java
- JQuery (Javascript Library)

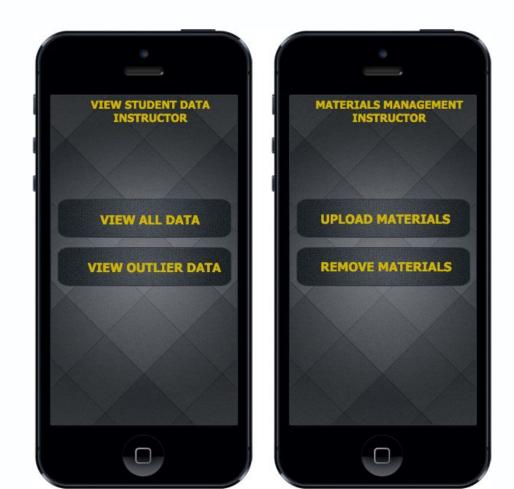

<u>Databases</u>

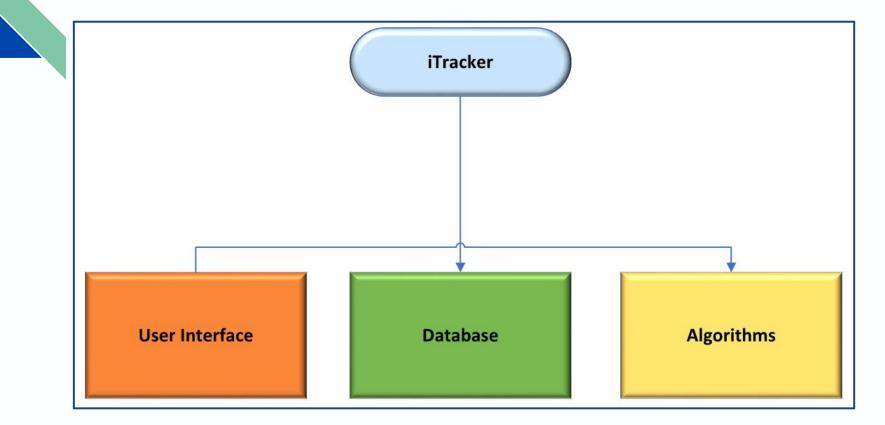

•

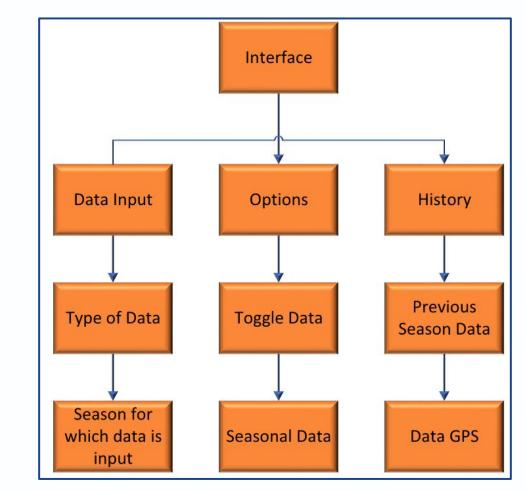
<u>Other</u>

MySQL • JSON


Mockup - Student View


Mockup - Student View (continued)


Mockup - Instructor View


Mockup - Instructor View (continued)

iTracker - Implementation Overview

iTracker - Interface

CS410 Fall 2018 Team Yellow

iTracker - Old System

CTI	IDENT	NAME

DATE

ROOM NUMBER DAY TIME

FIRST OBSERVATION

TERRARIUM ID#	CONDENSATION	FUNGAL GROWTH	LIGHTS (ON/OFF)

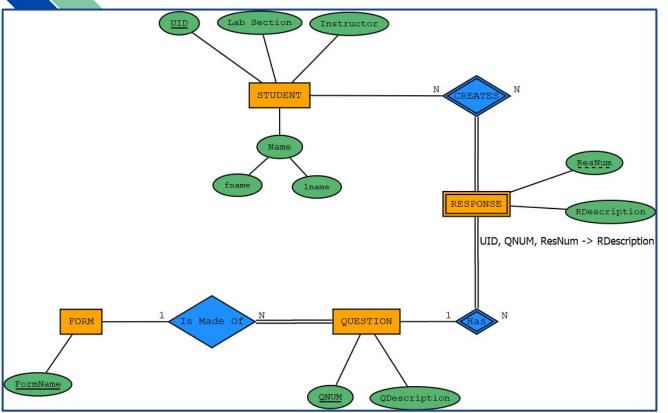
Do you see any ticks? Are the ticks moving or sitting still?

QUESTING TICK#	HEIGHT CLIMBED	SPECIES (A. americanum or I. scapularis)	NOTES
1			
2			
3			
4			
5			
6			
7			
8			

Additional comments or observations:

SECOND OBSERVATION

TERRARIUM ID#	CONDENSATION	FUNGAL GROWTH	LIGHTS (ON/OFF)		


Do you see any ticks? Are the ticks moving or sitting still?

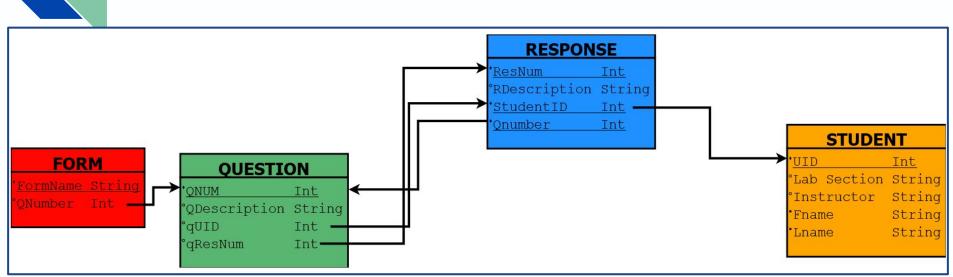
QUESTING TICK#	HEIGHT CLIMBED	SPECIES (A. americanum or 1. scapularis)	NOTES	
1				
2				
3				
4				
5				
6				
7				
8				

Additional comments or observations:

Data Sheet ID	Ticks observed	Date	Observer	Tank	ick Activity	k Height (o	Material	Dowel #	Time	Time Fin
20	1	5/16/2018	MA	A	Q	14.5	G	NA	11:00	11:04
21	1	5/16/2018	PS	A	Q	18	G	NA	NA	11:42
22	1	5/16/2018	FA	A	Q	14.1	G	NA	NA	11:33
23	1	5/16/2018	TE	A	Q	14.5	G	NA	NA	11:33
24	1	5/16/2018	KG	A	Q	14	G	NA	NA	11:33
25	1	5/16/2018	BS	A	Q	14	G	NA	NA	11:33
26		5/16/2018		A	Q	14	100	NA	NA	11:33
27		5/16/2018		A	Q	15.2		?	11:18	11:33
28		5/16/2018		A	1	U	G	NA	NA	11:32
29		5/16/2018		A	U	U	G	NA	NA	11:32
30		5/16/2018		A	U	U	NA	NA	NA	11:31
31		5/16/2018		A	Q	15		NA	NA	11:29
32	1	5/16/2018	JE	A	Q	15	G	NA	NA	11:22
Data Sheet ID	Observer	Fime	Roor	n	Date	I.scapu	laris_ob: /	.america	num_ Notes	;
W1	CS		8:00	115	9/26/201	18	0		2	
W2	ST		8:00	3:00 115		18 0		2		
W3	SS		3:00 115		9/26/201	9/26/2018 0		2		
W4	AM		B:00 115		9/26/201	26/2018 0		2		
W5	MS		3:00 115		9/26/201	8 0		1		
W6	DW		8:00	0 115		8 0		1		
W7	KB		8:00	117	9/26/201	8 1			6	
W8	SP		8:00	117	9/26/201	2018 1 4			4	

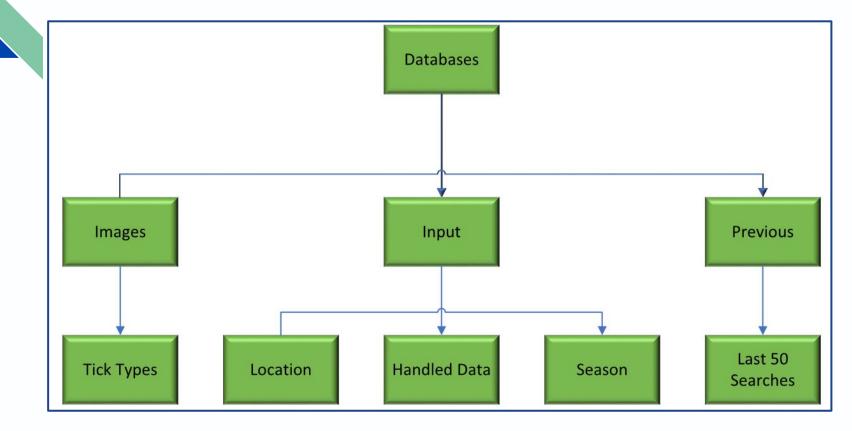
iTracker - Databases - Entity Relationship (ER) Diagram

Problem is to create a flexible database of databases not single database that can't be changed.

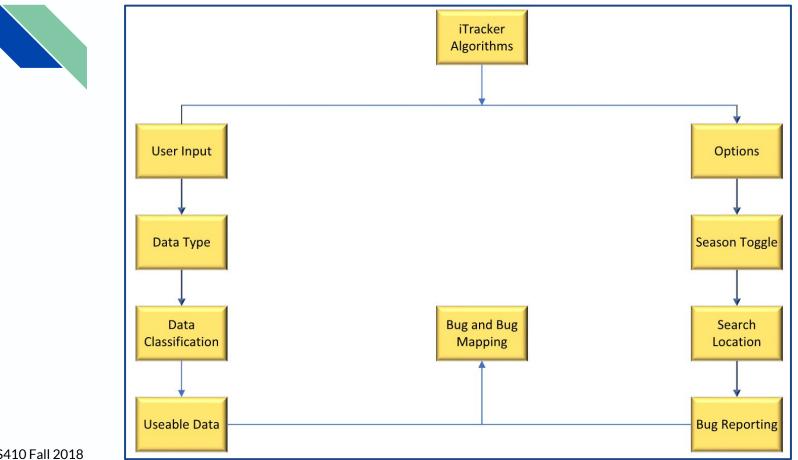

A form holds questions and all the responses to those questions

Students insert tuples all into the same form. They do not each create their own form.

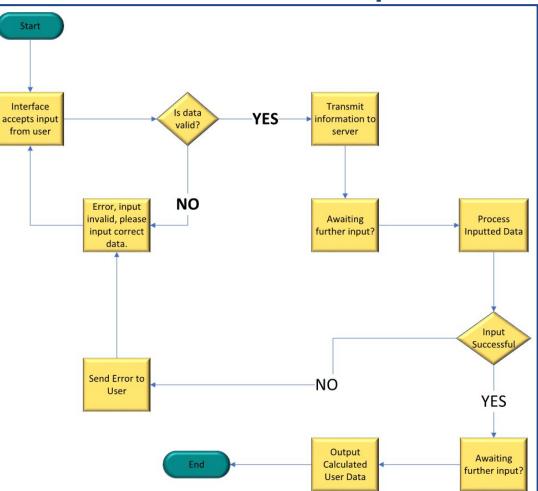
All information that isn't a listed attribute is handled as a question.

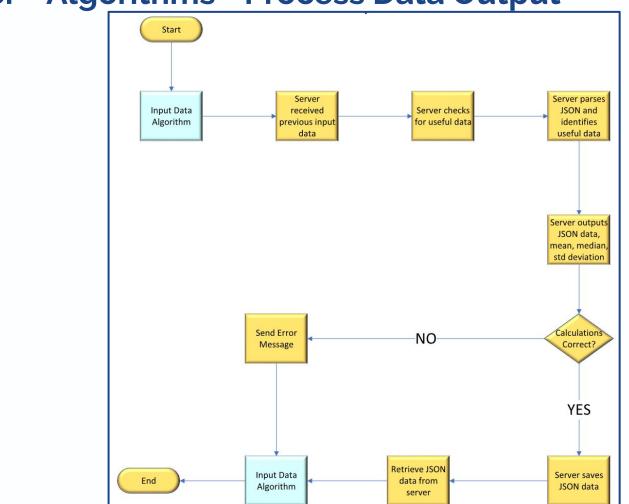

New forms can use previously created questions. (Questions are a strong entity)

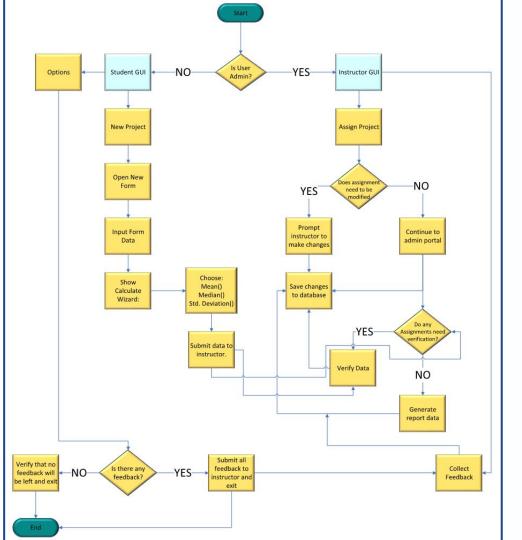
iTracker - Databases - Schema



- Keys: Underlined.
- Foreign Keys Tails of arrows. Reference other tables.
 - FORM: Qnumber ->QNUM
 - QUESTION: qUID->StudentID, qResNum->ResNum
 - **RESPONSE: Qnumber -> QNUM, StudentID->UID**


iTracker - Databases


iTracker - Algorithms: Overview


iTracker - Algorithms - Process Data Input

iTracker - Algorithms - Process Data Output

iTracker - Algorithms GUI Input

iTracker: Summary

<u>What:</u>

The collection of data is currently being done by hand and it takes the TA's time to enter data. To see the data may take days to view and the opportunity to follow the scientific process efficiently is lost.

Who:

Aiming to have students, faculty, and individuals interested in the scientific process use iTracker.

How:

Allows students and faculty to input scientific data, automate the organization of data, and give them the ability to accurately visualize the data in the same day.