
 Lab 3 – ParkODU Prototype Test Plan & Procedure
– Version 1, 1

Lab 3 – ParkODU Prototype Product Specification

Team Gold

CS 411

Professor Thomas J. Kennedy

2 April 2018

Version 1

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 2

Table of Contents

1. Objectives ... 3

2. References ... 3

3. Test Plan.. 3

3.1 Testing Approach .. 3

3.2 Identification of Tests.. 5

3.3 Test Schedule .. 8

3.4 Fault Reporting and Data Recording ... 9

3.5 Resource Requirements ... 9

3.6 Test Environment .. 9

3.7 Test Responsibilities ... 10

4. Test Procedures ... 10

4.1 User Access Tests.. 12

4.2 UI Tests ... 16

4.3 JUnit Tests ... 33

4.4 UX Tests .. 57

5. Traceability of Requirements .. 59

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 3

1. Objectives

The purpose of this Test Plan and Procedure is to test the operation and performance of the

ParkODU Prototype. It includes tests for four major categories - User Access, User Interface

(UI), JUnit, and User Experience (UX).

User access tests will cover user login and access control defined by user roles. User interface

tests will cover the presentation format of information and the responses to user actions. JUnit

tests will be used to test the functionality of the back-end controllers and services to ensure that

the controllers and services properly manipulate data models and return correct information.

User experience tests will cover all applicable use cases and the intuitiveness of the user

interfaces in real use scenarios.

2. References

Lab 1 - ParkODU Description. Version 2. (2018, February). Team Gold. CS411W

Lab 2 - ParkODU Prototype Product Specification. Version 2. (2018, March). CS411W

3. Test Plan

The test plan of the prototype will cover the testing approach, the identification of

tests, the test schedule, fault reporting and data recording, resource requirements,

test environment, and test responsibilities.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 4

3.1 Testing Approach

Performance of the prototype will be evaluated by the following categories of unit and feedback

testing:

1. User Access Tests verify that authentication mechanisms have been properly

implemented to allow users to log into the web application and are assigned permissions

appropriate to their role.

2. UI tests verify that HTML elements display properly and function appropriately.

3. JUnit Tests verify code quality and functionality of Controller and Model methods.

4. User Experience (UX) Tests verify the usability of accessibility of all web pages to

strive for compliance with Section 508 of the Rehabilitation Act of 1973.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 5

3.2 Identification of Tests

Each test will be identified by category and test case number.

Procedure

ID

Category Test

Case

Name Objective

1

User

Access

 1.1 User Login

Prompt

Verify that users are prompted for login when they first visit

the website.

1.2 User Logout

Option

Verify that users have the capability to logout from the

website.

1.3 Admin Access Verify that users logged in as Admin have access to Settings

where they can modify configurations.

1.4 User Access Verify that regular users can access ParkODU and they can

view and modify their profile.

1.5 Anonymous

Access

Verify that anonymous users can access ParkODU without

any credentials but they have no access to their profile

2

UI

2.1 Create Space Verify that the Create Parking Space page displays all

elements and responds to user actions correctly.

2.2 Edit Space Verify that the Edit Parking Space page displays all elements

and responds to user actions correctly.

2.3 Delete Space Verify that the Delete button and Modal are displayed and

responds to user actions correctly.

2.4 Create Floor Verify that Create Floor page displays all elements and

responds to user actions correctly.

2.5 Edit Floor Verify that the Edit Floor page displays all elements and

responds to user actions correctly.

2.6 Delete Floor Verify that the Delete button and Modal are displayed and

responds to user actions correctly.

2.7 Create Garage Verify that the Create Garage page displays all elements and

responds to user actions correctly.

2.8 Edit Garage Verify that the Edit Garage page displays all elements and

responds to user actions correctly.

2.9 Delete Garage Verify that the Delete button and Modal are displayed and

responds to user actions correctly.

2.10 Search Verify that search page displays all elements and responds to

user actions correctly.

2.11 Directions

Display

Verify that Navigate page displays all elements and responds

to user actions correctly.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 6

Procedure

ID

Category Test

Case

Name Objective

2.12 User

Preferences

Verify that the User Settings page displays all elements and

responds to user actions correctly.

2.13 Events

Notification

Verify that event notifications are displayed and respond to

user actions correctly.

2.14 Create Event Verify that the Create Events page in Admin Settings

displays all elements and responds to user actions correctly.

2.15 Edit Event Verify that the Edit Events page in Admin Settings displays

all elements and responds to user actions correctly.

2.16 Delete Event Verify that the Delete button and Modal are displayed and

responds to user actions correctly.

2.17 Charts Verify that the Charts page displays all elements and

responds to user actions correctly.

3

JUnit

3.1 Index Garage Verify that the controller logic to process an Index Garage

request is executed properly.

3.2 Create Garage Verify that the controller logic to process a Create Garage

request is executed properly.

3.3 Edit Garage Verify that the controller logic to process an Edit Garage

request is executed properly.

3.4 Delete Garage Verify that the controller logic to process a Delete Garage

request is executed properly.

3.5 Index Floor Verify that the controller logic to process an Index Floor

request is executed properly.

3.6 Create Floor Verify that the controller logic to process a Create Floor

request is executed properly.

3.7 Edit Floor Verify that the controller logic to process an Edit Floor

request is executed properly.

3.8 Delete Floor Verify that the controller logic to process a Delete Floor

request is executed properly.

3.9 Index Parking

Space

Verify that the controller logic to process an Index Parking

Space request is executed properly

3.10 Create Parking

Space

Verify that the controller logic to process a Create Parking

Space request is executed properly.

3.11 Edit Parking

Space

Verify that the controller logic to process an Edit Parking

Space request is executed properly.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 7

Procedure

ID

Category Test

Case

Name Objective

3.12 Delete Parking

Space

Verify that the controller logic to process a Delete Parking

Space request is executed properly.

3.13 Building Index Verify that the controller logic to process an Index Building

request is executed properly.

3.14 Create

Building

Verify that the controller logic to process a Create Building

request is executed properly.

3.15 Edit Building Verify that the controller logic to process an Edit Building

request is executed properly.

3.16 Delete

Building

Verify that the controller logic to process a Delete Building

request is executed properly.

3.17 Index User Verify that the controller logic to process an Index User

request is executed properly.

3.18 Create User Verify that the controller logic to process a Create User

request is executed properly.

3.19 Edit User Verify that the controller logic to process an Edit User

request is executed properly.

3.20 Delete User Verify that the controller logic to process a Delete User

request is executed properly.

3.21 Register User Verify that the controller logic to process a Register User

request is executed properly.

3.22 Confirm User Verify that the controller logic to process a Confirm User

request is executed properly.

3.23 Directions Verify that the controller logic to process an Index

Directions request is executed properly.

 3.24 User Model Verify the completeness of the User model interface, that all

User.java get methods properly return requested attributes,

and that all set methods properly update the attributes

4

UX

Accessibility

To make sure the application conforms to the font size

readability, color contrast, images, and ease of navigation

according to section 508.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 8

3.3 Test Schedule

A full test will take an approximate time of one hour to complete.

Start Time

(hour:min)

Duration

(minutes)

Test Case Description Comments

0:00 1 1.1 User Login Prompt

0:01 1 1.2 User Logout Option

0:02 5 1.3 Admin Access

0:07 5 1.4 User Access

0:11 3 1.5 Anonymous Access

0:14 1 2.1 Create Space

0:15 2 2.2 Edit Space

0:17 1 2.3 Delete Space

0:18 3 2.4 Create Floor

0:21 1 2.5 Edit Floor

0:22 1 2.6 Delete Floor

0:23 3 2.7 Create Garage

0:26 3 2.8 Edit Garage

0:29 1 2.9 Delete Garage

0:30 2 2.10 Search

0:32 3 2.11 Direction display

0:35 5 2.12 User Preferences

0:40 5 2.13 Events Notification

0:45 2 2.14 Create Event

0:47 1 2.15 Edit Event

0:48 1 2.16 Delete Event

0:49 5 2.17 Charts

0:54 2 2.18 Register User

0:56 2 2.19 Confirm User

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 9

3.4 Fault Reporting and Data Recording

The results of unit tests will verify the functionality of the system components using Cobertura

Test Coverage Report to generate the JUnit test coverage results in HTML format. JUnit also

generates a Test Summary report that displays the success rate and how many tests passed,

failed, and ignored. All the failures that occur when the program is executed will be viewable

from the interface being used. Tests requiring user feedback responses will be recorded by a

member of Team Gold during the testing demonstration.

3.5 Resource Requirements

For the testing procedure, sample historical data generated by the simulator for chart

demonstration must be made available. This data is based on real-world parking trends. Database

objects must exist that represent ODU: buildings, garages, floors, parking spaces, parking space

types, parking permit types, events, and users. An active connection to the Internet with a

modern browser is also necessary.

3.6 Test Environment

The test will be conducted remotely on the ParkODU website using virtual Windows 7 machine.

The testing will be done by Team Gold. Tests may or may not require user feedback which will

be conducted in a recitation classroom in the Gornto Telecommunications Building at Old

Dominion University.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 10

3.7 Test Responsibilities

Each member of Team Gold will perform a role necessary for the completion of the tests.

Team Member Role Responsibilities

Asante, Isaac Consumer Admin UI navigation

Coughenour, Cody Test Manager Lead test demonstration team

Mason, Imani Technical Writer Generate test reports

Mokha, Sangeet Consumer User UI navigation

Park, Michael Technical Advisor Provide technical assistance

Sheikh, Ahsif Presenter Explain test results

Silverio, Gerard Technical Advisor Provide technical assistance

Stevenson, Matthew Presenter Explain test results

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 11

4. Test Procedures

The following sections contain all test cases for this test procedure. Each test case includes the

category, number, fulfilled requirement, a description, name, version, author, purpose, setup

conditions, steps, and expected results of the test case. There are also spaces for comments and

indicating if the test passed or failed.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 12

4.1 User Access Tests

User access tests are involved with the views users see based on their access level.

Test Category:
User Access

Description: Login prompted for user when visiting ParkODU

Test Case:
1.1

Case Name:
User Login

Prompt

Version:
1.0

Written by:
Imani Mason

Requirements

Fulfilled:
3.1.1.8.1

Purpose: Verify that users are prompted for login when they first visit

the website.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the User Login Page

Test Case Activity Pass/Fail Comments Expected Result

1.Navigate to

ParkODU

ParkODU Welcome Screen

displayed

2.Click Login

User is prompted to enter

username and password
Login screen displayed

Test Category:
User Access

Description: On the User Login page users can logout

Test Case:
1.2

Case Name:
User Login

Option

Version:
1.0

Written by:
Imani Mason

Requirements Fulfilled:
3.1.1.8.2

Purpose: Verify that users have the capability to logout from

the website.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the User Login Page

Test Case Activity Pass/Fail Comments Expected Result

1.Click Login

Login screen displayed

2. Login in with username

and password

“Welcome User!” displayed at top of

screen

3.Click settings

Log Out option is displayed

4. Click Log Out

User is logged out of account and

Login page is displayed

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 13

Test Category:
User Access

Description: As an admin user on the Configuration page admin can

modify configurations

Test Case:
1.3

Case Name:
Admin Access

Version:
1.0

Written by:
Imani Mason

Requirements Fulfilled:
3.1.1.7

Purpose: Verify that users logged in as Admin have access to

Settings where they can modify configurations.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Navigate to the Configuration Page

Test Case Activity Pass/Fail Comments Expected Result

1.Click Login

Login screen displayed

2. Login in with username

and password

Login as

admin
“Welcome Admin!” displayed at top of

screen

3. Navigate to the

Configurations tab

Configuration options are displayed

4. Click a configuration

option

Create, edit, and delete settings are

displayed

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 14

Test Category:
User Access

Description: Users of ParkODU can view and edit profiles

Test Case:
1.4

Case Name:
User Access

Version:
1.0

Written by:
Imani Mason

Requirements Fulfilled:
3.1.1.2

Purpose: Verify that regular users can access ParkODU and can view

and modify their profile.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the User Login Page

• Navigate to User Profile Page

Test Case Activity Pass/Fail Comments Expected Result

1.Click Login

Login screen displayed

2. Login in with username

and password

“Welcome User!” displayed at top of

screen

3.Navigate to Settings Page

Profile option displayed

4. Click Profile

View and Modify options are displayed

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 15

Test Category:
User Access

Description: Users can access ParkODU without credentials but cannot access

profile

Test Case:
1.5

Case Name:
Anonymous

Access

Version:
1.0

Written by:
Imani Mason

Requirements

Fulfilled:

Purpose: Verify that anonymous users can access ParkODU without any

credentials but they have no access to their profile

Setup Conditions:
• Open ParkODU Web Application

Test Case

Activity
Pass/Fail Comments Expected Result

1.Navigate around

ParkODU

Can access: Garage (Details, Floor Details), Search

(Results, Navigate), Chart, Login, and Event

Notifications

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 16

4.2 UI Tests

UI tests involve testing the functionality of each page within the application including proper

navigation.

Test Category:
User Interface

Description: On the Create Parking Spaces page in Admin Settings

spaces can be created.

Test Case:
2.1

Case Name: Create

Space
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.7

Purpose: Verify that the Create Parking Space page displays all

elements and responds to user actions correctly.

Setup Conditions:
· Open ParkODU Web Application
· Navigate to the Admin Page
· Log in as an Admin
· Navigate to the Settings page
· Navigate to the Configure Spaces Page

Test Case Activity Pass/Fail Comments Expected Result

1. Click Create button

Links to create page

2. Enter a value for

space Number

Accepts

text
Field should be editable

3. Select a value for

Permit Type All Permit Types displayed

4. Select a value for

Space Type All Space Types displayed

5. Click the Submit

button

Returns to list of spaces for that

garage and floor

6. Click the Reset

button

Resets all values to defaults

7. Click the Back

button

Returns to list of spaces for that

garage and floor

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 17

Test Category:
User Interface

Description: On the Configure Spaces page in Admin Settings spaces can

be edited.

Test Case:
2.2

Case Name:

Edit Space
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.8

Purpose: Verify that the Edit Parking Space page displays all elements

and responds to user actions correctly.

Setup Conditions:
· Open ParkODU Web Application
· Navigate to the Admin Page
· Log in as an Admin
· Navigate to the Settings page
· Navigate to the Configure Spaces Page
· Select a Floor of spaces to edit

Test Case Activity Pass/Fail Comments Expected Result

1. Change the value

of Number

A confirmation message should appear.

Last Updated field should change. This

comment applies to all other

activities.

Field should be

editable

2. Change the Permit

Type with drop down

menu
 All Permit Types

displayed

3. Change the Space

Type All Space Types

displayed

4. Click the

Available switch Switch changes

from blue to grey

on click

5. Click Reload

button

Refreshes page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 18

Test Category:
User Interface

Description: On the Configure Spaces page in Admin Settings spaces can be

deleted.

Test Case:
2.3

Case Name: Delete

Space
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.9

Purpose: Verify that the Delete button and Modal displays all elements

and responds to user actions correctly.

Setup Conditions:
· Open ParkODU Web Application
· Navigate to the Admin Page
· Log in as an Admin
· Navigate to the Settings page
· Navigate to the Configure Spaces Page
· Select a Floor of spaces to edit

Test Case Activity Pass/Fail Comments Expected Result

1. Click the delete

button

Verify warning shows

correct space number
Displays warning,

Delete, and Close

2. Click Close
 Closes warning

3. Click the X

Closes warning

4. Click Delete
 Closes dialog and

refreshes page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 19

Test Category:
User Interface

Description: On the Create Floor page in Admin Settings a floor can be

created.

Test Case:
2.4

Case Name: Create

Floor
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.4

Purpose: Verify that the Create Floor page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Floors Page

• Select a garage

Test Case

Activity
Pass/Fail Comments Expected Result

1. Click Create

button

Links to create page

2. Type in a

Number Shows placeholder

text prior
Editable

3.Type in a

Description Shows placeholder

text prior
Editable, Resizable

4. Type in Total

Spaces Shows placeholder

text prior
Numbers only, Editable, Can

increment with arrow

5. Click Reset

All values cleared

6. Click Back

Returns to list of floors for

that garage

7. Click Submit

Returns to list of floors for

that garage

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 20

Test Category:
User Interface

Description: On the Edit Floor page in Admin Settings a floor can be

edited.

Test Case:
2.5

Case Name:

Edit Floor
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.5

Purpose: Verify that the Edit Floor page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Floors Page

• Select a garage

Test Case Activity Pass/Fail Comments Expected Result

1. Click Edit button

for a floor

Links to Edit Page

2. Type in a Number
 Does not allow duplicate.

Try adding duplicate.
Editable, Error message

if necessary

3.Type in a

Description

Editable, Displays

description

4. Type in Total

Spaces

Read Only, Displays Total

Spaces

5. Click Reset

All values returned to

original values

6. Click Back

Returns to list of floors

for that garage

7. Click Submit

Returns to list of floors

for that garage

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 21

Test Category:
User Interface

Description: On the Configure Floor page in Admin Settings a floor can be

deleted.

Test Case:
2.6

Case Name: Delete

Floor
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.6

Purpose: Verify that the Delete button and Modal displays all elements and

responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Floors Page

• Select a garage

Test Case Activity Pass/Fail Comments Expected Result

1. Click Delete

Verify Floor

Number
Displays warning, delete,

close

2. Click Close

Closes warning

3. Click the X

Closes warning

4. Click Delete

Closes dialog and refreshes

page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 22

Test Category:
User Interface

Description: On the Create Garage page in Admin Settings a garage can be

created and responds to user actions correctly.

Test Case:
2.7

Case Name:

Create Garage
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.1

Purpose: Verify that the Create Garage page in Admin Settings displays all

elements.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Garages Page

Test Case Activity Pass/Fail Comments Expected Result

1. Click Create

button

Links to create page

2. Type in a Name
 Shows placeholder text

prior. Try duplicate.
Editable, Text, No duplicate

Name

3.Type in a

Description Shows placeholder text

prior
Editable, Resizable

4. Type in Height

Description Show placeholder text

prior

Editable, Text

5. Enter an

address

Shows placeholder text

prior.
Lat/Long are read only.

Editable, Latitude and

Longitude should change based

on address

6. Click Back

Returns to list of garages

7. Click Submit

Returns to list of garages

8. Click Reset

All values returned to original

value.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 23

Test Category:
User Interface

Description: On the Edit Garage page in Admin Settings a garage can be

edited.

Test Case:
2.8

Case Name:

Edit Garage
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.2

Purpose: Verify that the Edit Garage page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Garages Page

Test Case Activity Pass/Fail Comments Expected Result

1. Click Edit

button

Links to create page

2. Type in a Name
 No duplicate. Try

duplicate.
Editable, Text, Displays Name

3.Type in a

Description Can be resized. Editable, Shows Description

4. Type in Height

Description

Editable, Text, Shows Height

Description

5. Enter an

address

Lat/Long are read

only.
Editable, Autocompletes, Latitude and

Longitude should change based on

address

6. Click Back

Returns to garages

7. Click Submit

Returns to garages

8. Click Reset

All values returned to original value.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 24

Test Category:
User Interface

Description: On the Configure Garage page in Admin Settings a garage can

be deleted.

Test Case:
2.9

Case Name: Delete

Garage
Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.7.2.3

Purpose: Verify that the Delete button and Modal are displayed

correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Admin Page

• Log in as an Admin

• Navigate to the Settings page

• Navigate to the Configure Garages Page

Test Case Activity Pass/Fail Comments Expected Result

1. Click Delete

Verify Garage

Name
Displays warning, delete,

close

2. Click Close

Closes warning

3. Click the X

Closes warning

4. Click Delete

Closes dialog and refreshes

page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 25

Test Category:
User Interface

Description: The search page should function and be

accessible.

Test Case:
2.10

Case Name:

Search
Version:
1.0

Written by:
Sangeet Mokha, Cody

Coughenour

Requirements Fulfilled:
3.1.1.4.2, 3.1.1.4.3,

3.1.1.4.4, 3.1.1.4.5,

3.1.1.4.6

Purpose: Verify that search page displays all elements and

responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application
• Click on Search

Test Case Activity Pass/Fail Comments Expected Result

1. Type your starting location

Has

autocomplete

Editable

2. Select all the desired

Permit Types

Multi-selectable, all permit

types displayed

3.Select all the desired Space

Type

Multi-selectable, all space

types displayed

4. Add the minimum available

spaces

Editable, numbers only

5. Choose the desired

destination building

Displays all Buildings

5. Click search

Links to Search Results

page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 26

Test Category:

User Interface

Description: On the Navigate page, directions are provided to the

destination garage

Test Case:

2.11

Case Name:

Directions

Display

Version:

1.0

Written by:

Sangeet Mokha, Cody Coughenour

Requirements

Fulfilled:

3.1.1.5.1

Purpose: Verify that Navigate page displays all elements and responds to

user actions correctly.

Setup Conditions:

• Open ParkODU Web Application

• Enter valid search criteria

• Click on Search

• Click on Navigate

Test Case

Activity

Pass/Fail Comments Expected Result

1. View Page

Map should be displayed indicating point A and

B, directions should be displayed indicating

all turns and merges

2. Alter route

(click and drag)

 Displays new route and directions

3. Click Go Mobile

Only

Starts navigation (voice)

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 27

Test Category:
User Interface

Description: On the User Settings page user’s schedule can be imported

and preferences set.

Test Case:
2.12

Case Name: User

Preferences
Version:
1.0

Written by:
Imani Mason, Sangeet

Mokha, Cody Coughenour

Requirements

Fulfilled:
3.1.1.4.1,

3.1.1.2.1,

3.1.1.2.2, 3.1.1.2.3

Purpose: Verify that the User Settings page displays all elements and

responds to user actions correctly.

Setup Conditions:
• Open ParkODU Web Application
• Login as a User
• Navigate to the Users Preference Page

Test Case Activity Pass/Fail Comments Expected Result

1. Import your

schedule

These fields should

also be manually

editable

Displays Schedule,

Displays appropriate

message

2. Set Address Autocompletes

3. Set Permit

Type(s) Displays all permit types,

multi-selectable

4. Set Space Type(s) Displays all space types,

multi-selectable

5. Click Save Button Set fields to cause

an error and set

fields to cause

success message

Displays appropriate

message

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 28

Test Category:

User Interface

Description: Event Notifications are viewable from the Navigation Bar

Test Case:

2.13

Case Name: Event

Notification

Version:

1.0

Written by:

Sangeet Mokha

Requirements

Fulfilled:

3.1.1.6.1

Purpose: Verify that event notifications are displayed and respond to

user actions correctly.

Setup Conditions:

• Open ParkODU Web Application

Test Case Activity Pass/Fail Comments Expected Result

1.Click on the

notification button

(bell)

Number of unread

notifications

displayed on bell

icon

Displays events and an

optional view all

2. Click Close button

Closes event

notifications

3. Click X Closes event notifications

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 29

Test Category:
User Interface

Description: Events can be created on the Create Event Notifications page.

Test Case:
2.14

Case Name: Create Event

Notification
Version:
1.0

Written by:
Ahsif Sheikh, Isaac Asante, Cody

Coughenour

Requirements

Fulfilled:
3.1.1.7.1.1

Purpose: Verify that the Create Events page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:

• Open ParkODU Web Application
• Go to the Administrative User Page
• Log in as an Administrator
• Go to “Settings”
• Go to “Configure Event Notifications Page”

Test Case Activity Pass/Fail Comments Expected Result

1. Click Create

Links to Create page

2. Type in an

Event Name

Editable, Text, No duplicates

3. Type in an

Event Message

Editable, Text

4. Add Affected

Locations

 Autocompletes, Dropdown, shows all

Garages and Buildings

5. Set Date Time

Effective

 Date select with calendar or

keyboard, time hh:mm:ss

6. Set Tags Text, add multiple

7. Click Submit

Returns to Index

8. Click Back Returns to Index

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 30

Test Category:
User Interface

Description: Events can be edited on the Edit Event Notifications page.

Test Case:
2.15

Case Name: Edit Event

Notification
Version:
1.0

Written by:
Ahsif Sheikh, Isaac Asante, Cody

Coughenour

Requirements

Fulfilled:
3.1.1.7.1.2

Purpose: Verify that the Edit Events page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:

• Open ParkODU Web Application
• Go to the Administrative User Page
• Log in as an Administrator
• Go to “Settings”
• Go to “Configure Event Notifications Page”

Test Case Activity Pass/Fail Comments Expected Result

1. Click Edit

Links to Edit page

2. Type in an

Event Name

Editable, Text, No duplicates

3. Type in an

Event Message

Editable, Text

4. Add Affected

Locations

 Autocompletes, Dropdown, shows all

Garages and Buildings

5. Set Date Time

Effective

 Date select with calendar or

keyboard, time hh:mm:ss

6. Set Tags Text, add multiple

7. Click Submit

Returns to Index

8. Click Back Returns to Index

9. Click Reset Returns fields to original values

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 31

Test Category:
User Interface

Description: Events can be deleted on the Delete Event Notifications page.

Test Case:
2.16

Case Name: Delete Event

Notification
Version:
1.0

Written by:
Ahsif Sheikh, Isaac Asante, Cody

Coughenour

Requirements

Fulfilled:
3.1.1.7.1.3

Purpose: Verify that the Edit Events page in Admin Settings displays all

elements and responds to user actions correctly.

Setup Conditions:

• Open ParkODU Web Application
• Go to the Administrative User Page
• Log in as an Administrator
• Go to “Settings”
• Go to “Configure Event Notifications Page”

Test Case

Activity
Pass/Fail Comments Expected Result

1. Click Delete

Opens warning, delete, and close

2. Click Delete

again

Closes warning

3. Click X Closes warning

4. Click Close

Closes warning and refreshes

page

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 32

Test Category:
User Interface

Description: As an admin user on the Configuration page admin can modify

configurations

Test Case:
2.17

Case Name:
Charts

Version:
1.0

Written by:
Cody Coughenour

Requirements

Fulfilled:
3.1.1.3.2

Purpose: Verify that the Charts page displays all elements and responds to

user actions correctly.

Setup Conditions:
• Open ParkODU Web Application

• Navigate to the Charts page

Test Case Activity Pass/Fail Comments Expected Result

1.Set Garage

Shows list of all garages

2. Set Floor Number

Text

3. Set Date

Calendar or keyboard input

4. Click Create

Creates a new chart element along with a delete

button

5. Click Delete Removes chart element

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 33

4.3 JUnit Tests

The JUnit Test Framework is used to ensure code quality and the accuracy of ParkODU’s

algorithms. The test cases below are designed to test the functionality of ParkODU’s Controller

endpoint and Model methods to confirm the validity of the data returned to the user, that the user

is redirected to the proper web page, and if applicable, an appropriate alert message is displayed

back to the user. Due to time constraints, a full JUnit test case coverage could not be fully

documented.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 34

Test Category:
JUnit Tests

Description: Provide the capability for an administrative user to

add, edit, and delete garages

Test Cases:
3.1, 3.2, 3.3, 3.4

Case Name:

GarageSettingsController

Tests

Version:
1.0

Written by:
Gerard Silverio

Requirements Fulfilled:
3.1.1.7.2.1
3.1.1.7.2.2
3.1.1.7.2.3

Purpose: Verify that all GarageSettingsController endpoints properly

return the correct Thymeleaf template page, the Model contains the

necessary objects, and the RedirectAttributes contains the necessary

alerts.

Setup Conditions:
• Open IntelliJ

• Open GarageSettingsControllerTests.java

• Run ‘GarageSettingsControllerTests’

JUnit Setup Conditions

• Create two Garage objects

• Mock the GarageRepository class

• Mock the GarageRepository:findByKey method to return a Garage

• Mock the GarageRepository:findAll method to return a collections of two Garages

• Mock the GarageRepository:save method

• Mock the GarageRepository:delete method

Test Case Activity Pass/Fail Comments Expected Result

1. TestIndex

Tests the

index get

method

Returns the

"settings/garage/index"

Thymeleaf template and a

Model that contains a

collection of two Garages

2. TestCreate_Get
 Tests the

create get

method

Returns the

“settings/garage/create”

Thymeleaf template and a

Model that contains a new

Garage object

3.

TestCreate_Post_Success Tests the

create

post

method for

a non-

duplicate

Garage

object

Returns a redirect to the

“settings/garage/index”

Thymeleaf template, an empty

Model, and the success

message within the

RedirectAttributes

4.

TestCreate_Post_Duplicate Tests the

create

post

method for

a

duplicate

Garage

object

Returns the

“settings/garage/create”

Thymeleaf template, and a

Model that contains the

submitted Garage object and

the error message.

5. TestEdit_Get

Tests the

edit get

method

Returns the

“settings/garage/edit”

Thymeleaf template, and a

Model that contains an

existing Garage object

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 35

6. TestEdit_Post_Success

Tests the

edit post

method for

a non-

duplicate

Garage

object

Returns a redirect to the

“settings/garage/index”

Thymeleaf template, an empty

Model, and the success

message within the

RedirectAttributes

7.

TestEdit_Post_Duplicate

Tests the

edit post

method for

a

duplicate

Garage

object

Returns the

“settings/garage/edit”

Thymeleaf template, and a

Model that contains the

submitted Garage object and

the error message.

8.

TestDelete_Post_Success

Tests the

delete

post

method for

a

successful

attempt to

delete a

Garage

object

Returns a redirect to the

“settings/garage/index”

Thymeleaf template, an empty

Model, and the success

message within the

RedirectAttributes

9. TestDelete_Post_Fail

Tests the

delete

post

method for

a failed

attempt to

delete a

Garage

object

Returns a redirect to the

“settings/garage/index”

Thymeleaf template, an empty

Model, and the error message

within the RedirectAttributes

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 36

Test Category:
JUnit Tests

Description: Provide the capability for an administrative user

to add, edit, and delete floors

Test Cases:
3.5, 3.6, 3.7, 3.8

Case

Name:

FloorSe

ttingsC

ontroll

er

Tests

Version:
1.0

Written by:
Michael Park

Requirements Fulfilled:
3.1.1.7.2.4

3.1.1.7.2.5

3.1.1.7.2.6

Purpose: Verify that all FloorSettingsController endpoints

properly return the correct Thymeleaf template page, the Model

contains the necessary objects, and the RedirectAttributes

contains the necessary alerts.

Setup Conditions:
• Open IntelliJ

• Open FloorSettingsControllerTests.java

• Run ‘FloorSettingsControllerTests’

JUnit Setup Conditions

• Create two Floor objects

• Mock the FloorRepository class

• Mock the FloorRepository:findByKey method to return a Floor

• Mock the FloorRepository:findAll method to return a collections of two Floors

• Mock the FloorRepository:save method

• Mock the FloorRepository:delete method

Test Case Activity Pass/Fa

il
Comments Expected Result

1. TestIndex

Tests the index get

method with no alert
Returns the

"settings/floor/index"

Thymeleaf template and a

Model that contains a

collection of two Garages

2. TestIndexSuccessMessage
 Tests the index get

method with a success

alert

Returns the

"settings/floor/index"

Thymeleaf template and a

Model that contains a

collection of two Garages

with a success alert

3. TestIndexInfoMessage

Tests the index get

method with a information

alert

Returns the

"settings/floor/index"

Thymeleaf template and a

Model that contains a

collection of two Garages

with a information alert

4. TestIndexWarningMessage

Tests the index get

method with a warning

alert

Returns the

"settings/floor/index"

Thymeleaf template and a

Model that contains a

collection of two Garages

with a warning alert

5. TestIndexDangerMessage
 Tests the index get

method with a danger

alert

Returns the

"settings/floor/index"

Thymeleaf template and a

Model that contains a

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 37

collection of two Garages

with a danger alert

6. TestGarageNoMessage
 Tests the garage get

method with no alert
Returns the

"settings/floor/garage"

Thymeleaf template and a

Model that contains a

garage object with no

alert

7. TestGarageSuccessMessage

Tests the garage get

method with a success

alert

Returns the

"settings/floor/garage"

Thymeleaf template and a

Model that contains a

garage object with a

success alert

8. TestGarageInfoMessage

Tests the garage get

method with a information

alert

Returns the

"settings/floor/garage"

Thymeleaf template and a

Model that contains a

garage object with a

information alert

9. TestGarageWarningMessage

Tests the garage get

method with a warning

alert

Returns the

"settings/floor/garage"

Thymeleaf template and a

Model that contains a

garage object with a

warning alert

10. TestGarageDangerMessage

Tests the garage get

method with a danger

alert

Returns the

"settings/floor/garage"

Thymeleaf template and a

Model that contains a

garage object with a

danger alert

11. TestCreate_Get_NoMessage

Tests the create get

method with no alert
Returns the

"settings/floor/create"

Thymeleaf template and a

Model that contains a

floor object and a garage

object with no alert

12.

TestCreate_Get_SuccessMessage

Tests the create get

method with a success

alert

Returns the

"settings/floor/create"

Thymeleaf template and a

Model that contains a

floor object and a garage

object with a success

alert

13. TestCreate_Get_InfoMessage

Tests the create get

method with a information

alert

Returns the

"settings/floor/create"

Thymeleaf template and a

Model that contains a

floor object and a garage

object with an

information alert

14.

TestCreate_Get_WarningMessage

Tests the create get

method with a warning

alert

Returns the

"settings/floor/create"

Thymeleaf template and a

Model that contains a

floor object and a garage

object with a warning

alert

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 38

15.

TestCreate_Get_DangerMessage

Tests the create get

method with a danger

alert

Returns the

"settings/floor/create"

Thymeleaf template and a

Model that contains a

floor object and a garage

object with a danger

alert

16.

TestCreate_Post_NullGarageKey

Tests the create post

method when a null garage

key is passed.

Returns a redirect to

"settings/floor/index"

with a danger alert that

a garage key cannot be

null

17.

TestCreate_Post_EmptyGarageKey

Tests the create post

method when an empty

garage key is passed.

Returns a redirect to

"settings/floor/index"

with a danger alert that

a garage key cannot be an

empty string

18. TestCreate_Post_Duplicate

Tests the create post

method for a duplicate

floor object

Returns a redirect to

"settings/floor/create”

with a danger alert that

a duplicate floor exists

19. TestCreate_Post_Success

Tests the create post

method for a successful

floor object creation

Returns a redirect to

“settings/floor/garage"

with a success alert that

a new floor has been

successfully created

20. TestEdit_Get_NoMessage

Tests the edit get method

with no alert
Returns

"settings/floor/edit"Thym

eleaf template and a

Model that contains a

floor object with no

alert

21.

TestEdit_Get_SuccessMessage

Tests the edit get method

with a success alert
Returns

"settings/floor/edit"Thym

eleaf template and a

Model that contains a

floor object with a

success alert

22. TestEdit_Get_InfoMessage

Tests the edit get method

with a information alert
Returns

"settings/floor/edit"Thym

eleaf template and a

Model that contains a

floor object with a

information alert

23.

TestEdit_Get_WarningMessage

Tests the edit get method

with a warning alert
Returns

"settings/floor/edit"Thym

eleaf template and a

Model that contains a

floor object with a

warning alert

24. TestEdit_Get_DangerMessage

Tests the edit get method

with a danger alert
Returns

"settings/floor/edit"Thym

eleaf template and a

Model that contains a

floor object with a

danger alert

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 39

25.

TestEdit_Post_SameFloorNumber

Tests the edit post

method for the same floor

number

Returns a redirect to

“settings/floor/garage”

with a success alert that

the floor has been

updated successfully

26. TestEdit_Post_Duplicate

Tests the edit post

method for the same floor

number and different

floor key

Returns a redirect to

“settings/floor/edit”

with a danger alert that

another floor already has

the same floor number

27.

TestEdit_Post_DifferentFloorNu

mber_Success

Tests the edit post

method for different

floor number

Returns a redirect to

“settings/floor/garage”

with a success alert that

the floor has been

updated successfully

28. TestDelete_NullFloorKey

Tests the delete post

method for a null floor

key

Returns a redirect to

“settings/floor/index”

with a danger alert that

a floor key cannot be

null

29.TestDelete_EmptyFloorKey

Tests the delete post

method for an empty floor

key

Returns a redirect to

“settings/floor/index”

with a danger alert that

a floor key cannot be an

empty string

30.

TestDelete_NonExistentFloorKey

Tests the delete post

method for a non-existing

floor key

Returns a redirect to

“settings/floor/index”

with a danger alert that

a floor with the

specified floor key does

not exist

31. TestDelete_Success

Tests the delete post

method for a successful

floor deletion

Returns a redirect to

“settings/floor/garage”

with a success alert that

the floor has been

successfully deleted

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 40

Test Category:
JUnit Tests

Description: Provide the capability for an administrative user to

add, edit, and delete parking spaces

Test Cases:
3.9, 3.10, 3.11, 3.12

Case Name:

ParkingSpaceSettingsC

ontroller Tests

Version:
1.0

Written by:
Cody Coughenour

Requirements Fulfilled:
3.1.1.7.2.7
3.1.1.7.2.8
3.1.1.7.2.9

Purpose: Verify that all ParkingSpaceSettingsController endpoints

properly return the correct Thymeleaf template page, the Model

contains the necessary objects, and the RedirectAttributes contains

the necessary alerts.

Setup Conditions:
• Open IntelliJ

• Open ParkingSpaceSettingsControllerTests.java

• Run ‘ParkingSpaceSettingsControllerTests’

JUnit Setup Conditions

• Create four Parking Space objects

• Mock the ParkingSpaceRepository class

• Mock the ParkingSpaceRepository:findByKey method to return a ParkingSpace

• Mock the ParkingSpaceRepository:findAll method to return a collections of four

ParkingSpace

• Mock the ParkingSpaceRepository:save method

• Mock the ParkingSpaceRepository:delete method

• Repeat above for two Garages, two Floors, four PermitTypes, and four SpaceTypes

• Create a GarageService object

• Mock the GarageService: refresh method to do nothing

• Mock the GarageService: save method to do nothing

Test Case Activity Pass/Fail Comments Expected Result

1. TestIndex

Tests the

index get

method

Returns the

"settings/parking_space/index"

Thymeleaf template and a Model

that contains a collection of

two Garages

2. TestFloor

Tests the

floor get

method

The Floor

is

floorOne

The Garage

is

garageOne

Returns the

“settings/parking_space/floor”

Thymeleaf template and a Model

that contains a collection of

two Parking Spaces for that

floor and four Permit Types and

Space Types

3. TestCreate_Get
 Tests the

create get

method

The Floor

is

floorOne

Returns the

“settings/parkingSpace/create”

Thymeleaf template and a Model

that contains a new ParkingSpace

object, a Floor, Permit Types,

and Space Types

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 41

4.

TestCreate_Post_Success Tests the

create

post

method for

a non-

duplicate

Parking

Space

object

Returns a redirect to the

“settings/parking_space/floor”

Thymeleaf template, an empty

Model, and the success message

within the RedirectAttributes

5.

TestCreate_Post_Duplicat

e

 Tests the

create

post

method for

a

duplicate

Parking

Space

object

Returns the

“settings/parking_space/create”

Thymeleaf template, and a Model

that contains the submitted

Garage object and the error

message.

6.

TestSetSpaceNumber_succe

ss

Tests the

setSpaceNu

mber post

method for

a non-

duplicate

Parking

Space

number (5)

Returns the “The space number

was set to 5” String

7.

TestSetSpaceNumber_dupli

cate

Tests the

setSpaceNu

mber post

method for

a

duplicate

Parking

Space

number (2)

Returns the “The space number,

2, already exists.” String

8. TestSetSpaceType

Tests the

SetSpaceTy

pe post

method

(spaceType

Two)

Returns the “The space type of

the space number 1 was set to

spaceTypeTwo” String

9. TestSetPermitType

Tests the

SetPermitT

ype post

method

(permitTyp

eTwo)

Returns the “The permit type of

the space number 1 was set to

permitTypetwo” String

10.

TestSetAvailability_avai

lable

Tests the

SetAvailab

ility post

method

(true)

Returns the “The space number 1

was set to available” String

11.TestSetAvailability_u

navailable

Tests the

SetAvailab

ility post

method

(false)

Returns the “The space number 1

was set to unavailable” String

8.

TestDelete_Post_Success

Tests the

delete

Returns a redirect to the

“settings/parking_spacee/floor/F

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 42

post

method for

a

successful

attempt to

delete a

Parking

Space

object

LOOR_ONE_KEY” Thymeleaf

template, an empty Model, and

the success message within the

RedirectAttributes

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 43

Test Category:
JUnit Tests

Description: Provide the capability for an administrative user to

add, edit, and delete university buildings

Test Cases:
3.13, 3.14, 3.15, 3.16

Case Name:

BuildingSettingsControlle

r Tests

Version:
1.0

Written by:
Michael Park

Requirements Fulfilled:
3.4.1.1.1
3.4.1.1.2
3.4.1.1.3

Purpose: Verify that all BuildingSettingsController endpoints

properly return the correct Thymeleaf template page, the Model

contains the necessary objects, and the RedirectAttributes contains

the necessary alerts.

Setup Conditions:
• Open IntelliJ

• Open BuildingSettingsControllerTests.java

• Run ‘BuildingSettingsControllerTests’

JUnit Setup Conditions

• Create two Building objects

• Mock the BuildingRepository class

• Mock the BuildingRepository:findByKey method to return a Building

• Mock the BuildingRepository:findAll method to return a collections of two Buildings

• Mock the BuildingRepository:save method

• Mock the BuildingRepository:delete method

Test Case Activity Pass/Fail Comments Expected Result

1. TestIndex_NoMessage

Tests the

index get

method with

no alert

Returns the

"settings/building/index"

Thymeleaf template and a

Model that contains a

collection of two building

objects

2.

TestIndex_SuccessMessage

Tests the

index get

method with

a success

alert

Returns the

"settings/building/index"

Thymeleaf template and a

model that contains a

collection of two building

objects with a success

alert

3. TestIndex_InfoMessage
 Tests the

index get

method with

an

information

alert

Returns the

"settings/building/index"

Thymeleaf template and a

model that contains a

collection of two building

objects with an

information alert

4.

TestIndex_WarningMessage Tests the

index get

method with

a warning

alert

Returns the

"settings/building/index"

Thymeleaf template and a

model that contains a

collection of two building

objects with a warning

alert

5.

TestIndex_DangerMessage Tests the

index get

method with

a danger

alert

Returns the

"settings/building/index"

Thymeleaf template and a

model that contains a

collection of two building

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 44

objects with a danger

alert

6. TestCreate_Get

Tests the

create get

method

Returns the

"settings/building/create"

Thymeleaf template and a

model that contains a

building object

7.

TestCreate_Post_Successfu

l

Tests the

create post

method for

successful

Building

creation

Returns a redirection to

the

“settings/building/index”

with a success alert

8.

TestCreate_Post_Duplicate

Tests the

create post

method for

unsuccessfu

l Building

creation

Returns a redirection to

the

“settings/building/create”

, a model that contains a

building object and a

danger alert

9. TestEdit_Get

Tests the

edit get

method

Returns the

"settings/building/edit"

Thymeleaf template and a

model that contains a

building object

10.

TestEdit_Post_Successful

Tests the

edit post

method when

editing is

successful

Returns a redirection to

“settings/building/index"

and a redirect attribute

that contains a success

alert

11.TestEdit_Post_Duplicat

e

Tests the

edit post

method when

editing is

unsuccessfu

l

Returns the

"settings/building/edit"

Thymeleaf template and a

model that contains a

building object and a

danger alert

12. TestDelete_Successful

Tests the

delete post

method for

a

successful

attempt to

delete a

building

object

Returns a redirection to

the

“settings/building/index”

Thymeleaf template and a

redirect attribute that

contains a success alert

13.

TestDelete_Unsuccessful

Tests the

delete post

method for

an

unsuccessfu

l attempt

to delete a

building

object

Returns a redirection to

the

“settings/building/index"

Thymeleaf page with a

redirect attribute that

contains a danger alert

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 45

Test Category:
JUnit Tests

Description: Provide the capability for an

administrative user to add, edit, and delete users

Test Cases:
3.17, 3.18, 3.19, 3.20

Case Name:

AccountControlle

r Tests

Version:
1.0

Written by:
Matthew Stevenson

Requirements Fulfilled:
3.1.1.7.4.1

3.1.1.7.4.2

3.1.1.7.4.3

Purpose: Verify that all AccountController endpoints

properly return the correct Thymeleaf template page,

the Model contains the necessary objects, and the

RedirectAttributes contains the necessary alerts.

Setup Conditions:
• Open IntelliJ

• Open AccountsControllerTests.java

• Run ‘AccountsControllerTests’

JUnit Setup Conditions

• Create two User objects

• Mock the UserRepository class

• Mock the UserRepository:findByKey method to return User based on specified key

• Mock the UserRepository:findAll method to return a collection of Users

• Mock the UserRepository:findByEmail method to return a User with specified email

• Mock the UserRepositoyu:userExists method to return a boolean value

• Mock the UserRepository:save method

• Mock the UserRepository:delete method

Test Case Activity Pass/Fail Comments Expected Result

1. TestIndex

Tests the

index get

method

with no

alert

Returns the

"settings/accounts/index

" Thymeleaf template and

a Model that contains a

collection of two

Garages

2. TestIndexSuccessMessage
 Tests the

index get

method

with a

success

alert

Returns the

"settings/accounts/index

" Thymeleaf template and

a Model that contains a

collection of two

Garages with a success

alert

3. TestIndexInfoMessage

Tests the

index get

method

with a

informatio

n alert

Returns the

"settings/accounts/index

" Thymeleaf template and

a Model that contains a

collection user with a

information alert

4. TestIndexWarningMessage

Tests the

index get

method

with a

warning

alert

Returns the

"settings/accounts/index

" Thymeleaf template and

a Model that contains a

collection of two users

with a warning alert

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 46

5. TestIndexDangerMessage
 Tests the

index get

method

with a

danger

alert

Returns the

"settings/accounts/index

" Thymeleaf template and

a Model that contains a

collection of two users

with a danger alert

6. TestCreate_Get_NoMessage

Tests the

create get

method

with no

alert

Returns the

"settings/accounts/creat

e" Thymeleaf template

and a Model that

contains an user object

with no alert

7. TestCreate_Get_SuccessMessage

Tests the

create get

method

with a

success

alert

Returns the

"settings/accounts/creat

e" Thymeleaf template

and a Model that

contains an user object

with a success alert

8. TestCreate_Get_InfoMessage

Tests the

create get

method

with a

informatio

n alert

Returns the

"settings/accounts/creat

e" Thymeleaf template

and a Model that

contains an user object

with an information

alert

9. TestCreate_Get_WarningMessage

Tests the

create get

method

with a

warning

alert

Returns the

"settings/accounts/creat

e" Thymeleaf template

and a Model that

contains an user object

with a warning alert

10. TestCreate_Get_DangerMessage

Tests the

create get

method

with a

danger

alert

Returns the

"settings/accounts/creat

e" Thymeleaf template

and a Model that

contains an user object

with a danger alert

11. TestCreate_Post_NullUserKey

Tests the

create

post

method

when a

null user

key is

passed.

Returns a redirect to

"settings/accounts/index

" with a danger alert

that a user key cannot

be null

12. TestCreate_Post_EmptyUserKey

Tests the

create

post

method

when an

empty user

key is

passed.

Returns a redirect to

"settings/accounts/index

" with a danger alert

that a user key cannot

be an empty string

13. TestCreate_Post_Duplicate

Tests the

create

post

method for

a

duplicate

Returns a redirect to

"settings/accounts/creat

e” with a danger alert

that a duplicate user

exists

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 47

user

object

14. TestCreate_Post_Success

Tests the

create

post

method for

a

successful

user

object

creation

Returns a redirect to

“settings/accounts/index

" with a success alert

that a new user has been

successfully created

15. TestEdit_Get_NoMessage

Tests the

edit get

method

with no

alert

Returns a redirect to

"settings/accounts/edit"

Thymeleaf template and a

Model that contains a

user object with no

alert

16. TestEdit_Get_SuccessMessage

Tests the

edit get

method

with a

success

alert

Returns

"settings/accounts/edit

“Thymeleaf template and

a Model that contains a

user object with a

success alert

17. TestEdit_Get_InfoMessage

Tests the

edit get

method

with an

informatio

n alert

Returns

"settings/accounts/edit

“Thymeleaf template and

a Model that contains a

user object with an

information alert

18. TestEdit_Get_WarningMessage

Tests the

edit get

method

with a

warning

alert

Returns

"settings/accounts/edit

“Thymeleaf template and

a Model that contains a

user object with a

warning alert

19. TestEdit_Get_DangerMessage

Tests the

edit get

method

with a

danger

alert

Returns

"settings/floor/edit

“Thymeleaf template and

a Model that contains a

floor object with a

danger alert

20. TestEdit_Post_DuplicateEmail

Tests the

edit post

method for

a

duplicate

email

Returns a redirect to

“settings/floor/garage”

with a success alert

that the floor has been

updated successfully

21. TestEdit_Post_DuplicateUserName

Tests the

edit post

method for

a

duplicate

username

Returns a redirect to

“settings/accounts/edit”

with a danger alert that

another user with that

username exits

22.

TestEdit_Post_DifferentEmail_Success

Tests the

edit post

method for

different

email

Returns a redirect to

“settings/accounts/index

” with a success alert

that a user has been

updated successfully

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 48

23.

TestEdit_Post_DifferentUsername_Succe

ss

Tests the

edit post

method for

different

username

Returns a redirect to

“settings/accounts/index

” with a success alert

that a user has been

updated successfully

24. TestDelete_NullUserKey

Tests the

delete

post

method for

a null

user key

Returns a redirect to

“settings/accounts/index

” with a danger alert

that am user key cannot

be null

25. TestDelete_EmptyUserKey

Tests the

delete

post

method for

an empty

user key

Returns a redirect to

“settings/accounts/index

” with a danger alert

that a user key cannot

be an empty string

26. TestDelete_NonExistentUserKey

Tests the

delete

post

method for

a non-

existing

user key

Returns a redirect to

“settings/accounts/index

” with a danger alert

that a user with the

specified user key does

not exist

27. TestDelete_Success

Tests the

delete

post

method for

a

successful

user

deletion

Returns a redirect to

“settings/accounts/index

” with a success alert

that a user has been

successfully deleted

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 49

Test Category:
JUnit Tests

Description: Provide the capability for a user

to create an account to save user as a self-

service

Test Cases:
3.21, 3.22

Case Name:

RegisterControlle

r Tests

Version

:
1.0

Written by:
Matthew Stevenson

Requirements Fulfilled:
3.1.1.9.1

3.1.1.9.2

Purpose: Verify that all RegisterController

endpoints properly return the correct Thymeleaf

template page, the Model contains the necessary

objects, and the RedirectAttributes contains

the necessary alerts.

Setup Conditions:
• Open IntelliJ

• Open RegisterControllerTests.java

• Run ‘RegisterControllerTests’

JUnit Setup Conditions

• Create two User objects

• Create simpleMailMessage message object to mock email messages

• Mock the UserRepository class

• Mock the UserRepository:findByKey method to return User based on specified key

• Mock the UserRepository:findAll method to return a collection of Users

• Mock the UserRepository:findByConfirmationLink method to return a User based on

specified confirmation link

• Mock the UserRepository:findByEmail method to return a User with specified email

• Mock the UserRepositoyu:userExists method to return a boolean value

• Mock the UserRepository:save method

Test Case Activity Pass/Fail Comment

s
Expected Result

1. TestRegister

Tests

the

registe

r get

method

with no

alert

Returns the

"user/register"

Thymeleaf template

and a Model that

contains an user

object for

potential new

users

2. TestRegisterSuccessMessage_Post
 Tests

the

registe

r post

method

with a

success

alert

Returns the

"user/register"

Thymeleaf template

and a Model that a

confirmation link

has been sent to

the user’s email

3.

TestRegisterDangerMesasgeDuplicateEmail_Post

Tests

the

registe

r post

method

with a

danger

alert

Returns the

"user/register"

Thymeleaf template

and a Model that

contains a danger

alert based on

submission of

duplicate email

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 50

3.

TestRegisterDangerMesasgeDuplicateUsername_Po

st

Tests

the

registe

r post

method

with a

danger

alert

Returns the

"user/register"

Thymeleaf template

and a Model that

contains a danger

alert based on

submission of

duplicate username

7. TestConfirm_Get_SuccessMessage

Tests

the

confirm

get

method

with a

success

Returns

the "user/confirm

" Thymeleaf

template and a

Model that

contains a success

message notifying

the user the

confirmation link

is valid and

redirects to

“home/login”. User

account is set to

enabled and can

login.

8. TestConfirm_Get_DangerMessage

Tests

the

confirm

get

method

with a

danger

message

Returns

the "user/confirm

" Thymeleaf

template and a

Model that

contains danger

message notifying

the user that

their confirmation

link is invalid.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 51

Test Category:
JUnit Tests

Description: Provide the capability for a user get directions to a

garage based on specified starting location using the Google Maps

API

Test Cases:
3.23

Case Name:

MapsController

Tests

Version:
1.0

Written by:
Matthew Stevenson

Requirements Fulfilled:
3.1.1.5.1

Purpose: Verify that all MapController endpoints properly return the

correct Thymeleaf template page, the Model contains the necessary

objects.

Setup Conditions:
• Open IntelliJ

• Open MapsControllerTests.java

• Run ‘MapsControllerTests’

JUnit Setup Conditions

• Create two Location objects

• Create two Garage objects

• Mock the GarageRepository class

• Mock the GarageRepository:findByKey method to return a Garage based on specified key

Test Case Activity Pass/Fail Comments Expected Result

1. TestNavigate

Tests the

navigate get

method

Returns the "maps/navigate"

Thymeleaf template and a Model

that contains a location object

and a garage object

2.

TestStartNavigation_Post Tests the

navigation

post method

Redirects to “Google maps”

Thymeleaf template and a Model

that push starting location and

garage location to navigate

functionality

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 52

Test Category:
JUnit Tests

Description: The user data model should

encapsulate all necessary attributes of a typical

ParkODU end user and a ParkODU administrator. The

data model should also provide methods to access

and manipulate the attributes.

Test Cases:
3.24

Case Name:

UserTests.

java

Version:
1.0

Written by:
Michael Park

Requirements Fulfilled:
3.1.1.2.1
3.1.1.7.4.1

3.1.1.7.4.2

3.1.1.7.4.3

3.1.1.8.1

3.1.1.8.2

Purpose: Verify the completeness of the User model

interface, that all User.java get methods properly

return requested attributes, and that all set

methods properly update the attributes

Setup Conditions:
• Open IntelliJ

• Open UserTests.java

• Run ‘UserTests’
JUnit Setup Conditions

• Create a user object

• Create mock attributes

Test Case Activity Pass/Fail Comments Expected Result

1. TestUser

Tests the default

constructor of the

User model

Creates an

instance of the

User class with

all attributes

set to null or

empty if the

attributes are a

collection

2.

TestUserStringStringStringStringStringStri

ngStringBoolean
 Tests the

constructor that

accepts user’s

email, username,

password, first

name, last name,

role type, role

type key, enabled

flag, and

confirmation token

Creates an

instance of the

User class with

all of the

following

attributes

initialized:

Email, username,

password, first

name, last name,

role type, role

type key,

enabled flag,

and confirmation

token

3. TestGenerateUserKey

The

generateUserKey

method must

generate a unique

ID for this user

This instance of

the User class

has a non-null

and non-empty

unique ID string

4. TestGenerateConfirmationToken

The

generateConfirmati

onToken method

must generate a

This instance of

the User class

has a non-null

and non-empty

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 53

unique

confirmation token

for this user

unique

confirmation

token.

5. TestSetConfirmationToken

The

setConfirmationTok

en method accepts

a confirmation

token as a

parameter and

updates this

user’s

confirmation token

This instance of

the User class

has a new

confirmation

token.

6. TestGetConfirmationToken

The

getConfirmationTok

en method returns

the confirmation

token.

The method

returns the

confirmation

token of this

instance of the

User class. The

data type of the

returned

variable is

String.

7. TestSetUserKey

The setUserKey

method accepts a

user ID as a

parameter and

updates this

user’s unique ID.

This instance of

the User class

has a new unique

ID.

8. TestGetUserKey

The getUserKey

method returns the

unique user ID.

The method

returns the

unique ID of

this instance of

the User class.

The data type of

the returned

variable is

String.

9. TestGetPassword

The getPassword

method returns the

password of this

user instance.

The method

returns the

password of this

instance of the

User class. The

data type of the

returned

variable is

String.

10. TestSetPassword

The setPassword

method accepts a

password as a

parameter and

updates this

user’s password.

This instance of

the User class

has a new

password.

11. TestGetFirstName

The getFirstName

method returns the

first name of this

user instance.

The method

returns the

first name of

this instance of

the User class.

The data type of

the returned

variable is

String.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 54

12. TestSetFirstName

The setFirstName

method accepts a

first name as a

parameter and

updates this

user’s first name.

This instance of

the User class

has a new first

name.

13. TestGetLastName

The getLastName

method returns the

last name of this

user instance.

The method

returns the last

name of this

instance of the

User class. The

data type of the

returned

variable is

String.

14. TestSetLastName

The setLastName

method accepts a

last name as a

parameter and

updates this

user’s last name.

This instance of

the User class

has a new last

name.

15. TestGetEmail

The getEmail

method returns the

e-mail address of

this user

instance.

The method

returns the e-

mail address of

this instance of

the User class.

The data type of

the returned

variable is

String.

16. TestSetEmail

The setEmail

method accepts an

e-mail address as

a parameter and

updates this

user’s e-mail

address.

This instance of

the User class

has a new e-mail

address.

17. TestGetUsername

The getUsername

method returns the

username of this

user instance.

The method

returns the

username of this

instance of the

User class. The

data type of the

returned

variable is

String.

18. TestSetUsername

The setUsername

method accepts a

username as a

parameter and

updates this

user’s username.

This instance of

the User class

has a new

username.

19. TestGetEnabled

The getEnabled

method returns the

enabled flag of

this user

instance.

The method

returns the

enabled flag of

this instance of

the User class.

The data type of

the returned

variable is

Boolean.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 55

20. TestSetEnabled

The setEnabled

method accepts a

boolean flag as a

parameter and

updates this

user’s status.

This instance of

the User class

has a new status

flag.

21. TestGetRoleType

The getRoleType

method returns the

role type name

(User or Admin) of

this user

instance.

The method

returns the role

type name of

this instance of

the User class.

The data type of

the returned

variable is

String.

22. TestSetRoleType

The setRoleType

method accepts a

role type name as

a parameter and

updates this

user’s role.

This instance of

the User class

has a new role

type.

23. TestGetRoleTypeKey

The getRoleTypeKey

method returns the

unique ID of the

role type that

this user instance

has.

The method

returns the

unique ID of the

role type of

this instance of

the User class.

The data type of

the returned

variable is

String.

24. TestSetRoleTypeKey

The setRoleTypeKey

method accepts a

role type unique

ID as a parameter

and updates this

user’s role type

ID.

This instance of

the User class

has a new role

type ID.

25. TestGetPermissions

The

getGetPermissions

method returns a

collection of

permissions that

this user instance

should have.

The method

returns a set of

permissions for

this instance of

the User class.

The data type of

the returned

variable is

HashSet of

String.

26. TestSetPermissions

The setRoleTypeKey

method accepts a

set of permissions

as a parameter and

updates this

user’s

permissions.

This instance of

the User class

has a new set of

permissions.

27. TestGetPreferredPermitTypes

The

getPreferredPermit

Types method

returns a

collection of

permit types that

The method

returns a set of

preferred permit

types of this

instance of the

User class. The

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 56

this user instance

has set preference

for.

data type of the

returned

variable is

HashSet of

String.

28.TestSetPreferredPermitTypes

The

setPreferredPermit

Types method

accepts a set of

permit types as a

parameter and

updates this

user’s preferred

permit types.

This instance of

the User class

has a new set of

preferred permit

types.

29. TestGetPreferredSpaceTypes

The

getPreferredSpaceT

ypes method

accepts a set of

space types as a

parameter and

updates this

user’s preferred

space types.

The method

returns a set of

preferred space

types of this

instance of the

User class. The

data type of the

returned

variable is

HashSet of

String.

30. TestSetPreferredSpaceTypes

The

setPreferredSpaceT

ypes method

accepts a set of

space types as a

parameter and

updates this

user’s preferred

space types.

This instance of

the User class

has a new set of

preferred space

types.

31. TestGetAuthorities

The getAuthorities

method returns a

collection of

SimpleGrantedAutho

rity object for

Spring Security

based on the

permissions that

this user instance

has.

The methods

returns a set of

SimpleGrantedAut

hority objects

which are

initialized with

this user

instance’s

existing

permissions. The

data type of the

returned

variable is a

HashSet of

SimpleGrantedAut

hority class

32. TestToString

The toString

method returns the

String

representation of

this instance of

the User class.

The method

returns a string

literal that

represents this

user instance

and closely

resembles the

json format that

includes all

attribute names

and values.

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 57

4.4 UX Tests

User Experience (UX) Tests are conducted to ensure the usability and accessibility of ParkODU.

To provide usability and accessibility to all users including people with disabilities, the

ParkODU development team strives to develop web pages in compliance with Section 508 of the

Rehabilitation Act of 1973.

[This space intentionally left blank]

Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 58

Test Category: User

Experience

Description: To verify that the application is accessible as per some

section 508 Accessibility program guidelines.

Test Case: 4.1 Case Name:

Accessibility

management

Version: 1.0 Written By: Sangeet Mokha

Requirements

Fulfilled:

3.4.4.1 – 3.4.4.5

Purpose: To make sure the application conforms to the font size

readability, color contrast, images, and ease of navigation according to

section 508.

Setup Conditions:

· Open ParkODU web application

· Navigate all the link/pages on it

· Go back on the main page

Test Case Activity Pass/Fail Comments Expected Result

1 Check

accessibility for

font size

Characters on all the pages shall be in a sans

serif font.

2 Check

accessibility for

color contrast

There must be contrasting colors/shades at a

minimum ratio of 4.5:1 on all pages.

3 Check

accessibility for

images

 All images must have associated text

describing the purpose and/or function of the

image. Decorative images do not require a

description.

4 Check for ease of

navigation with a

keyboard.

 Use the standard keyboard commands (Tab, Space

bar, arrow keys, Enter, etc.) to navigate

through each interactive interface component

(including form drop-down lists and form

fields), reveal hidden content, and activate

all interface components.

5 Check for ease of

navigation with a

mouse

To Find all visible and hidden interactive

interface components (links, form fields, drop

down menus, show/hide content, tree views, pop

ups/light boxes, frames, iframes, etc.) use a

mouse (hover and/or click).

[This space intentionally left blank]

 Lab 3 – ParkODU Prototype Test Plan & Procedure – Version 1, 59

5. Traceability of Requirements

This matrix maps each test case to any requirements it fulfills.

[This space intentionally left blank]

