SeizSmart
A mobile application for detecting, tracking, and reporting seizures in real-time.

Prototype Design Presentation
CS 410 Spring 2019
Team Silver
Abel Weldergay, Kevin Sokol
Alpha Din Gabisi, Jeffrey McAteer
Danielle Luckraft, Peter Scheible
Table of Contents

Feasibility
- Team & Mentors 4-5
- Background 7-8
- The Problem 9
- Current Process Flows 9-11
- Our Solution 12
- Solution Process Flows 13
- Customers/Users/Roles 14-16
- Competition 17

Design
- MFCD 19
- Build Tools 20
- Development Model 21-23
- WBS Overview 24
- UI/UX - Smartphone 25-26
- UI/UX - Smartwatch 27-28
- Database 29-34
- Algorithms 35-46
- Testing 47-48
- Risks 49-59
- Conclusion 60-61
- Interactive Prototypes 62

Prototype
- RWP vs. Prototype xx
- Prototype MFCD xx
- Testing Approaches xx
- Development Model xx
- Agile Sprints xx

References

xx
The Team

Abel Weldaregay
Team Lead / Back-End Developer

Kevin Sokol
UI/UX Developer - Smartphone

Peter Scheible
UI/UX Developer - Smartwatch

Danielle Luckraft
Webmaster / Developer

Jeffrey McAteer
Infrastructure & ML Engineer

Alpha Din Gabisi
Database Engineer
Mentors

Sampath Jayarathna. Ph.D.

Jesse Gordon
Terminology

● Patient
 ○ An individual who experiences generalized seizures. May also be referred to as the end user.

● Emergency Contact
 ○ Anyone who cares for a patient; Usually family members.

● Seizure Profile
 ○ Personalized for each patient, describes information regarding the individual’s typical seizure, such as physical indicators, or their typical threshold for specific biometrics during a seizure. The seizure profile is used to provide more accurate seizure detection.
Background - Epilepsy

- Epilepsy is the 4th most common neurological disease in the world.
- Cases of epilepsy in the US have increased over the past five years.
- Cases in the US are predicted to increase further by 2020.

What is the IMPACT of epilepsy?

50 000 000
More than 50 million people are living with epilepsy globally

80%
Live in low- and middle-income countries

75%
Do not receive treatment

3-6 times greater risk of premature death

Causes of treatment gap:
- Lack of trained staff
- Poor access to anti-epileptic medicines
- Societal misconceptions
- Poverty
- Low prioritization for the treatment of epilepsy
Characteristics of Generalized Seizures

- Rapid change in heart rate
- Rapid convulsions in limbs and face
- Loss of consciousness
Problem Statement

● Epileptic seizures are difficult to detect in a timely and accurate fashion and undetected seizures can result in injury or even death.

● Current smartwatch detection technology does not provide the ability to automatically detect the onset of a seizure based on a combination of heart rate behavior and repetitive body movements.

● Available devices do not provide capabilities that tune detection variables to match individual patient seizure characteristics.

● Existing solutions to detect seizures use smartwatch technology which must be in the proximity of a smartphone in order to notify emergency contacts.
Most existing solutions detect seizures based on body motion.

Some detect seizures based on users' heart rate.

The process flow for both are identical.

No existing system detects based on a combination of both metrics.
Current Process Flow

Wearables may access more data than HR/Motion.

Not all patients respond to seizures in the same way.

Current processes only begins recording seizure data after detection time.

Simpler notification capability is needed.
Solution Statement

Our proposed solution, SeizSmart, implements an advanced, wearable seizure detection capability using off-the-shelf smartwatch technology that is able to:

- automatically detect epileptic seizures from combined heart rate **and** motion metrics,
- detect seizures using an algorithm which matches individual patient seizure characteristics,
- track and record all information surrounding seizure events,
- and provide automatic notification to emergency contacts without requiring a relay.
Detection is based on a combination of heart rate and body motion metrics.

Detection performance is enhanced using a patient-unique machine learning approach.

Emergency notification is issued directly from the user’s smartwatch.
Target Consumers and End Users

Customers

- Medical providers
- Concerned party of individual with generalized seizures

End-Users

- Individuals who have the most common types of generalized seizures:
 1. Clonic
 2. Tonic
 3. Tonic-Clonic
 4. Atonic
 5. Myoclonic
Benefits to Customer/User-base

- Detection Performance and Hardware Flexibility
 - Each user’s individual seizure profile provides more accurate and customized seizure detection.
 - The user may configure emergency response notifications as desired.
 - SeizSmart is compatible with both Android and iOS smartwatch technology without the need for specialized hardware.
 - SeizSmart will be available without a subscription and a prescription will not be required.

- Peace of Mind
 - A smartphone does not need to be in close proximity to the smartwatch for detection and notification of emergency contacts.
 - SeizSmart is capable of notifying emergency personnel in extreme situations.
Prototype User Roles

Emergency Contact
- Concerned party
- Friend/Family of Patient

Patient
- Individual with generalized seizures

Tester
- The individual responsible for simulating a seizure testing the functionality and usability of the prototype
Competition Matrix

<table>
<thead>
<tr>
<th>Feature</th>
<th>SeizSmart</th>
<th>SmartMonitor</th>
<th>Direct</th>
<th>Indirect</th>
<th>SeizAlarm</th>
<th>Epilepsy Journal</th>
<th>Epilepsy Health Storylines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect, record and track generalized seizures in real time</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Monitor repetitive shaking motion</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Continuously monitor the user's heart rate</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Alert emergency contact when the user does not respond</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Report data about the environment at the onset of a seizure being detected</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Function fully without dependence on a smartphone or external device</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Use machine learning to detect generalized seizures</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Require a subscription or prescription</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>

Indicates a unique feature among the compared products.
Solution Deliverables

- **Deliverables:**
 - Android watch app for detecting, Android smartphone app for reporting, recording, and adjusting detection threshold values

- **Server:**
 - HTTP REST API

- **Distribution:**
 - Google Play App Store
Hardware and Software Components

Watch App
- Biometric Readings
- Screen GUI Alert

Local DB

Cloud Server
- Tensorflow ML System

Global DB

Daily batch job reads biometrics from DB + trains NN

Daily trained NN

Tensorflow ML System

MySQL

iOS/Android Runtime

Android Smartwatch
- Min Version: Wear OS 2.6
- Hardware Requirements: Wifi, Cellular, Accelerometer, Gyroscope, optical heart-rate sensor

Android Phone
- Min Version: Android 4.3
- Hardware Requirements: Wifi, Cellular

Hardware Requirements
- Wifi, Cellular, Accelerometer, Gyroscope, optical heart-rate sensor
- Wifi, Cellular
Agile Development Model

- Small, diverse team
- Goal is moving target
- Correctness is critical
- Time is limited

Agile plays to our team’s strengths and gives the project a high probability of success
Coordination Tools

- CS gitlab
 - Shared codebase
 - Issue tracking
 - Already in use!

- Wekan kanban instance
 - Run off 411 VM
 - Use cards to track work in parallel

- Weekly Sprint Meetings
 - Google Hangouts
Development Tools

<table>
<thead>
<tr>
<th></th>
<th>Android</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Java</td>
<td>Java</td>
</tr>
<tr>
<td>IDE</td>
<td>Android Studios</td>
<td>Vim</td>
</tr>
<tr>
<td>UI/UX</td>
<td>Android Studios</td>
<td>HTML5/CSS/JS</td>
</tr>
<tr>
<td>Database</td>
<td>SQLite</td>
<td>MySQL</td>
</tr>
<tr>
<td>Build Manager</td>
<td>Gradle</td>
<td>Gradle</td>
</tr>
<tr>
<td>Version Control</td>
<td>Git</td>
<td>Git</td>
</tr>
<tr>
<td>Issue Tracker</td>
<td>Gitlab</td>
<td>Gitlab</td>
</tr>
<tr>
<td>Testing Framework</td>
<td>JUnit</td>
<td>JUnit</td>
</tr>
</tbody>
</table>
WBS - User Interface Smartphone

- User Interface

 Smartphone UI

 - Data Management
 - Initial setup
 - Log Seizures
 - View Logged Seizures
 - Update/Add emergency contacts

 - Alert Management
 - Display motion and heart rate values
 - Display countdown alert with abort button
WBS - User Interface Smartwatch

User Interface

SmartWatch UI

Data Management
- Initial setup
- Log Seizures
- View Logged Seizures
- Update/Add emergency contacts

Alert Management
- Display motion and heart rate values
- Display countdown alert with abort button

Detection Management
- Turn detection monitoring on/off
- Adjust detection parameters
Smartwatch gui mockup
Database: External Storage MySQL

- MySQL is an open-source relational database management system.
- Stores all data from the watch to be used by machine learning algorithm.
- Data is easily exportable to csv or other formats for research teams.
WBS - Server Database (External Storage)
Database: Local Storage SQLite (Smart Watch)

- Used for local storage on the smartwatch.
- Will hold data before being sent to the main database on the server.
WBS - Smartwatch Database

Watch Database

Seizure Data
- Seizure Tag
- Gyroscope
- Heart Rate
- Environment
- Accelerometer
- Time Stamp

User Profile
- User Password
- Email
- Name
- Detection Parameters
- User Id
- Emergency Contact
- First Responder
Entity Relationship Diagram (ERD)
WBS - Algorithms

- Algorithms
 - Machine Learning Algorithm
 - Detection Algorithm
 - Reporting Algorithm
 - Recording Algorithm
Machine Learning Algorithm

- **Purpose**
 - Build a unique seizure profile for each individual patient

- **Tools**
 - TensorFlow

- **Parameters**
 - Motion data collected about patient
 - Accelerometer values
 - Gyroscope values
 - Patient’s heart rate
 - Seizure tag
Machine Learning Algorithm: Objective

Answers the question: given two sets containing N-dimensional element and a new N-dimensional element, which set does the new element belong to?
Machine Learning Algorithm: Preprocessing

Each training session will use:

Min, Average, and Max X,Y,Z acceleration over last 5 mins, 1 min, and 10 sec
 Must remove gravity; sdk has helper functions
 Then clamp value in m/s^2 between -1 and 1, add 1 and divide by 2 to get value between 0 and 1

Min, Average, and Max X,Y,Z gyroscope rotations over last 5 mins, 1 min, and 10 sec
 Add 360 to given degrees then divide by 720 to get value between 0 and 1

Min, Average, and Max 10-second heart rate measured over last 5 mins, 1 min, and 10 sec
 Clamp between 30 and 250 beats per minute; subtract 30 and divide by 220 to get value between 0 and 1

Total of 3*(3*3*3) + 3*(3*3*3) + 3 = 165 input nodes
Single output node is 0 if no seizure during time period, 1 if seizure during time period.
Machine Learning Algorithm: Training

Small portion of total network: x-axis rotation data & its small role in detecting a seizure. Training is computationally intensive, occurs on the server, and uses the Gradient Descent training algorithm.

5m min = +0° = 0.5

5m avg = +5° = 0.50694

5m max = +270° = 0.875

1m min = +0° = 0.5

1m avg = -10° = 0.48611

1m max = +90° = 0.625

(?) = unknown weight on each connection & node

User reported seizure event
Machine Learning Algorithm: Evaluation

Evaluation is computationally trivial (adding/multiplying ~200 numbers) and occurs on watch in real-time as 10-second batches of data are read from sensors.

To compute R using trained weight values:

\[R = \sum (A*0.1 + B*0.2 \ldots F*0.1) * 0.3 + \sum (A*0.1 + B*0.2 \ldots F*0.1) * 0.6 + \sum (A*0.1 + B*0.2 \ldots F*0.1) * 0.9 \]

Finally compare R against the user’s preferred sensitivity coefficient. If set to 0.5, this means when R > 0.5 we act on a seizure event.
Detection Algorithm

- **Purpose**
 - Determine if a patient is having a generalized seizure in real time

- **Tools**
 - Smartwatch sensors
 - Trained Neural Network

- **Parameters**
 - Acceleration 5m, 1m, 10s / avg, min, max / x, y, z
 - Gyroscope rotation values 5m, 1m, 10s / avg, min, max / x, y, z
 - Heart rate 5m, 1m, 10s / avg, min, max
Detection Algorithm Logic Flow

- Measure 10s of Accelerometer, Gyroscope, and HR data
- Normalize input to between 0 and 1, feed through trained network
- Is confidence above action threshold?
 - Below: do nothing
 - Above: spawn thread to perform reporting
Reporting Algorithm

- **Purpose**
 - To notify the patient’s emergency contact and in some cases the patient’s last resort emergency contact

- **Tools**
 - Smartwatch with cellular or wifi network

- **Parameters**
 - Data about the patient
 - Patient’s emergency contacts list
 - Patient’s last resort emergency contact
 - Patient’s location coordinates
 - Patient’s heart rate and body motion data
Reporting Algorithm Logic Flow

1. Seizure detected
2. Check watch cell or wifi connection
 - Yes: push notifications to all listed contacts and ask patient if OK
 - No: prompt contact to call 911 if unable to assist
3. Watch
4. Emergency contact's phone
Recording Algorithm

- **Purpose**
 - Record seizure-related data used in training.

- **Tools**
 - SQLite
 - MySQL

- **Parameters**
 - Heart rate
 - Accelerometer readings
 - Gyroscope readings
 - Seizure tag
Recording Algorithm Logic Flow

Cycle begins

Prune local SQLite DB

Measure data

Record to local SQLite DB

Push local data to remote MySQL DB
WBS - Testing Continued

Testing

System Testing

- Initiation of SeizSmart
 - Detection, Notification, Data capture, Recording
 - Pushing through Tensor Flow System
 - Updating parameters

User Testing

- Patient
- Emergency Contact
- First Responder
<table>
<thead>
<tr>
<th>Functional elements</th>
<th>Real World Product</th>
<th>Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect generalized seizures in real time</td>
<td>Fully Functional</td>
<td>Implemented through simulation</td>
</tr>
<tr>
<td>Record generalized seizures in real time</td>
<td>Fully Functional</td>
<td>Implemented through simulation</td>
</tr>
<tr>
<td>Track generalized seizures in real time</td>
<td>Fully Functional</td>
<td>Implemented through simulation</td>
</tr>
<tr>
<td>Monitor repetitive shaking motion</td>
<td>Fully Functional</td>
<td>Fully Functional</td>
</tr>
<tr>
<td>Continuously monitor the user's heart rate</td>
<td>Fully Functional</td>
<td>Fully Functional</td>
</tr>
<tr>
<td>Alert emergency contact when the user does not respond</td>
<td>Fully Functional</td>
<td>Fully Functional</td>
</tr>
<tr>
<td>Collect data about the environment at the onset of a seizure being detected</td>
<td>Fully Functional</td>
<td>Fully Functional</td>
</tr>
<tr>
<td>Use machine learning to detect generalized seizures</td>
<td>Fully Functional</td>
<td>Implemented through simulation</td>
</tr>
<tr>
<td>Fully functional without dependence on a smartphone or external device</td>
<td>Fully Functional</td>
<td>Fully Completed</td>
</tr>
</tbody>
</table>
Agile Sprints
Risk Matrix

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>C4, C5</td>
<td></td>
<td></td>
<td></td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td>C1, T6</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Customer Risks-C1

- The detection process will go through a “learning” phase which may cause the user to not trust the application due to an increase in false results.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>C3, T1</td>
</tr>
<tr>
<td>Low</td>
<td>C4, C5</td>
</tr>
<tr>
<td>Moderate</td>
<td>T4</td>
</tr>
<tr>
<td>High</td>
<td>T5</td>
</tr>
<tr>
<td>Very High</td>
<td>T6</td>
</tr>
</tbody>
</table>

Mitigation

- Let the patient know ahead of time that there will be a learning phase for the application, give a basic explanation to reassure the user regarding why it is necessary.

Probability Impact Mitigation
Customer Risks-C2

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Low</td>
</tr>
<tr>
<td>Very High</td>
<td>C3, T1</td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
</tr>
</tbody>
</table>

Mitigation

- May require a certain level of end user technical competency and commitment/dedication
- Provide detailed instructions of how to properly use the application
Customer Risks-C3

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td>C1, T6</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Mitigation**
 - Encrypt all collected data about the patient.

- **Patient data could be leaked in the event of a potential data breach**
Customer Risks-C4

- If no network is available, important data can be lost

Mitigation

- We will preserve the most important data, which is seizure data, in the Smartwatch itself.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>C4, T5</td>
<td>T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td></td>
<td>C1, T6</td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>
Customer Risks-C5

Impact

- If no network is available, emergency contacts can not be notified.

Probability

<table>
<thead>
<tr>
<th></th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td></td>
<td>C1, T6</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1, T6</td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigation

- An audio alert will sound and instructions will display on watch so anyone nearby can aid effectively.
Technical Risks-T1

Mitigation

- Encrypt all data in transit and at rest

Security breach

<table>
<thead>
<tr>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>T4</td>
<td>C1, T6</td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
<td></td>
</tr>
</tbody>
</table>
Technical Risks-T2

- Battery drainage due to the high use of sensors in smartwatch

Mitigation

- Only activate sensors that will be used and turn off all sensor listeners when not being used

Probability

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td>T4</td>
<td></td>
<td>C1, T6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>
Technical Risks-T3

- Ability to determine an appropriate amount of data needed to validate our initial model, and to then capture enough example data to effectively train the personalized algorithm

Mitigation

- Speak with experienced neurologists who may be able to suggest or guide us to the frequency of certain paths of the AI decision tree. Initialize trained network using public research data biometric readings

Impact and Probability

<table>
<thead>
<tr>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>C4,C5</td>
<td></td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td>C1, T6</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
<td></td>
</tr>
</tbody>
</table>
Technical Risks-T4

- Correlating data between sensors to detect a seizure
- Set the same sampling rate of all sensor updates

<table>
<thead>
<tr>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td></td>
<td>C1, T6</td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>

Mitigation:

- Correlating data between sensors to detect a seizure
- Set the same sampling rate of all sensor updates
Technical Risks-T5

<table>
<thead>
<tr>
<th>Impact</th>
<th>Probability</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>C4, C5</td>
<td></td>
<td></td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td></td>
<td></td>
<td>C1, T6</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigation

- Machine learning might degrade performance
- There will be an option to revert threshold values back in time, or completely reset threshold values back to initial values
The detection process will go through a “learning” phase which may increase the number of false positives.

Let the patient know ahead of time that there will be a learning phase for the application. Starting out, we will apply typical biometrics of a user experiencing a seizure until the application “learns” the individual.

Probability

<table>
<thead>
<tr>
<th>Impact</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>C3, T1</td>
<td></td>
<td></td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>C4, C5</td>
<td>T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td>T4</td>
<td></td>
<td>C7, T6</td>
</tr>
<tr>
<td>Low</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>
What SeizSmart Will Not Do

- It will not predict seizures in advance of known symptoms
- It detects all types of generalized seizures except for absence seizures
- It is not a medical application and is not intended to be used in the diagnosis, monitoring, prevention, or treatment of epileptic seizures.
Key Points Summary

- **SeizSmart** is a mobile application based on smartwatch technology that is designed to improve the detection, tracking, and reporting of generalized seizures.

- **The Problem**
 - Current applications only check for an increase in heart rate or rapid body movements.
 - Current applications require a prescription or subscription plan in order to detect and track seizures.
 - Current applications require the smartwatch to be in close proximity to the relay device to transmit alerts and notifications.

- **The Solution**
 - Continuously monitor the end-user’s heart rate and body movements.
 - Apply machine learning to the collected data about the end-user’s seizures to build a unique, personalized, more accurate seizure profile.
 - Execute within the smartwatch itself to enable independent operation without requiring proximity to a relay device.
Interactive Prototypes

● App:
 ○ https://xd.adobe.com/view/17e93316-724a-4f5a-6827-3e06b38ce038-61d8/

● Alert:
 ○ https://xd.adobe.com/view/1c7d93db-b2ca-40c6-71e2-d50d1892ada8-6a4c/

● Phone:
 ○ https://www.figma.com/proto/NXfp6iJo21H7FiibaDyuyVVS/SeizSmart-Phone-UI-Test?node-id=0%3A1&scaling=scale-down

References - Epileptic Seizure Detection Continued

References - Heart rate and Epileptic Seizures

References - Epilepsy

References - Direct Competitors

References - Indirect Competitors

Appendix A1 - User Stories (Patient)

a. As a patient, I need to receive an alert when a seizure has been detected
b. As a patient, I need to be given x amount of seconds to respond to the given alert before my emergency contact is notified
c. As a patient, I need to be able to cancel an alert
d. As a patient, I need to have the ability to turn detection mode on and off
e. As a patient, I would like to log seizures
f. As a patient, I would like to view all my recorded seizures
g. As a patient, I would like to pick which emergency contact receives a notification during the onset of a seizure.
h. As a patient, I need to add emergency contacts who will receive a notification during the onset of a seizure.
 (Need)
i. As a patient, I need to be able to switch on emergency notifications (Need)
j. As a patient, I need to be able to store and change emergency contacts as required (Need)
k. As a patient I would like to be able to tweak detection parameters as needed.
l. As a patient I would like the smartwatch to vibrate or emit an audio alarm when a seizure is detected.
m. As a patient, when I don’t respond to my initial alert, I would like the smartwatch to emit an alarm or verbal notification to alert bystanders what is happening
Appendix A1 - User Stories (Patient) Continued

a. As a patient, when I don’t respond to my initial alert, I would like the smartwatch to emit verbal instructions telling bystanders how to help me

b. As a patient, if I fall, I would like the watch to include that in the notification to my emergency contact/first responders
Appendix A2 - User Stories (Emergency Contact)

a. As an emergency contact, I need to receive an alert when a patient is having a seizure. (Need)
b. As an emergency contact, I need to have the ability to cancel an alert from being sent to first responders if I am available to assist the patient. (Need)
c. As an emergency, I need to know patient location and patient phone number during a seizure.
d. As an emergency contact, I need to know patient heart rate in the alert to confirm if this is an actual seizure or just a false positive.
Meta

Discussion of presentation design?

Rubric