

LAB 1 – POLYMORPHER 1

Lab 1 - Polymorpher Product Description

Casey Batten

Old Dominion University

Version 2

CS411W

Professor Thomas Kennedy

February 26, 2018

Author Note

Casey Batten, Department of Computer Science, Old Dominion University.

This research was done under the supervision and guidance of Thomas Kennedy.

Correspondence concerning this article should be addressed to Casey Batten, Department of

Computer Science, Old Dominion University, Norfolk, VA 23529.

Contact: CBATT015@odu.edu

mailto:CBATT015@odu.edu

LAB 1 – POLYMORPHER 2

Table of Contents

Contents
Table of Contents .. 2

1 Introduction .. 3

Team Members .. 3

Problem Statement .. 3

Problem Characteristics ... 4

Solution Characteristics .. 4

2 Polymorpher Product Description ... 6

2.1 Goals and Objectives ... 6

2.2 Key Product Features and Capabilities .. 7

2.3 Major Components (Hardware/Software) .. 7

3 Identification of Case Study .. 8

3.1 End-User: Students ... 8

3.2 Customers .. 8

3.3 Why Make this for Students ... 8

4 Product Prototype Description ... 11

4.1 Prototype Architecture (Hardware/Software).. 11

4.2 Prototype Features and Capabilities ... 12

4.2.5 Algorithms... 15

4.3 Prototype Development Challenges ... 18

4.4 Risk Mitigation/Risk Matrix .. 20

5 Development Pipeline .. 21

5.1 Core Development Software ... 21

5.2 Agile Development... 23

5.3 Work Management ... 24

6 Glossary .. 25

References .. 27

LAB 1 – POLYMORPHER 3

1 Introduction

 Computer Science is a field that is constantly expanding, and every day becomes a

more integral part of daily life. The demand for workers in the field and the number of students

seeking education to fill those very positions have both markedly increased over the course of

more than a decade. However, despite the advancement of technology and programming

practices, many of the skillsets necessary to be successful in this rapidly growing field continue

to have a sharp learning curve and barrier of entry. From that problems arise and solutions to

meet those problems must be developed to aid potential Computer Scientists and all parties

interested in the field meet that curve and overcome it. Polymorpher is aimed at being one such

solution, as it helps reinforce integral parts of the software design and programming process in

a format that is more easily digested by a wider audience.

Team Members

ODU Team Silver and the team is composed of:

Matthew Tuckson, Project Manager

Colten Everitt, Website Admin

Daniel Dang, Web Developer

Joel Stokes, Game Developer

Kevin Santos, Database Management

Nathaniel Dearce, AI Design

Peter Riley, Software Engineer

Tyler Johnson, Software Engineer

Casey Batten, Unity SDK Specialist

Problem Statement

Programming is intimidating for the uninitiated. As a result, first time ODU programming

students drop out or switch majors. Existing tools fail to teach Object-Oriented Programming

(OOP) concepts and problem-solving skills.

LAB 1 – POLYMORPHER 4

Problem Characteristics

The problem characteristics detailed above show a simplified breakdown of the issue

from the perspective of a student in the Computer Science curriculum. Over the course of a

semester the team has theorized that this basic outline matches the pattern for how students may

fall in to a negative cycle eventually leading to the possible dropping of the class or worse the

entire major. These students are attempting to progress through a curriculum without truly

understanding it or having the tools to overcome its challenges. This is where the need for a

support system or tool to handle this negative cycle becomes relevant.

Solution Characteristics

The primary characteristics of this solution revolve around the idea that the

programming-based game, Polymorpher, will help not only reinforce but offer an alternative

understanding of the core principles of Object Oriented Programming. The ideology behind

Polymorpher’s design revolves around the idea that giving the player a new way to think about

OOP will make integral concepts behind software design more apparent. This approach is what

LAB 1 – POLYMORPHER 5

the team believes will help them escape the negative cycle covered in the problem characteristics

diagram below (Figure 1).

Figure 1

The strengths of the intended method include a low barrier of entry and a focus on Object

Oriented Programming and design specifically. The low barrier of entry will allow users

inexperienced in higher level programming, especially Computer Science students trapped in the

negative cycle, to pick up and rapidly adapt to the new toolsets the team intend to introduce them

to. These toolsets will help elaborate the tenants of Object Oriented Programming and give the

user a new way of thinking regarding the application of these concepts.

 The weaknesses of the intended method are restricted to those of security and the nature

of the experience itself, shown in detail in the table below (Figure 2). On the matter of the

player’s experience, there currently is only one supported language and no planned multiplayer

as from a developmental standpoint it would pose serious challenges and risks. One such risk ties

LAB 1 – POLYMORPHER 6

in to the security weakness, given that the player will be executing raw code which could

potentially put their system at risk as well as any other user they theoretically networked with.

To mitigate that risk the team has decided to move away from multiplayer aspects and focus on a

single player experience, discussed in more detail in section 4.

Figure 2

2 Polymorpher Product Description

2.1 Goals and Objectives

The primary goal of Polymorpher is to create a video game which teaches its player

Object Oriented Programming using an expansive in-game toolset. This toolset will be used by

the player to not only manipulate the game, but also garner a better understanding of their actions

in the game and in effect of Object Oriented design as a whole.

LAB 1 – POLYMORPHER 7

2.2 Key Product Features and Capabilities

Polymorpher is a puzzle-based coding themed platformer that utilizes a unique player

input system in which the user can select and edit the source code, and by extension the

behavior, of objects within the game environment to solve puzzles and overcome challenges. The

amount of freedom given to the player regarding how they can manipulate an object’s behavior

is quite significant given that any changes to an objects source code will be rendered in the game

in real time, allowing the player to see and better understand the effects of certain coding

practices.

As stated in the opening of section 2.1, the coding practices that will be focused on will

be those that most closely relate to Object Oriented Programming. The player will be subjected

to a number of puzzles and level-based challenges that focus on specific pillars of OOP, the

intention behind this being that if the player can be tasked with creative thinking in relation to

these concepts they will naturally better understand them inside and outside of the game’s

context. This is also how the team intends to make Polymorpher different than the competition.

Other programming themed games exist, and some may even serve a similar purpose, but the

goal behind the project is to achieve a balance between a fun experience and an educational one

where others fail to. Polymorpher will give the player a varied enough experience to not only

continue to hold their interest from an entertainment standpoint but also to inform and educate

them from a software engineering standpoint.

2.3 Major Components (Hardware/Software)

The projected minimum system requirements are intended to fall within the range of an

4th generation Intel i3 processor, approximately 2 Gb of RAM, and the Windows 7 Operating

LAB 1 – POLYMORPHER 8

system. Alongside this the game will be delivered as a downloadable desktop application in the

form of an EXE file, requiring an internet connection. Currently there is not a projected hard-

drive space requirement.

3 Identification of Case Study

3.1 End-User: Students

 At the current time the primary End-User for this product would be students in the

computer science degree path, or in any computer science classes, at Old Dominion University.

Beyond this of course students in similar degree paths or classes at other universities and

colleges would fall under the same End-User classification, assuming the products completion

and success at Old Dominion. Finally, the End-User could also be any individual with a genuine

interest in or desire to learn Object Oriented Programming.

3.2 Customers

 The customer base is, for the most part, the End-User. Aside from being focused on

individuals however, Polymorpher also may appeal to parties interested in using it as a learning

tool on a larger scale. Old Dominion University may aim to offer it as training software to

interested students. Other colleges or universities may also choose to acquire the software in bulk

to provide it as an available service to their students.

3.3 Why Make this for Students

As stated in the problem statement, the intimidating nature of programming can potentially

cause new CS students to drop a class or switch majors. The figures above have been

LAB 1 – POLYMORPHER 9

propagated with data pulled from the ODU Factbook, which points to a significant drop in the

number of students following the CS course curriculum from 2014 to 2017. A portion of this can

be attributed to white noise due to course overlap between other STEM degrees and Computer

Science, however in the later courses where white noise is much lower the disparity in the size

of the student body and the initially projected class size is still significant enough to support the

conclusion proposed in the problem statement.

Figure 3

LAB 1 – POLYMORPHER 10

Figure 4

LAB 1 – POLYMORPHER 11

4 Product Prototype Description

4.1 Prototype Architecture (Hardware/Software)

 The Prototype will consist of a standalone desktop application that can be downloaded

from Team Silver’s dedicated website. This Prototype will be an education focused game that

will cover the core tenants of Object Oriented Programming, with light coverage of the

prerequisite knowledge to work with those principals.

LAB 1 – POLYMORPHER 12

4.2 Prototype Features and Capabilities

The primary intended features of Polymorpher are the ones that pertain to the core tenants

of Object Oriented Programming. These core principals will be organized into a level structure

that will provide the player with puzzles and challenges to help not only reinforce these integral

concepts but expand upon them in unique ways. Alongside the game’s core content is the

implementation of a single programming language, C#, which the team decided to use because of

its similarity to other popular OOP languages and the relatively low proficiency level needed to

learn the language. Combined, these factors will assist the user in mastering the skills necessary

to become a successful software developer.

These core principals break down in to six main groupings in the games level structure,

starting with two sections of tutorials to covering the controls of the game and primary systems

of interaction, and the basic syntax necessary to use C#. Following this, the game presents the

player with four primary challenge levels that follow each of the core principals of Object

Oriented Programming. The section on Polymorphism will focus on introducing the player to

concepts involving objects changing in relation and reaction to other objects around them and the

behavior of the player, all revolving around the object source code that the player will be

interacting with directly. Inheritance will be taught through in game examples of inheriting states

and object lineage in the game’s context, shown through class interaction in the code the player

will be working with. The Abstraction section will be used to build off the Polymorphism and

Inheritance sections, introducing the player to abstract data types and type manipulation. Beyond

this the section on Encapsulation will introduce the player to closed off event sequences with

incremental changes based on differing conditions under the players control, allowing them to

LAB 1 – POLYMORPHER 13

observe changes within and outside of encapsulated objects based on their own work with the

object source.

Beyond the core lesson content of Polymorpher, the team also has plans for expanded

content to fill out the gaming experience more. The first integral property of this development

category is the implementation of game assets, particularly art and sound assets. Given that the

team currently lacks dedicate sound and digital artists, these resources would have to be procured

either through royalty free online resource databases or through art commission and licensing

outlets. With these assets are secured the final product will not only look and feel more

professional, the overall experience will be more appealing to the End-User and have a more

lasting effect. Alongside this the team is also dedicated to giving Polymorpher some variety of

dedicated narrative to help tie together the lesson content distributed through out the game. This

will help increase player engagement, while also smoothing the games structure linear structure

and pacing. Finally, there are gameplay stretch goals the team is dedicated to pursuing, including

a sandbox level for the player to have full access to all the tools of gameplay available in the

individual lessons in a single unified area. To expand on that, a “create and save” function may

also be implemented into the sandbox feature with enough development time, paired with a

method of exporting saved levels to share user-created challenges with other players. This would

give the game a form of pass-off multiplayer, expanding replayability and engaging the player

community with each other in new and creative ways.

While planning out Polymorpher’s development, the team gradually eliminated certain

development paths due to limitations and redirected design goals. One of the eliminated

capabilities of Polymorpher was active multiplayer gameplay. This option was ruled out as a

serious security risk, given that the players would be executing raw code in a shared environment

LAB 1 – POLYMORPHER 14

and could potentially cause harm to one another’s PC. Another ruled out capability was having

Polymorpher function as a web-based application in browser. This option is, at the time being,

impossible at a technical level. Not only does the current portable compilation method pose a

serious design strain but allowing raw code to be compiled on a website hosting the game could

negatively affect not only the user’s personal game but any users using that web service and the

website itself. The removal of these features has helped focus the direction the team intends to

take the project and has lessened the potential risks involved with allowing the End-User as

much control over the game’s content as Polymorpher does.

KEY

Fully

Functional

Partially

Functional

Eliminated

Elements Description Real World

Product

Prototype

Teaches Polymorphism Provision of a single interface to entities of

different types

Teaches Abstraction Technique for arranging complexity of systems

Teaches Encapsulation Building of data with the methods that operate

on that data

Teaches Inheritance When an object or class is based on another

object or class, using the same implementation

Single Language

Taught

A single programming language will be focused

on C#.

Single Player Focused on an experience targeted to interact

with only one player

LAB 1 – POLYMORPHER 15

Downloadable .EXE

File

Desktop application version of the game

Game Assets Primary components that are used as building

block to construct the more complex features

and levels of the game

Developed Story Narrative used to drive progression or direct

player throughout a more guided/linear

experience

Portable Compiler Code compiler used to run player-made code on

the fly in game

Tutorial Section Precursor series of levels meant to help the

player adjust to the in-game toolset given to

them and also prep them with knowledge of the

language(s) they will be working with

Multiple Platforms Version support for multiple operating systems

(Windows, Mac OS, Linux)

Sandbox Level Open level where the player has access to all

tools at once and can build their own level

sequences and puzzles

Player-Made Content Variant of Sandbox Level, potentially allows the

player to share custom levels with one another

Multiple Player An experience geared toward multiple players

interacting with a game environment together

Web Application Web based version of the game running in-

browser

Multiple Languages

Taught

Alternative programming languages for the

player to use and learn in-game

4.2.5 Algorithms

 The Core Algorithm of Polymorpher is what commands the central mechanic of

gameplay. The system revolves around a balance of using the in-game API and the Morph

function. When the player selects the “Morph” function on the UI, they can then select pre-

determined objects within a level or puzzle and begin interacting with their source code. This

allows the player to change the objects behavior in a way that will assist them in overcoming the

LAB 1 – POLYMORPHER 16

puzzle presented to them. The UI systems the player interacts with the most will be the Coding

Interface, which functions as a sort of in-game IDE, and the API Book. The Coding Interface

will allow them to write and compile code, which they will learn through the API Book and its

subsequent entries provided by the development team to aid the player through each challenge.

Assuming the script compilation is successful the “Morph” function will be completed, and any

behavioral changes made by the player will be rendered in real time. Otherwise, an error report

will be sent to the player and they will be routed back to the Coding Interface.

Figure 5

 The API Algorithm, which is runs as a subsequent result of the Core Algorithm, is the

primary method of information delivery from the developers to the player. It will be host to the

API Book, which functions based on certain interactions by the player. While navigating the API

Book the Algorithm will sort in related helpful hints, and recommended functions for certain

puzzles and scenarios. On top of this, when viewing the page related to a function listed within

the API Book the player will be shown example psuedo-code of the proper use of the function

LAB 1 – POLYMORPHER 17

and be given the option to import the function to any script currently open in the Coding

Interface with the press of a button.

Figure 6

The Compiler Algorithm is the most important Algorithm to the functionality of

Polymorpher from a gameplay and mechanical standpoint. It handles the process of object

selection, passing the selected object’s source code forward to the Coding Interface for editing.

Following a compilation request, the Algorithm will save and identify the new source code

through the “LoadScripts.cs” script and pass it on to the “ScriptBundleLoader.cs” script. Here it

will be marked for Assembly and Compilation. If compilation is successful it will then proceed

to attach the newly made script to the initially selected game object and being the re-rendering

process, allowing its new behavior to take effect. Otherwise, it will trigger and error message for

the player via the Unity Error and Log scripts, informing them of the nature and exact line of the

initial error. This intricate system is possibly the most important function in the entire backend of

LAB 1 – POLYMORPHER 18

the software and is what gives the player the freedom to manipulate the core of the game’s

functionality in any potential way they can imagine.

Figure 7

4.3 Prototype Development Challenges

 One of the most challenging developmental tasks to overcome in game design is

continuity in regard to the game’s overall structure, in it’s tone, in the nature of it’s levels and

challenges, and most importantly in the quality of the game. If the quality of any one of these

factors diminishes or does not match the standards set by the rest of the game, it is very likely to

put off the End-User and reflect negatively on the overall experience of the game. Because of

this, keeping a certain development standard among all members of the group and having clear

and consistent communication with all members actively involved in Polymorpher’s

development is integral to the success of the product.

 Bug testing is a fundamental concern in overall software development. Bugs or consistent

errors in a game can range from mildly disruptive to experience-ruining, and in some serious

cases can even break the software’s capacity to function as a whole. Therefore iterating on

LAB 1 – POLYMORPHER 19

problem areas and refinement of every major functional component of Polymorpher will be

incredibly important in ensuring quality of life in regard to the game’s continued value.

 Another general issue for game development is the issue of maintaining player

engagement. If your player or even player base cannot find value in continuing to use and

support your game, it will find itself short lived and incapable of standing on its own two legs on

the market. For these reasons it is not only important to ensure that the core experience you are

providing is of significant quality, but that the replayability of your product enables its player’s

and community to grow and remain passionate about the product’s existence.

 One major risk specifically relevant to Polymorpher is ensuring that the game is

educating well and has enough content to be considered beneficial to its users. At its core this is

educational software meant to enrich its users in their capacity to design software, so if it doesn’t

achieve the goals set out by it’s designers or in any way fails to educate its audience its purpose

for existence becomes invalidated.

 One of the best ways to prevent each of these major development risks is through the use

of playtesting. If the team ensures that we as developers continue to enjoy using our product, we

can move on to having others play it in focus groups. The team can analyze feedback from these

playtester focus groups, likely made of volunteers from the student body at Old Dominion

University, and use their feedback to refine and better the overall quality of Polymorpher.

LAB 1 – POLYMORPHER 20

4.4 Risk Mitigation/Risk Matrix

 Of the Technical risks, the two most impactful are the End-User implementing malicious

code and insufficient support from the in-game API. The risk involved with malicious code is

one that is intertwined into the core functionality of Polymorpher. Since the user can execute

almost any variety of code they want inside the game’s environment they could very easily run

code that could harm their PC. The ways this has been mitigated vary from removing the

possibility of online multiplayer, and potentially providing a full walkthrough of the puzzles and

their solutions while providing developer-approved code solutions that will not harm the user’s

PC. As for the second major technical risk, if the game has an insufficient API available to the

player they may find themselves incapable of adapting to the situation and solving the puzzles in

the game. To avoid this the team intends to playtest intensely and iterate on the API provided to

the player until it is considered sufficiently capable of providing the player with a satisfactory

experience.

 Of the Consumer risks, the primary concern is that there is insufficient content and/or

insufficient time from a developer standpoint to provide a full and fulfilling experience.

Mitigation for that once again involves not only iteration on the product throughout development

but also focused playtesting. To confront the issue of a lack of development time the team has

divided the workload in to concise and manageable portions that have been distributed into sub-

teams with three members each. This method will increase the entire groups overall efficiency

and capacity to produce a complete product given the current development timeline.

LAB 1 – POLYMORPHER 21

Figure 8

5 Development Pipeline

5.1 Core Development Software

 The development process for Polymorpher centers around three major software toolsets.

The first of these major toolsets is the Unity Software Development Kit. Unity is a popular Game

Engine that comes with a suite of extremely powerful game development tools. Among these

tools is the Engine’s well-designed user interface which cleanly organizes, simplifies, and

streamlines substantial portions of the game development process. These include animation

rigging systems, game UI toolkits, component management systems, and a scene manager

system with integrated prefab functionality.

 The Unity SDK also comes packaged with an excellent IDE called Monodevelop.

Monodevelop’s core integration into Unity makes for a convenient and fast method of editing

code and managing backend functionality for many important game components. On top of that

LAB 1 – POLYMORPHER 22

it is primarily intended for C# development, one of the most powerful languages supported by

the Unity SDK and the language Polymorpher is being written in.

 The second major toolset integral to Polymorpher’s development is the SourceTree

version control software. SourceTree is a file management software that interfaces each team

members local repository, where they work with Unity to develop their portion of Polymorpher,

with the team git repository. SourceTree manages this by handling SSH connections through the

PuTTY SSH client software. From there it can either clone the master repository and update the

developer’s local repository with it, or push the developer’s changes up to their respective

Current Feature Branch on the git repository.

 The final toolset involved in the development of Polymorpher is the git repository itself,

maintained through the GitLab service. GitLab allows the team to manage all branches and keep

tabs on all aspects of development between each member of the team, tracking commit history

and update information from each developer’s update logs.

LAB 1 – POLYMORPHER 23

Figure 9

5.2 Agile Development

 The Agile Development process for Polymorpher involves the development of individual

features. After a feature is first planned and developed, an implementation test is preformed to

check its functionality. After this a working demo is produced to be approved, and after more

test, refinement and approval it is sent for deployment. At this stage development focus is shifted

towards the next feature and the process begins again. This process is iterated on until the

products feature set is complete and the final build is approved for deployment.

LAB 1 – POLYMORPHER 24

5.3 Work Management

 The development of Polymorpher has been divided among the team members in a variety

of ways. First and foremost, the nine member team has been split in to three sub-teams, each

with three members. Each sub-team has a team-leader who manages the development goals of

that specific team week to week. Polymorpher’s six core lesson sections have been distributed

equally among the three groups, each group handling two lessons. The three team leaders also

are tasked with the organization of asset request lists which are then handed over to the Team

Silver Project Manager Matthew to place as an official request to procure the assets from any

given outlet. This method of work division and development management will help to hasten the

development of the product and ensure efficiency in the development pipeline.

LAB 1 – POLYMORPHER 25

6 Glossary

Assembly/Assembler: A process/program which converts assembly language to an object file or

Machine Language format.

Code Compiler Directory: File directory holding the portable compiler, and the associated

companion files, which are used to manipulate the scripts in the Streaming Assets Directory.

Coding Interface: An in-game GUI accessible to the player that pulls specified scripts from the

Streaming Assets Directory for them to edit and compile using the portable compiler from the

Code Compiler Directory.

Compilation/Compiler: A process/program which translates source code from a given

programming language to Machine Language in order to be executed.

CS: Short for Computer Science, often in relation to the degree path at Old Dominion University

but also in referral to the field of Computer Science as a whole.

Game Engine: A suite of software development tools with a User Interface geared towards

streamlining the development process of applications, primarily video games.

IDE: Short for Integrated Development Environment, this kind of software is used to build and

develop software in a variety of ways and often includes a suite of tools to assist the developer.

LoadScripts.cs: Manages files accessed by the entire portable compilation system by identifying

which script is currently in focus as the “source” script for any selected object in game, pulling

this file from the Streaming Assets Directory and passing it off to the Script Bundle Loader for

compilation.

OOP: Object Oriented Programming

LAB 1 – POLYMORPHER 26

Playtester: An individual tasked with playing through an incomplete series of builds for video

game software to assist in the refinement of said video game.

Polymorpher: The programming themed puzzle platformer being developed by Team Silver.

Prefab: A pre-fabricated component of some kind, usually used to combine multiple individual

components of a segment of software into a single functional unit.

Replayability: The capacity of a game to be played more than once or for an expended period

beyond initial completion.

ScriptBundleLoader.cs: Takes scripts passed off from the Load Script file and marks them for

compilation, setting up the Assembler and Compiler and running the selected script through

them. In the event of any compilation errors it will send out an error report through the Unity

Error and Log files, otherwise it will attach the script to whichever game object was selected.

SSH: Stands for Secure Shell, a cryptographic network protocol for operating network services

securely over an unsecured network.

Streaming Assets Directory: File directory where all scripts accessible to the player via the in-

game Coding Interface are stored and organized according to level and programming concept

relevance. It is unique in that it is one of the few source file directories that are accessible to the

player in the Unity Engine under any condition.

LAB 1 – POLYMORPHER 27

References

Batten, C. (Narrator). (2017). CS410 Dungeon Escape Demo (Short Version) [Online

video]. Online: YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (Narrator). (2017). CS410 Project Dungeon Demo [Online video]. Online:

YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (2017, November 21). CS410 Tech Demo 2 (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, November 29). VersionControlFlow. In draw.io. Retrieved December

21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%221IQj6SYJqC6YLAK_

qMRVIQkHiUmr9laBu%22%5D,%22action%22:%22open%22,%22userId%22:%22108

692003133590583047%22%7D#G1IQj6SYJqC6YLAK_qMRVIQkHiUmr9laBu

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Play Now). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

“The Benefits of Video Games.” abcnews (2011, December 26). Retrieved October 19,

2017, from http://abcnews.go.com/blogs/technology/2011/12/the-benefits-of-video-

games/

Good-Morning-America

Edraw. (2017, May 12). Standard Flowchart Symbols and Their Usage. In Edraw

Visualization Solutions. Retrieved from https://www.edrawsoft.com/flowchart-

symbols.php

http://www.cs.odu.edu/~410silver/references.html

LAB 1 – POLYMORPHER 28

Everitt, C. (2017, September 6). Current Process Flow. In draw.io. Retrieved December

21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B-

5KdQEdqLUPd

nBFUnp2V05uMEE%22%5D,%22action%22:%22open%22,%22userId%22:%22108692

003133590583047%22%7D#G0B-5KdQEdqLUPdnBFUnp2V05uMEE

Everitt, C., & Dang, D. (2017, September 24). currentProcessFlow. In draw.io. Retrieved

December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B3Bc9

5zBWXg9TFZ6X0FMU1NTdEk%22%5D,%22action%22:%22open%22,%22userId%22

:%22108692003133590583047%22%7D#G0B3Bc95zBWXg9TFZ6X0FMU1NTdEk

Everitt, C., Santos, K. & DeArce, N. (2017, November 27). Work Breakdown Structure

(WBS). In draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%

220B-

5KdQEdqLUPWnNoSHhIUGg2OTQ%22%5D,%22action%22:%22open%22,%22userId

%22:%22108692003133590583047%22%7D#G0B-

5KdQEdqLUPWnNoSHhIUGg2OTQ

Everitt, C., Santos, K. & DeArce, N. (2017, October 13). ProcessFlowDiagram_silver. In

draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B

_xBnZ1ge4PlZTVjV3h6Y2pGSWc%22%5D,%22action%22:%22open%22,%22userId%

22:%22108692003133590583047%22%7D#G0B_xBnZ1ge4PlZTVjV3h6Y2pGSWc

LAB 1 – POLYMORPHER 29

Few, S. (2008, February 5). Practical Rules for Using Color in Charts. In Perceptual

Edge. Retrieved from

http://www.perceptualedge.com/articles/visual_business_intelligence/

Rules_for_using_color.pdf

Kennedy, T. (2017, September 6). kennedyData. In Google Drive. Retrieved from

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

O'Neill, M. (2017, March 6). Computer Science Before College. In Computer Science

Online. Retrieved from https://www.computerscienceonline.org/cs-programs-before-

college/

Riley, P. (2017, September 14). Using Games to Introduce Programming to Students

[PowerPoint slides]. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Stokes, J. (Narrator). (2017). CS410 Programming Game Pitch [Online video]. Online:

YouTube. Retrieved from

https://www.youtube.com/watch?v=QBvgzFgZaOQ&feature=youtu.be

Stokes, J. (2017, October 9). CS410 Programming Game Pitch (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Santos, K., Riley, P. & Dang, D.(2017. December 7) Risk matrix and description tables in

Design Presentation. Retrieved from

https://docs.google.com/presentation/d/1oY9lkSAHvg2OIRkljYJNZWCqVTbiw45STKg

lsJUQjJI/edit#slide=id.g283e74317a_0_177

Unity Technologies. (2017, August 10). Company Facts. In Unity. Retrieved from

https://unity3d.com/public-relations

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

LAB 1 – POLYMORPHER 30

Unity. (2016, July 6). Unity - Scripting API. In Unity. Retrieved December 21, 2017,

from https://docs.unity3d.com/530/Documentation/ScriptReference/index.html

Unity. (2017, October 11). Asset Store. In Unity. Retrieved December 21, 2017, from

https://www.assetstore.unity3d.com/en/

12 Free Games to Learn Programming. (2016, April 25). In Mybridge. Retrieved from

https://medium.mybridge.co/12-free-resources-learn-to-code-while-playing-games-

f7333043de11

