
Running head: LAB 1 - POLYMORPHER 1

Lab 1 - PolyMorpher Product Description

Colten S. Everitt

Old Dominion University

CS411W

Professor Thomas Kennedy

29 January 2018

Version 1

Author Note

Colten S. Everitt, Department of Computer Science, Old Dominion University.

This research was done under the supervision and guidance of Thomas Kennedy.

Correspondence concerning this article should be addressed to Colten Everitt,

Department of Computer Science, Old Dominion University, Norfolk, VA 23529.

Contact: cever015@odu.edu

LAB 1 - POLYMORPHER 2

Table of Contents

1 Introduction 4
1.1 Team Members 4
1.2 The Problem 4
1.3 Solution Characteristics 6
1.4 Current Solutions (Competition) 8

2 PolyMorpher Product Description 10
2.1 Goals and Objectives 10
2.2 Key Product Features and Capabilities 11
2.3 Major Functional Components (Hardware/Software) 14

3 Identification of Case Study 16
3.1 End Users: Students 16
3.2 Target Customers: Old Dominion University 17
3.3 Reasons for Creating PolyMorpher for Students 17

4 PolyMorpher Prototype Description 21
4.1 Prototype Architecture (Hardware/Software) 21
4.2 Prototype Features and Capabilities 21
4.3 Prototype Development Challenges 27
4.4 Risk Matrix/Risk Mitigation 28

5 PolyMorpher Development Pipeline 30
5.1 Unity Software 30
5.2 Sourcetree Software 31
5.3 Version Control 31
5.4 Development Model 32
5.5 Work Management 32

References 37

[This space intentionally left blank]

LAB 1 - POLYMORPHER 3

List of Figures

Figure 1: Current Process Flow (Team Silver, 2017) 5
Figure 2: Solution Process Flow (Team Silver, 2017) 7
Figure 3: CS410 Technical Demonstration #2, By: Casey Batten (Team Silver, 2017) 11
Figure 4: Key Features & Capabilities, By: Joel Stokes (Team Silver, 2017) 12
Figure 5: Structure of PolyMorpher (Team Silver, 2017) 13
Figure 6: Major Functional Components (Team Silver, 2017) 15
Figure 7: Student Progression Dilemma - Pie Chart (Team Silver, 2017) 19
Figure 8: Dataflow Algorithm - Core Algorithm (Team Silver, 2017) 24
Figure 9: Dataflow Algorithm - API Book Algorithm (Team Silver, 2017) 25
Figure 10: Dataflow Algorithm - Compiler Algorithm (Team Silver, 2017) 26
Figure 11: Version Control Flow Diagram (Team Silver, 2017) 31
Figure 12: Agile Development Model (Team Silver, 2017) 32

List of Tables

Table 1: Competition Matrix - Part 1 (Team Silver, 2017) 8
Table 2: Competition Matrix - Part 2 (Team Silver, 2017) 8
Table 3: Student Progression Dilemma - Table & Graph (Team Silver, 2017) 20
Table 4: Key for Features of the Complete Product versus the Prototype 21
Table 5: Features of the Complete Product versus the Prototype (Team Silver, 2017) 22
Table 6: Risk Matrix & Description - Customer & Technical Risks (Team Silver, 2017) 28

[This space intentionally left blank]

LAB 1 - POLYMORPHER 4

Lab 1 - PolyMorpher Product Description

1 Introduction

PolyMorpher is a programming game and outside resource solution for undergraduate

(predominately first-year) Computer Science (CS) students at Old Dominion University (ODU).

Object-Oriented Programming (OOP) and problem solving skills will be taught throughout the

game to increase the probability of a CS student passing introductory CS classes, with the end

goal of that student graduating with at least a bachelor’s degree in CS. PolyMorpher is a

downloadable executable file that is run with a Management Simulator to a Tangible User

Interface (TUI). The programming game is currently being developed using the Unity Software

Development Kit (SDK) with the C# and JavaScript programming languages.

1.1 Team Members

Under the guidance of mentor Thomas Kennedy, a group of college students from ODU

formed the group “Team Silver” and developed PolyMorpher. The members of Team Silver are

Colten Everitt, Matthew Tuckson, Kevin Santos, Casey Batten, Peter Riley, Joel Stokes, Daniel

Dang, Tyler Brown, and Nathaniel DeArce. Colten Everitt is the website administrator. Matthew

Tuckson is the program/project manager. The remaining team members each specialize in a

different area of Unity SDK development.

1.2 The Problem

“Programming is intimidating for the uninitiated. As a result, first time ODU

programming students drop out or switch majors. Existing tools fail to teach OOP concepts and

problem solving skills” (Team Silver, 2017, 8). Extensive evidence that a significant section of

first time ODU CS students are struggling with programming is shown in Section 3.3 Reasons

LAB 1 - POLYMORPHER 5

for Creating PolyMorpher for Students. The current CS curriculum at ODU is failing to teach

OOP concepts and problem solving skills effectively enough for students to truly understand

them. These students might try to look for outside resources aside from what ODU provides, end

up not finding any, and then fail classes, or worst case switch majors or drop out of college

altogether.

Figure 1 displays the current process flow of a new CS student arriving at ODU, taking

an entry level course, and either passing the class and keeping the CS major, or dropping out of

the class and changing their major from CS to something else. The two loops that the new

student can get stuck in between entering CS150 or other entry level course, and either keeping

or changing majors portrays the problem characteristics.

Figure 1: Current Process Flow (Team Silver, 2017)

LAB 1 - POLYMORPHER 6

As shown in Figure 1, if the new student does not grasp the fundamentals of

programming and seeks outside resources for help, they could get stuck in the first loop. If the

outside resources do not help the individual sufficiently enough to understand the fundamentals

of the class or programming, then there will never be strong enough foundation knowledge to

pass the class. On the other hand, if the new student does not seek outside resources for help then

it is likely that he will also end up failing the class. The student then has the choice of retaking

the course, or not retaking the course. If the course is not retaken, then the student will most

likely drop out of the class or change their major. If the course is retaken, then the student will be

stuck in the second loop of taking CS classes and failing them.

1.3 Solution Characteristics

The solution statement is: “PolyMorpher will address OOP concepts and problem solving

through the use of a Management Simulator and a Tangible User Interface (TUI)” (Team Silver,

2017, 12). A Management Simulator, along with a TUI through a game application, has been

shown to be the best way to teach OOP concepts and problem solving. In addition, games

enhance interest among new learners. The basic nature of game interaction inherently gives

players a more natural way to learn content (Team Silver, 2017). Games also change the learning

style from traditional to more dynamic. One way this is accomplished is by not requiring an

instructor to be present at all times; learning can occur on more fluid, rather than set, schedules.

Games have a significant influence on learning. Poor academics and knowledge

decrement lead to the stigma of video games being detrimental to the learning process. However,

traditional learning through textbooks contributes to low engagement when compared to

interactive media (Team Silver, 2017). According to the Office of Naval Research (ONR), an

LAB 1 - POLYMORPHER 7

average of 56 to 95 percent of people who play a particular game to learn a certain subject

through tests demonstrated a better understanding of that subject (Team Silver, 2017). Thus,

educational games keep the players engaged and promote enhanced concept learning. Figure 2

shows the solution process flow when PolyMorpher is introduced as a supplemental learning

resource.

Figure 2: Solution Process Flow (Team Silver, 2017)

As shown in Figure 2, the outer loop of failing the class and having to choose to retake

the class is eliminated. Once PolyMorpher is introduced, if the student does not understand the

fundamentals of programming or the class, then they can learn and reinforce the concepts

through PolyMorpher and pass the class while keeping the CS major. PolyMorpher essentially

eliminates the likelihood of failing and having to make the choice of retaking the class, dropping

out, or changing majors.

LAB 1 - POLYMORPHER 8

1.4 Current Solutions (Competition)

Today, most programming games use OOP but do not actually teach OOP to the players.

This is a major problem; CS and computer programming can not be fully learned without OOP

concepts and problem solving skills. Table 1 and Table 2 display the various features that are

provided by current programming games and features that will be present in PolyMorpher.

Table 1: Competition Matrix - Part 1 (Team Silver, 2017)

Table 2: Competition Matrix - Part 2 (Team Silver, 2017)

LAB 1 - POLYMORPHER 9

Current programming games do not only require low experience levels, while both using

and teaching OOP, and only focusing on one programming language. PolyMorpher will provide

all these necessary features to create a programming game that will give students a solid

foundation in CS.

PolyMorpher has distinct advantages over the other games listed in Tables 1 and 2.

PolyMorpher is a game application that teaches users the fundamentals of computer

programming and software development. It will teach OOP concepts, problem solving skills, and

a single language; will be developed for multiple platforms, and will have single player

gameplay. PolyMorpher will be a standalone downloadable executable application that requires

no WiFi or Internet connection. Gameplay for players with low programming experience will

allow any type of player to play the game. One programming language will be implemented in

the prototype, but more can be added in the future. Syntax will be a secondary objective,

allowing more focus on OOP concepts and problem solving skills. Single player gameplay is the

best option because multiple player interaction would sacrifice some crucial OOP concepts being

grasped as well.

However, PolyMorpher also has a few disadvantages as compared to the other games

listed in Tables 1 and 2. Most of PolyMorpher’s competition can only be played by players with

middle to high level programming experience. If players have this higher level of experience,

then they might like the competition’s games better than PolyMorpher. The competition focuses

on more than one programming language. This can be an advantage if players are already

experienced in programming and would like to learn other languages. Other games also mainly

teach syntax versus OOP concepts. Some brand new players to programming might need this

LAB 1 - POLYMORPHER 10

emphasis on syntax in order to then learn more in depth concepts later. Some players might like

the multiplayer gameplay rather than the single player gameplay as well.

2 PolyMorpher Product Description

PolyMorpher is a programming game that runs off the player’s machine and allows the

player to play an engaging single player story, while learning the key concepts of CS. The

gameplay offers a user-friendly TUI and incorporates all of the necessary aspects of modern

computer-based games.

2.1 Goals and Objectives

PolyMorpher strives to set its concepts of gameplay and design choices above its

competition. Implementing a more realistic approach to programming games will show players

how programming works in real world applications. This can be done by using relatable and

applicable examples throughout the game. PolyMorpher improves on actually teaching some of

the more complex aspects of programming, like OOP and problem solving. These OOP concepts

are fundamentally explained by combining PolyMorpher’s “Morph” and “API Book”

functionality, as shown in Figure 3. Balancing gameplay and programming is a key goal, or

objective, that PolyMorpher accomplishes. The implementation of the gameplay will not

sacrifice the player’s experience.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 11

Figure 3: CS410 Technical Demonstration #2, By: Casey Batten (Team Silver, 2017)

2.2 Key Product Features and Capabilities

PolyMorpher has many features that contribute to making it one of the best programming

game options. The gameplay is simple, but just complex enough to accurately teach OOP and

problem solving. Professionally made vector art will be used, versus the pixelated art that is used

by some competitors. PolyMorper is a side-scroller style game rather than the top-down style

game. Side-scroller games can implement a wider variety of puzzles than top-down style games.

The key features and capabilities of PolyMorpher are listed in Figure 4.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 12

Figure 4: Key Features & Capabilities of PolyMorpher, By: Joel Stokes (Team Silver, 2017)

The game concept, or basic idea, of the game PolyMorpher is based off of the current

solutions that students are already using. For example, all programming games have some kind

of level structure, objectives/goals, player type, sound bar, health bar, game menu, story,

direction, and help menu. Similarly, in PolyMorpher there is a:

1. Level Structure

2. Objective/Goal

3. Single Player Type

4. Sound Bar

5. Health Bar

6. Game Menu

7. Current Method Plan

8. Help Menu

LAB 1 - POLYMORPHER 13

These features and capabilities can be seen in that order in Figure 5.

Figure 5: Structure of PolyMorpher (Team Silver, 2017)

As shown in Figure 5, all of the listed features from this competitor are present in

PolyMorpher. PolyMorpher has a level structure built into it that starts out with the beginning

levels consisting of purely English, without introducing any programming languages. In the

middle levels, a pseudo-language such as formal pseudo-code is introduced for the player to

begin to learn OOP concepts and problem solving. In the final levels, the player should be ready

to use the desired programming language to complete the game.

PolyMorpher will track certain objectives (goals) that are necessary to progress through

the game. PolyMorpher is a single player game because of the code compilation conflicts

inherent with multiplayer. There will be one sound bar to allow the player to adjust game

volume. Each player will have a health bar. If a player takes enough damage and dies, the player

will lose the level and have to restart. A game menu allows the player to navigate through the

game. It allows the player to enter, exit, save, load, or pause the game. The current method plan

LAB 1 - POLYMORPHER 14

is a prompt that is given so that each player knows what actions need to be performed, as well as

what lines of code need to be typed into the game. Lastly, there is a help menu that pops up if a

player is struggling with getting through a certain task or level. It has a list of different potential

options of code input that might work to solve the puzzle.

2.3 Major Functional Components (Hardware/Software)

 As shown in Figure 6, the major functional components for PolyMorpher are users,

devices, website, executable file, and server with database for all software. A single user or

player can play the game; usually users will be students. The player can play the game through a

compatible device, a desktop or laptop computer with access to the Internet. The player can

navigate to PolyMorpher’s dedicated website, go to the Download tab, and then click the big

Download button to download the entire game as an executable file.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 15

Figure 6: Major Functional Components (Team Silver, 2017)

The player will require a compatible device with the necessary hardware and software

specifications to operate the game. Also, all of the software behind PolyMorpher is hosted on the

CS server at ODU.

There are specific specifications pertaining to the hardware and software of the computer

in order to run the game. For the specific hardware the player has to have to run the game, a

fourth generation i3 Intel Processor is the minimum requirement. With PolyMorpher being a

two-dimensional game style, it will utilize minimal resources. The specific software in order to

LAB 1 - POLYMORPHER 16

run the game is Windows 7, 8, 10, or Linux or MacOS operating system. The software required

to run the game is cross-platformed so that way basically anyone in the world can play it.

Moreover, the physical game of PolyMorpher has to be downloaded from the

PolyMorpher website as an executable file. PolyMorpher was going to be available as a

web-application and an executable downloadable file. Both ways could have been accessed on

the website as different tabs. However, PolyMorpher has to be only a downloadable executable

file because of the modification of source code involved. If PolyMorpher were a web-application

as well, then players could potentially change the source code of their local copy of the game.

3 Identification of Case Study

PolyMorpher is a responsive, educational programming game made with the Unity SDK,

built with C# and JavaScript, and released on behalf of ODU. It is perfect for middle and high

school teachers and students as an introduction to programming concepts. PolyMorpher is also

readily available to beginning programmers outside of a school environment. It will be created in

order to introduce programming to new students, while minimizing the intimidating nature of

coding.

3.1 End Users: Students

The initially targeted end users for PolyMorpher are students who are currently enrolled

in the CS degree program at ODU. Since the game was made by a team of students currently in

the CS degree program at ODU, the game would be partially owned by ODU and therefore sold

by ODU. After students at ODU begin to utilize PolyMorpher, ODU might make the decision to

sell the game to other universities, colleges, or educational institutions. PolyMorpher is also

LAB 1 - POLYMORPHER 17

made for anyone who is generally interested in programming, outside of the CS department or at

ODU.

3.2 Target Customers: Old Dominion University

Similar to the end users, the initially targeted customer for PolyMorpher is ODU. Since

the game was made at ODU by students in the CS department, ODU will be the first targeted

customer. PolyMorpher could also be sold to other universities, colleges, or educational

institutions that currently offer a CS degree program. Middle or high school teachers might be

interested in buying a license to PolyMorpher for their classes. PolyMorpher is also targeted

towards anyone seeking to gain more knowledge in computer programming, OOP concepts, and

problem solving skills.

3.3 Reasons for Creating PolyMorpher for Students

Recent statistics show that students in the CS degree program at ODU are in decreasing

class sizes as they progress from the lower level to the upper level CS classes. Some of this

decrease in class size may be due to the fact that some of the lower level CS classes are required

for other majors as well as CS wherein the higher level CS classes are only required for CS

degrees. However, there is still a significant decrease in class size when the focus is only on CS

students. PolyMorpher is going to help balance and lessen this decrease in class size as CS

students progress through their CS degree.

Reiterating the Problem Statement, students are in desperate need of a supplemental

resource that will teach them the programming skills needed to pass CS classes at ODU. Once

PolyMorpher is introduced to students, there will be a drastic reduction in situations where they

do not understand the basic fundamentals of CS, fail CS classes, drop out, or switch majors.

LAB 1 - POLYMORPHER 18

In addition, there is a “Student Progression Dilemma” at ODU. Students are not

following the CS course series in the expected order. The collected data provides purpose behind

the need to reassess methods of assisting students’ progress in how they learn the topics at hand.

The provided data also shows exactly when during the learning process that this assistance would

be most effective. Changes in class volume could indicate that students are leaving the CS major

for less programming intensive fields (Team Silver, 2017).

Furthermore, there is a significant decline in enrollment of students who progress from

the classes CS150 to CS250, and then continue on to the classes CS330, CS361, and CS350 at

ODU. This decline in enrollment may be directly related to differing major requirements and

course overlap. However, the decrease in student body is still significant enough to warrant a

deeper look into later classes in the major path. In addition, decreasing class sizes show a steady

decline in CS course enrollments as course level difficulty advances (Team Silver, 2017). These

decreases may be indicative of students either dropping out of the CS program or changing

majors. The Student Progression Dilemma statistics from the ODU Factbook are displayed in

Figure 7 as a pie graph.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 19

Figure 7: Student Progression Dilemma - Pie Chart (Team Silver, 2017)

Figure 7 further shows the breakdown of the total number of students from 2014 to 2017

in CS classes at ODU. According to the ODU Factbook, from 2012 to 2016 the number of

undergraduate CS majors increased from 284 to 429 (Team Silver, 2017). This shows the high

demand in the CS degree path at ODU. From 2014 to 2015 there were roughly 672 students

enrolled in CS150, compared to only about 327 students enrolled in CS250 from 2015 to 2016

(Team Silver, 2017). In the years of 2016 to 2017, there were roughly only 199 students enrolled

in CS361, 180 students enrolled in CS330, and 182 students enrolled in CS350. Figure 7 displays

these statistics in the form of percentages to emphasize the impact of decreasing course sizes.

The “white noise” of students progressing from the classes CS150 to CS250 at ODU has

to be accounted for. There is a less dramatic decrease in course sizes than initially thought from

the CS courses that are requirements for other majors. For example, CS150 is the first course that

CS majors have to take and is considered a “service course” by ODU. This means that it is also

required to be taken by Physics, Math, Engineering, and Mod-Simulation majors (Team Silver,

2017). CS250 is required to be taken by CS, Mod-Simulation, and Computer and Electrical

LAB 1 - POLYMORPHER 20

Engineering majors. CS330 is required to be taken by CS and Mod-Simulation majors. CS361 is

required to be taken by CS and Computer and Electrical Engineering majors. Lastly, CS350 is

required to be taken by CS and Computer Engineering majors (Team Silver, 2017). Table 3

further displays the Student Progression Dilemma taking into account the “white noise” of

overlapping different majors.

Table 3: Student Progression Dilemma - Table & Graph (Team Silver, 2017)

As shown from Table 3, the approximated student headcount of the core student body for

CS majors is significantly less than when also considering the “white noise” from course

overlap. Again, the values with the “white noise” from course overlap are shown in Figure 7.

The core student body from 2014 to 2017 consists of approximately 300 students in CS150, 200

students in CS250, 175 students in CS361, 180 students in CS330, and 178 students in CS350.

As evidenced above, only CS150 and CS250 are drastically affected by the “white noise” from

course overlap.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 21

4 PolyMorpher Prototype Description

The primary goal of the PolyMorpher prototype is to provide a working demonstration of

the PolyMorpher product. This is accomplished by implementing only the necessary components

and features of the full product.

4.1 Prototype Architecture (Hardware/Software)

PolyMorpher prototype architecture will be identical to that found in the completed

product.

4.2 Prototype Features and Capabilities

The PolyMorpher prototype will be compatible with virtually all operating systems:

Windows, Linux, and MacOS. Both the completed product and the prototype will be able to be

downloaded off the PolyMorpher website.

A summary of the PolyMorpher prototype deliverable features can be seen in Tables 4

and 5. The primary differences between PolyMorpher’s completed product and its prototype are

displayed in Table 5.

Table 4: Key for Features of the Complete Product versus the Prototype (Team Silver, 2017)

[This space intentionally left blank]

LAB 1 - POLYMORPHER 22

Table 5: Features of the Complete Product versus the Prototype (Team Silver, 2017)

Table 5 shows that the prototype will not be implementing multiple programming

languages as alternative programming languages for the player to use and learn in-game. It will

not be implementing the multiplayer gameplay feature of experience being geared toward

multiple players interacting with the game’s environment simultaneously. The prototype also

will not be implementing the ability to access and play the game through a web-application;

instead, a downloadable executable file will be available for game access. The features that will

only partially be implemented are the player-made content, along with the sandbox level. These

features allow the player to share custom levels with other players. A sandbox level is defined as

an open level where the player has access to all tools at once and can build their own level

sequences and puzzles. All else will be fully implemented.

LAB 1 - POLYMORPHER 23

Algorithms are the foundation that make up the PolyMorpher prototype features and

capabilities. All of the puzzles that teach OOP and problem solving concepts are created and

implemented with the algorithms used in the game. The software iterations of the algorithms

used in the game are Core, API Book, and Compiler Algorithms. Extensive game testing will

also be done in order to insure that the game is ready for the players.

To begin, the Core Algorithm is used as an overview of the other two algorithms that

make up the PolyMorpher “Morph” function: API Book Algorithm and Compiler Algorithm.

The Core Algorithm is a UI level algorithm that provides the functionality to modify the

identified editable objects in the game. It determines the base tools at the player’s disposal. It

also divides the gameplay into distinct sections in order to move past levels and beat the game

(Team Silver, 2017). The distinct sections include: interaction through UI elements/object

selection, information provision through access to the API Book Algorithm, and alteration

through the Compiler Algorithm. The dataflow algorithm for the Core Algorithm is displayed in

Figure 8.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 24

Figure 8: Dataflow Algorithm - Core Algorithm (Team Silver, 2017)

Next, the API Book Algorithm describes the functionality of PolyMorpher’s “API Book”

button in the game. The API Book Algorithm acts as the primary method of information

distribution from game designer to player (Team Silver, 2017). It interacts directly with the

Compiler Algorithm by determining the knowledge base the player has to exploit in the

Compiler Algorithm. It also directly influences the outcome of the gameplay/challenges by

offering the player a multitude of tools to interact with their environment (Team Silver, 2017).

The dataflow algorithm for the API Book Algorithm is displayed in Figure 9.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 25

Figure 9: Dataflow Algorithm - API Book Algorithm (Team Silver, 2017)

The Compiler Algorithm allows the player to write custom scripts in order to morph

certain objects to progress in PolyMorpher. The Compiler Algorithm controls and continuously

affects the back-end system of the game itself. It directly determines the behavior of objects in

the game’s environments at a fundamental level (Team Silver, 2017). It is also responsible for

the amount of control and open design power the player is granted during gameplay. The

Compiler Algorithm is, in fact, co-dependant on the API Book Algorithm. This is based on the

tools the player is likely to find there to use within the Compiler Algorithm’s in-game

dependencies (Team Silver, 2017). The dataflow algorithm for the Compiler Algorithm is

displayed in Figure 10.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 26

Figure 10: Dataflow Algorithm - Compiler Algorithm (Team Silver, 2017)

As shown in Figure 10, the Compiler Algorithm has some key components that need to

be defined in order to be fully understood. The Streaming Assets Directory, Code Compiler

Directory, LoadScripts.cs, ScriptBundleLoader.cs, and Coding Interface are all key components

of the Compiler Algorithm. The Streaming Assets Directory is a file directory where all scripts

accessible to the player via the in-game Coding Interface are stored and organized according to

level and programming concept relevance (Team Silver, 2017). It is unique in that it is one of the

few source file directories that are accessible to the player in the Unity Engine.

Moreover, the Code Compiler Directory is a file directory holding the portable compiler

and associated companion files. Both of these are used to manipulate the scripts in the Streaming

Assets Directory (Team Silver, 2017). LoadScripts.cs is a file that manages files accessed by the

entire portable compilation system by identifying which script is currently in focus as the

LAB 1 - POLYMORPHER 27

“source” script for any selected object in the game (Team Silver, 2017). This file is pulled from

the Streaming Assets Directory and passed to the ScriptBundleLoader.cs file for compilation.

The ScriptBundleLoader.cs file takes scripts passed off from the LoadScripts.cs file and

marks them for compilation, setting up the Assembler and Compiler and running the selected

scripts through them. Any compilation errors will cause an error report to be sent out through the

Unity Error and Log files; otherwise, the script will be attached to whichever game object was

selected (Team Silver, 2017). The Coding Interface is an in-game GUI accessible to the player

that pulls specified scripts from the Streaming Assets Directory for them to edit and compile

using the portable compiler from the Code Compiler Directory.

4.3 Prototype Development Challenges

PolyMorpher prototype development challenges consist of design continuity, difficulty

debugging, playtesting, maintaining player engagement, teaching enough, and game testing.

Game testing is the main development challenge that is focused on. The particular aspects to the

game testing are to test the: API Book in-game application, compiling of user-input source code,

and effectiveness of the TUI and gameplay (Team Silver, 2017). An Alpha Test will include

closed testing conducted by Team Silver such that the API Book is the focus. A Beta Test will

include open testing conducted by ODU faculty such that the compiling, TUI, and gameplay are

the focus.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 28

4.4 Risk Matrix/Risk Mitigation

The Risk Matrix and Risk Description for PolyMorpher is displayed in Table 6. The red

color represents a high and very high impact and probability of the risk. The yellow color

represents a medium impact and probability of the risk. The green color represents a low and

very low impact and probability of the risk.

Table 6: Risk Matrix & Risk Description - Customer & Technical Risks (Team Silver, 2017)

The customer risks include: user gets lost, dissatisfied user, and insufficient content/time.

The user gets lost risk deals with a user that gets stuck and does not know what to do in the

game. Usually, this type of user has a low level of technical experience in programming. This

risk has a medium probability and a low impact. The mitigation for this risk is to include

sufficient resources and hints in the gameplay so as to enable the user to effectively learn the

material (Team Silver, 2017). The dissatisfied user risk deals with a user that simply dislikes the

user interface (UI/UX). This risk has a low probability and a high impact. The mitigation for this

risk is to make the UI/UX design enhance an approachable interface, have various menu options,

LAB 1 - POLYMORPHER 29

and include an interface that will incorporate clear objects throughout each level (Team Silver,

2017). The insufficient content/time risk deals with not having enough content/time in order to

successfully pass introductory CS classes. This risk has a high probability and a high impact as

well. The mitigation for this risk is to use play testing to optimize the pacing and content of the

game (Team Silver, 2017).

The technical risks include: user implements bad code, insufficient hardware, critical

software bugs, and insufficient API support. The user implements bad code risk deals with the

user implementing bad code that crashes the game, either because of their own error or because

of a malicious post on a forum. This risk has a medium probability and a very high impact. The

mitigation for this risk is currently under evaluation by Team Silver; Team Silver has identified a

few potential solutions, but is still actively looking for one central solution. The most promising

mitigations include: sandboxing the game, making the game a downloadable executable file,

making the game single player, giving players a way to “reset” the level, scanning players’ code

for known malicious content/code, and providing an official online guide on PolyMorpher’s

website with code solutions that are “safe” (Team Silver, 2017).

The insufficient hardware risk deals with the user not having the sufficient hardware to

run the game. This risk has a low probability and a medium impact. The mitigation for this risk is

to implement a two-dimensional gameplay style that will have a minimal draw on the computer’s

resources (Team Silver, 2017). The critical software bugs risk deals with the occurrence of

possible critical software bugs in the game. This risk has a low probability and a high impact.

The mitigation for this risk is to continuously test the software through gameplay and ensure that

all possible interactions work appropriately and optimally (Team Silver, 2017). The insufficient

LAB 1 - POLYMORPHER 30

API support risk deals with potential insufficient API support for the game through a help or aid

functionality. This risk has a medium probability and a very high impact. The mitigation for this

risk is for the built-in API to have all the necessary tools to help the user refer to the specific

code syntax and OOP concepts that they need to learn to get through the levels of the game

successfully (Team Silver, 2017).

5 PolyMorpher Development Pipeline

The software requirements for the development of PolyMorpher include the C#

programming language, Unity SDK, third-party libraries and APIs like Mono and Microsoft C#

Code Compiler, Gitlab, and Sourcetree acting as the development source control. The software

requirements for production of PolyMorpher include the Unity SDK, Windows 7, 8, 8.1, 10, any

Linux, and any MacOS operating systems.

5.1 Unity Software

Unity is the game engine that is used to create PolyMorpher. Unity is a flexible UI and

developer workflow system. It allows users to develop a product efficiently, without reinventing

common game development processes (Team Silver, 2017). Unity has essential tools for

software game development already built in. For instance, MonoDevelop IDE and support for

multiple platforms and build environments is built into Unity. Unity uses the C# programming

language; C# is also the most flexible and powerful out-of-the-box programming language that

Unity supports. Developer support is available through Unity’s Scripting API website (Team

Silver, 2017). This includes code examples and complex breakdowns of Unity specific

functionality within C#.

LAB 1 - POLYMORPHER 31

5.2 Sourcetree Software

Sourcetree is a free git client for Windows and MacOS operating systems. It uses PuTTY

to interface with Gitlab in order to manage the version control for PolyMorpher. PuTTY is a

Pageant client that communicates with Gitlab, which is an online git repository manager, that

continuously runs in the background.

5.3 Version Control

The version control components for PolyMorpher consist of Unity, Sourcetree, PuTTY,

and Gitlab all working together. Figure 11 is the version control flow diagram for PolyMorpher

that shows how all these constituents work together.

Figure 11: Version Control Flow Diagram (Team Silver, 2017)

LAB 1 - POLYMORPHER 32

The Gitlab master branch is where the most up-to-date version of PolyMorpher is located.

Only code that is extensively tested and validated by the entire team is allowed to be committed

and pushed to this branch.

5.4 Development Model

Figure 12 displays the life cycle of the development model used to create PolyMorpher:

the Agile Development Model. For example, the development of PolyMorpher was “kicked off”

with one person of the team developing, testing, and demonstrating a prototype of the game to

the team. If the team likes the prototype enough, then the team can vote to use it as the version to

be deployed as the final product. Otherwise, another member of the team would have to begin

developing another prototype, and the cycle continues.

Figure 12: Agile Development Model (Team Silver, 2017)

5.5 Work Management

The development of PolyMorpher is broken down into three separate groups of three

team members each from within Team Silver. Each group will work on two topics in order to

create the complete game of PolyMorpher. The topics of Abstraction and Tutorial Mechanics,

LAB 1 - POLYMORPHER 33

Encapsulation and Polymorphism, Tutorial Code and Inheritance will be completed before

deployment of PolyMorpher.

[This space intentionally left blank]

LAB 1 - POLYMORPHER 34

Glossary

API: Application Program Interface

Computer: a programmable electronic device designed to accept data, perform prescribed

mathematical and logical operations at high speed, and display the results of these

operations

Computer Programming: a process that leads from an original formulation of a computing

problem to executable computer programs

Computer Science (CS): the science that deals with the theory and methods of processing

information in digital computers, the design of computer hardware and software, and the

applications of computers

Design: an outline, sketch, or plan, as of the form and structure of a work of art, an edifice, or a

machine to be executed or constructed

Git: version control system for tracking changes in computer files and coordinating work on

those files among multiple people

GitLab: web-based git repository manager the includes wiki and issue tracking

Gradle: an open-source build automation system that was designed for multi-project builds

GUI: Graphical User Interface

JavaScript: a programming language commonly used in web development where the the code is

processed by the client’s browser

Management Simulator: a way to simulate the management of a game in an organized fashion

MySQL: an open source multi-user database management system

Non-Technical Game: user-friendly gameplay able to be utilized by non-technical users

LAB 1 - POLYMORPHER 35

Non-Technical User: user who lacks formal education or knowledge in computer science,

computer programming, object-oriented programming, or problem solving skills

Object-Oriented Programming (OOP): A schematic paradigm for computer programming in

which the linear concepts of procedures and tasks are replaced by the concepts of objects

and messages

ODU: Abbreviation for Old Dominion University

Platform: an integrated set of packaged and custom applications tied together with middleware

PolyMorpher: a programming game that focuses strictly on teaching OOP and problem solving

skills

Problem Solving: the process of finding solutions to difficult or complex issues

Programming Game: a video game which incorporates elements of computer programming

into the game, which enables the player to direct otherwise autonomous units within the

game to follow commands in a domain-specific programming language

Regression Testing: a type of application testing that determines if modifications to the

application have altered the application negatively

Software Development Kit (SDK): a set of software development tools that allows the creation

of applications for a certain software package

Student Involvement: the amount of physical energy students exert and the amount of

psychological energy they put into their college experience

Student Progression Dilemma: the problem of CS majors at ODU not advancing through the

CS course schedule in order to graduate with a CS degree

TUI: Tangible User Interface

LAB 1 - POLYMORPHER 36

Ubuntu: open-source Linux operating system

Unity: a popular game development platform

User-Friendly: easy to comprehend by non-technical users

Virtual Machines: emulations of computer systems that provide functionalities of physical

computers

Web Application: a client-server computer program in which the client (including the user

interface and client-side logic) runs in a web browser

Wiki: a website on which users collaboratively modify content and structure directly from the

web browser

[This space intentionally left blank]

LAB 1 - POLYMORPHER 37

References

12 Free Games to Learn Programming. (2016, April 25). In Mybridge. Retrieved from

https://medium.mybridge.co/12-free-resources-learn-to-code-while-playing-games-f7333

043de11

Batten, C. (Narrator). (2017). CS410 Dungeon Escape Demo (Short Version) [Online video].

Online: YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (Narrator). (2017). CS410 Project Dungeon Demo [Online video]. Online: YouTube.

Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (2017, November 21). CS410 Tech Demo 2 (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, November 29). VersionControlFlow. In draw.io. Retrieved December 21,

2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%221IQj6SYJqC6YLAK_

qMRVIQkHiUmr9laBu%22%5D,%22action%22:%22open%22,%22userId%22:%22108

692003133590583047%22%7D#G1IQj6SYJqC6YLAK_qMRVIQkHiUmr9laBu

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Play Now). In PolyMorpher.

Retrieved from http://www.cs.odu.edu/~410silver/references.html

Edraw. (2017, May 12). Standard Flowchart Symbols and Their Usage. In Edraw Visualization

Solutions. Retrieved from https://www.edrawsoft.com/flowchart-symbols.php

LAB 1 - POLYMORPHER 38

Everitt, C. (2017, September 6). Current Process Flow. In draw.io. Retrieved December 21,

2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B-5KdQEdqLUPd

nBFUnp2V05uMEE%22%5D,%22action%22:%22open%22,%22userId%22:%22108692

003133590583047%22%7D#G0B-5KdQEdqLUPdnBFUnp2V05uMEE

Everitt, C., & Dang, D. (2017, September 24). currentProcessFlow. In draw.io. Retrieved

December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B3Bc9

5zBWXg9TFZ6X0FMU1NTdEk%22%5D,%22action%22:%22open%22,%22userId%22

:%22108692003133590583047%22%7D#G0B3Bc95zBWXg9TFZ6X0FMU1NTdEk

Everitt, C., Santos, K. & DeArce, N. (2017, November 27). Work Breakdown Structure (WBS).

In draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%

220B-5KdQEdqLUPWnNoSHhIUGg2OTQ%22%5D,%22action%22:%22open%22,%22

userId%22:%22108692003133590583047%22%7D#G0B-5KdQEdqLUPWnNoSHhIUG

g2OTQ

Everitt, C., Santos, K. & DeArce, N. (2017, October 13). ProcessFlowDiagram_silver. In

draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B

_xBnZ1ge4PlZTVjV3h6Y2pGSWc%22%5D,%22action%22:%22open%22,%22userId%

22:%22108692003133590583047%22%7D#G0B_xBnZ1ge4PlZTVjV3h6Y2pGSWc

Few, S. (2008, February 5). Practical Rules for Using Color in Charts. In Perceptual Edge.

Retrieved from http://www.perceptualedge.com/articles/visual_business_intelligence/

LAB 1 - POLYMORPHER 39

Rules_for_using_color.pdf

Kennedy, T. (2017, September 6). kennedyData. In Google Drive. Retrieved from

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

O'Neill, M. (2017, March 6). Computer Science Before College. In Computer Science Online.

Retrieved from https://www.computerscienceonline.org/cs-programs-before-college/

Riley, P. (2017, September 14). Using Games to Introduce Programming to Students

[PowerPoint slides]. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Santos, K., Riley, P. & Dang, D.(2017. December 7) Risk matrix and description tables in

Design Presentation. Retrieved from

https://docs.google.com/presentation/d/1oY9lkSAHvg2OIR

kljYJNZWCqVTbiw45STKglsJUQjJI/edit#slide=id.g283e74317a_0_177

Stokes, J. (Narrator). (2017). CS410 Programming Game Pitch [Online video]. Online:

YouTube. Retrieved from

https://www.youtube.com/watch?v=QBvgzFgZaOQ&feature=youtu.be

Stokes, J. (2017, October 9). CS410 Programming Game Pitch (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Team Silver. (2017, December 13). Prototype PowerPoint Presentation. In PolyMorpher.

Retrieved from https://docs.google.com/presentation/d/e/2PACX-1vSidnjCKAu

VEtKshHkyO7A-OfW3qWIKRkxcp0em412WwL1ig6SFmnqrMUyHr8-FMvzvaRjmcK

YiCytq/pub?start=false&loop=false&delayms=3000&slide=id.g25ab9a9d23_0_1542

Team Silver. (2017, November 21). Design PowerPoint Presentation. In PolyMorpher. Retrieved

from https://docs.google.com/presentation/d/e/2PACX-1vSllslBDmSvRfMI9nbrp0R

LAB 1 - POLYMORPHER 40

mRaPRsHNz7YWDfKNiF5sg15cp7ycQ774MuMgm4G4qhR6hohTiUQrrjRdo/pub?start

=false&loop=false&delayms=3000&slide=id.g25ab9a9d23_0_1542

Team Silver. (2017, October 25). Feasibility PowerPoint Presentation. In PolyMorpher.

Retrieved from https://docs.google.com/presentation/d/e/2PACX-1vReG6Sodx-

gVFro1ByYMOYHSyiSRiU5HW-Su-PyMVGO8F4CQ7pY49tB_pJecVApruksoGaP_00

ozhmR/pub?start=false&loop=false&delayms=3000&slide=id.g25ab9a9d23_0_1542

“The Benefits of Video Games.” abcnews (2011, December 26). Retrieved October 19, 2017,

from http://abcnews.go.com/blogs/technology/2011/12/the-benefits-of-video-games/

Good-Morning-America

Unity Technologies. (2017, August 10). Company Facts. In Unity. Retrieved from

https://unity3d.com/public-relations

Unity. (2016, July 6). Unity - Scripting API. In Unity. Retrieved December 21, 2017, from

https://docs.unity3d.com/530/Documentation/ScriptReference/index.html

Unity. (2017, October 11). Asset Store. In Unity. Retrieved December 21, 2017, from

https://www.assetstore.unity3d.com/en/

