
Running head: LAB II - POLYMORPHER 1

Lab II - PolyMorpher Prototype Product Specification

Colten S. Everitt

Team Silver

Old Dominion University

CS411W

Professor Thomas Kennedy

28 February 2018

Version 2

Author Note

Colten S. Everitt, Department of Computer Science, Old Dominion University.

This research was done under the supervision and guidance of Thomas Kennedy.

Correspondence concerning this article should be addressed to Colten Everitt,

Department of Computer Science, Old Dominion University, Norfolk, VA 23529.

Contact: cever015@odu.edu

LAB II - POLYMORPHER 2

Table of Contents

1 Introduction 3
1.1 Purpose 3
1.2 Scope 4
1.3 Definitions, Acronyms, and Abbreviations 6
1.4 References 9
1.5 Overview 13

2 General Description 13
2.1 Prototype Architecture Description 14
2.2 Prototype Functional Description 15
2.3 External Interfaces 17

2.3.1 Hardware Interface 17
2.3.2 Software Interface 17
2.3.3 User Interface 18
2.3.4 API Book Interface 19
2.3.5 Compiler Interface 20

3 Specific Requirements 21

Appendix 22

List of Figures

Figure 1: Major Functional Components Diagram - Prototype Version 15
Figure 2: Rapid Prototype Technical Demo of PolyMorpher, By: Joel Stokes 18
Figure 3: Dataflow Algorithm - API Book Algorithm (Team Silver, 2017) 19
Figure 4: CS410 Technical Demonstration #2, By: Casey Batten (Team Silver, 2017) 20
Figure 5: Dataflow Algorithm - Compiler Algorithm (Team Silver, 2017) 21

List of Tables

Table 1: Key for Features of the Complete Product versus the Prototype 16
Table 2: Features of the Complete Product versus the Prototype (Team Silver, 2017) 16

LAB II - POLYMORPHER 3

Lab 2 - PolyMorpher Product Specification

1 Introduction

PolyMorpher is a programming game and outside resource solution for undergraduate

(predominately first-year) Computer Science (CS) students at Old Dominion University (ODU).

Object-Oriented Programming (OOP) and problem solving skills will be taught throughout the

game to increase the probability of a CS student passing introductory CS classes, with the end

goal of that student graduating with at least a bachelor’s degree in CS. PolyMorpher is a

downloadable executable file that is run with a Management Simulator to a Tangible User

Interface (TUI). The programming game is currently being developed using the Unity Software

Development Kit (SDK) with the C# and JavaScript programming languages.

1.1 Purpose

PolyMorpher is a programming game that runs off the player’s machine and allows the

player to play an engaging single player story, while learning the key concepts of CS. The

gameplay offers a user-friendly TUI and incorporates all of the necessary aspects of modern

computer-based games.

The initially targeted end users for PolyMorpher are students who are currently enrolled

in the CS degree program at ODU. Since the game will be made by a team of students currently

in the CS degree program at ODU, the game will be partially owned by ODU and therefore sold

by ODU. After students at ODU begin to utilize PolyMorpher, ODU might make the decision to

sell the game to other universities, colleges, or educational institutions. PolyMorpher is also

made for anyone who is generally interested in programming, outside of the CS department or at

ODU.

LAB II - POLYMORPHER 4

Similar to the end users, the initially targeted customer for PolyMorpher is ODU. Since

the game was made at ODU by students in the CS department, ODU will be the first targeted

customer. PolyMorpher could also be sold to other universities, colleges, or educational

institutions that currently offer a CS degree program. Middle or high school teachers might be

interested in buying a license to PolyMorpher for their classes. PolyMorpher is also targeted

towards anyone seeking to gain more knowledge in computer programming, OOP concepts, and

problem solving skills.

1.2 Scope

Programming is intimidating for the uninitiated. As a result, first time ODU programming

students drop out or switch majors. Existing tools fail to teach OOP concepts and problem

solving skills. Extensive evidence that a significant section of first time ODU CS students are

struggling with programming is shown in the Appendix (Section 3.3 Reasons for Creating

PolyMorpher for Students). The current CS curriculum at ODU is failing to teach OOP concepts

and problem solving skills effectively enough for students to truly understand them. These

students might try to look for outside resources aside from what ODU provides, end up not

finding any, and then fail classes, or worst case switch majors or drop out of college altogether.

Today, most programming games use OOP but do not actually teach OOP to the players.

This is a major problem; CS and computer programming can not be fully learned without OOP

concepts and problem solving skills. Current programming games do not only require low

experience levels, while both using and teaching OOP, and only focusing on one programming

language. PolyMorpher will provide all these necessary features to create a programming game

that will give students a solid foundation in CS.

LAB II - POLYMORPHER 5

PolyMorpher will address OOP concepts and problem solving through the use of a

Management Simulator and a Tangible User Interface (TUI). A Management Simulator, along

with a TUI through a game application, has been shown to be the best way to teach OOP

concepts and problem solving. In addition, games enhance interest among new learners. The

basic nature of game interaction inherently gives players a more natural way to learn content.

Games also change the learning style from traditional to more dynamic. One way this is

accomplished is by not requiring an instructor to be present at all times; learning can occur on

more fluid, rather than set, schedules.

[This space intentionally left blank]

LAB II - POLYMORPHER 6

1.3 Definitions, Acronyms, and Abbreviations

API: Application Program Interface - A tool for assisting developers in creating

applications

API Book:​ ​A list of functions that the player can reference and use in their code

API Index:​ ​The menu where the user can decide rather they see the API of suggested

functions for their level or all functions suggested to be used in the entire game

Assets: Game assets include every object that can go into a game, including 3D models,

sprites, sound effects, music, code snippets and modules, and even complete

projects that can be used by a game engine.

Coding Interface: The in-game IDE where the user writes their scripts

Computer: a programmable electronic device designed to accept data, perform prescribed

mathematical and logical operations at high speed, and display the results of these

operations

Computer Programming: a process that leads from an original formulation of a

computing problem to executable computer programs

Computer Science (CS): the science that deals with the theory and methods of processing

information in digital computers, the design of computer hardware and software,

and the applications of computers

Design: an outline, sketch, or plan, as of the form and structure of a work of art, an

edifice, or a machine to be executed or constructed

Git:​ ​version control system for tracking changes in computer files and coordinating work

on those files among multiple people

LAB II - POLYMORPHER 7

GitLab:​ web-based git repository manager the includes wiki and issue tracking

Gradle:​ ​an open-source build automation system that was designed for multi-project

builds

GUI: Graphical User Interface - A graphical display for users of electronics to interact

with the content displayed

JavaScript:​ ​a programming language commonly used in web development where the the

code is processed by the client’s browser

Management Simulator: a way to simulate the management of a game in an organized

fashion

MySQL:​ ​an open source multi-user database management system

Non-Technical Game: user-friendly gameplay able to be utilized by non-technical users

Non-Technical User: user who lacks formal education or knowledge in computer science,

computer programming, object-oriented programming, or problem solving skills

Object-Oriented Programming (OOP): A schematic paradigm for computer programming

in which the linear concepts of procedures and tasks are replaced by the concepts

of objects and messages

ODU​:​ ​Abbreviation for Old Dominion University

Platform:​ ​an integrated set of packaged and custom applications tied together with

middleware

PolyMorpher: a programming game that focuses strictly on teaching OOP and problem

solving skills

Problem Solving: the process of finding solutions to difficult or complex issues

LAB II - POLYMORPHER 8

Programming Game: a video game which incorporates elements of computer

programming into the game, which enables the player to direct otherwise

autonomous units within the game to follow commands in a domain-specific

programming language

Regression Testing: a type of application testing that determines if modifications to the

application have altered the application negatively

Software Development Kit (SDK): a set of software development tools that allows the

creation of applications for a certain software package

Student​ ​Involvement:​ ​the amount of physical energy students exert and the amount of

psychological energy they put into their college experience

Student Progression Dilemma: the problem of CS majors at ODU not advancing through

the CS course schedule in order to graduate with a CS degree

TUI: Abbreviation for Tangible User Interface

Ubuntu:​ ​open-source Linux operating system

Unity: a popular game development platform

User-Friendly: easy to comprehend by non-technical users

Virtual​ ​Machines:​ ​emulations of computer systems that provide functionalities of

physical computers

Web Application: a client-server computer program in which the client (including the

user interface and client-side logic) runs in a web browser

Wiki:​ ​a website on which users collaboratively modify content and structure directly

from the web browser

LAB II - POLYMORPHER 9

1.4 References

12 Free Games to Learn Programming. (2016, April 25). In Mybridge. Retrieved from

https://medium.mybridge.co/12-free-resources-learn-to-code-while-playing-game

s-f7333043de11

Batten, C. (Narrator). (2017). CS410 Dungeon Escape Demo (Short Version) [Online

video]. Online: YouTube. Retrieved from https://www.youtube.com/watch?v=

ynhdd1IKgps

Batten, C. (Narrator). (2017). CS410 Project Dungeon Demo [Online video]. Online:

YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (2017, November 21). CS410 Tech Demo 2 (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, November 29). VersionControlFlow. In draw.io. Retrieved December

21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%2

21IQj6SYJqC6YLAK_qMRVIQkHiUmr9laBu%22%5D,%22action%22:%22ope

n%22,%22userId%22:%22108692003133590583047%22%7D#G1IQj6SYJqC6Y

LAK_qMRVIQkHiUmr9laBu

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/

references.html

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Play Now). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

LAB II - POLYMORPHER 10

Edraw. (2017, May 12). Standard Flowchart Symbols and Their Usage. In Edraw

Visualization Solutions. Retrieved from https://www.edrawsoft.com/flowchart-

symbols.php

Everitt, C. (2017, September 6). Current Process Flow. In draw.io. Retrieved December

21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B

-5KdQEdqLUPdnBFUnp2V05uMEE%22%5D,%22action%22:%22open%22,%2

2userId%22:%22108692003133590583047%22%7D#G0B-5KdQEdqLUPdnBFU

np2V05uMEE

Everitt, C., & Dang, D. (2017, September 24). currentProcessFlow. In draw.io. Retrieved

December 21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B

%220B3Bc95zBWXg9TFZ6X0FMU1NTdEk%22%5D,%22action%22:%22open

%22,%22userId%22:%22108692003133590583047%22%7D#G0B3Bc95zBWX

g9TFZ6X0FMU1NTdEk

Everitt, C., Santos, K. & DeArce, N. (2017, November 27). Work Breakdown Structure

(WBS). In draw.io. Retrieved December 21, 2017, from https://www.draw.io/?

state=%7B%22ids%22:%5B%220B-5KdQEdqLUPWnNoSHhIUGg2OTQ%22%

5D,%22action%22:%22open%22,%22userId%22:%22108692003133590583047

%22%7D#G0B-5KdQEdqLUPWnNoSHhIUGg2OTQ

Everitt, C., Santos, K. & DeArce, N. (2017, October 13). ProcessFlowDiagram_silver. In

draw.io. Retrieved December 21, 2017, from https://www.draw.io/?state=

%7B%22ids%22:%5B%220B_xBnZ1ge4PlZTVjV3h6Y2pGSWc%22%5D,%22a

LAB II - POLYMORPHER 11

ction%22:%22open%22,%22userId%22:%22108692003133590583047%22%7D

#G0B_xBnZ1ge4PlZTVjV3h6Y2pGSWc

Few, S. (2008, February 5). Practical Rules for Using Color in Charts. In Perceptual

Edge. Retrieved from http://www.perceptualedge.com/articles/visual_business

_intelligence/Rules_for_using_color.pdf

Kennedy, T. (2017, September 6). kennedyData. In Google Drive. Retrieved from

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NE

E

O'Neill, M. (2017, March 6). Computer Science Before College. In Computer Science

Online. Retrieved from https://www.computerscienceonline.org/cs-programs-

before-college/

Riley, P. (2017, September 14). Using Games to Introduce Programming to Students

[PowerPoint slides]. Retrieved from http://www.cs.odu.edu/~410silver/

references.html

Santos, K., Riley, P. & Dang, D.(2017. December 7) Risk matrix and description tables in

Design Presentation. Retrieved from https://docs.google.com/presentation/d/

1oY9lkSAHvg2OIRkljYJNZWCqVTbiw45STKglsJUQjJI/edit#slide=id.g283e74

317a_0_177

Stokes, J. (Narrator). (2017). CS410 Programming Game Pitch [Online video]. Online:

YouTube. Retrieved from https://www.youtube.com/watch?v=QBvgzFgZaOQ&

feature=youtu.be

LAB II - POLYMORPHER 12

Stokes, J. (2017, October 9). CS410 Programming Game Pitch (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/

references.html

Team Silver. (2017, December 13). Prototype PowerPoint Presentation. In ​PolyMorpher​.

Retrieved from https://docs.google.com/presentation/d/e/2PACX-1vSidnjCKAu

VEtKshHkyO7A-OfW3qWIKRkxcp0em412WwL1ig6SFmnqrMUyHr8-FMvzva

RjmcKYiCytq/pub?start=false&loop=false&delayms=3000&slide=id.g25ab9a9d

23_0_1542

Team Silver. (2017, November 21). Design PowerPoint Presentation. In ​PolyMorpher​.

Retrieved from https://docs.google.com/presentation/d/e/2PACX-1vSllslBDm

SvRfMI9nbrp0RmRaPRsHNz7YWDfKNiF5sg15cp7ycQ774MuMgm4G4qhR6h

ohTiUQrrjRdo/pub?start=false&loop=false&delayms=3000&slide=id.g25ab9a9d

23_0_1542

Team Silver. (2017, October 25). Feasibility PowerPoint Presentation. In ​PolyMorpher​.

Retrieved from https://docs.google.com/presentation/d/e/2PACX-1vReG6Sodx-

gVFro1ByYMOYHSyiSRiU5HW-Su-PyMVGO8F4CQ7pY49tB_pJecVAprukso

GaP_00ozhmR/pub?start=false&loop=false&delayms=3000&slide=id.g25ab9a9d

23_0_1542

Team Silver. (2018, February 26). Lab 1. In ​docs.google.com​.

“The Benefits of Video Games.” abcnews (2011, December 26). Retrieved October 19,

2017, from http://abcnews.go.com/blogs/technology/2011/12/the-benefits-

of-video-games/Good-Morning-America

LAB II - POLYMORPHER 13

Unity Technologies. (2017, August 10). Company Facts. In Unity. Retrieved from

https://unity3d.com/public-relations

Unity. (2016, July 6). Unity - Scripting API. In Unity. Retrieved December 21, 2017,

from https://docs.unity3d.com/530/Documentation/ScriptReference/index.html

Unity. (2017, October 11). Asset Store. In Unity. Retrieved December 21, 2017, from

https://www.assetstore.unity3d.com/en/

1.5 Overview

In this product description paper, a general description of the prototype of PolyMorpher

will be given. It will highlight PolyMorpher’s architecture, functionality, and interfaces. It will

also go over the capabilities, features, and components of PolyMorpher. The information

provided in the remaining sections of this document includes a detailed description of the

hardware, software, and external interface architecture of the PolyMorpher prototype. The

product specification requirements provided in Lab II Section 3.1 can be found in a separate

document.

2 General Description

The primary goal of the PolyMorpher prototype is to provide a working demonstration of

the PolyMorpher product. This is accomplished by implementing only the necessary components

and features of the full product. As a prototype, the product will still be playable like other

programming games, while also teaching OOP concepts and problem solving skills. OOP

concepts that will be taught include: abstraction, encapsulation, polymorphism, and inheritance.

LAB II - POLYMORPHER 14

2.1 Prototype Architecture Description

PolyMorpher prototype architecture will be identical to that found in the completed

product. The prototype for PolyMorpher will be separated into three main components: the

PolyMorpher application, the Unity file structure, and the PolyMorpher website.

● The PolyMorpher application: A stand-alone downloadable executable file that

allows the user to play the game locally on a personal computer. It will be

downloadable directly from the PolyMorpher website.

● The Unity file structure: The entirety of the Unity file structure is contained in the

PolyMorpher application. The “StreamingAssets” directory in the Unity file

structure will be directly accessed and modified by the user for use in “morphing”

game objects.

● The PolyMorpher website: The website will contain the PolyMorpher application

for users to download. A play guide will also be available here for users to view

game rules and tips.

Figure 1 shows the website and components of PolyMorpher, and how those components

interact with each other.

LAB II - POLYMORPHER 15

Figure 1: Major Functional Components Diagram - Prototype Version (Team Silver, 2017)

2.2 Prototype Functional Description

The PolyMorpher prototype will be compatible with virtually all operating systems:

Windows, Linux, and MacOS. Both the completed product and the prototype will be able to be

downloaded off the PolyMorpher website. A summary of the PolyMorpher prototype deliverable

features can be seen in Tables 1 and 2. The primary differences between PolyMorpher’s

completed product and its prototype are displayed in Table 2.

LAB II - POLYMORPHER 16

Table 1: Key for Features of the Complete Product versus the Prototype (Team Silver, 2017)

Table 2: Features of the Complete Product versus the Prototype (Team Silver, 2017)

Table 2 shows that the prototype will not be implementing multiple programming

languages as alternative programming languages for the player to use and learn in-game. It will

not be implementing the multiplayer gameplay feature of experience being geared toward

multiple players interacting with the game’s environment simultaneously. The prototype also

will not be implementing the ability to access and play the game through a web-application;

LAB II - POLYMORPHER 17

instead, a downloadable executable file will be available for game access. The features that will

only partially be implemented are the player-made content, along with the sandbox level. These

features allow the player to share custom levels with other players. A sandbox level is defined as

an open level where the player has access to all tools at once and can build their own level

sequences and puzzles. All else will be fully implemented.

2.3 External Interfaces

 There are five types of external interfaces for PolyMorpher: Hardware Interface,

Software Interface, User Interface, API Book Interface, and Compiler Interface. The player will

also require a compatible device with the necessary hardware and software specifications to

operate the game.

2.3.1 Hardware Interface

PolyMorpher is designed to operate on the user’s local machine. For the specific

hardware the player has to have to run the game, a fourth generation i3 Intel Processor is the

minimum requirement. With PolyMorpher being a two-dimensional game style, it will utilize

minimal resources.

2.3.2 Software Interface

All of the software behind PolyMorpher is hosted on the CS server at ODU. The specific

software in order to run the game is Windows 7, 8, 10, or Linux or MacOS operating system.

The software required to run the game is cross-platformed so that way basically anyone in the

world can play it.

LAB II - POLYMORPHER 18

2.3.3 User Interface

● Computer screen: This is used to display the game after the user downloads the

executable file off PolyMorpher’s website. The game will be displayed in the

Unity gameplay interface; it will not stop running until it is terminated. Figure 2

shows a technical demonstration of a rapid prototype interface a user could see

displayed on the screen.

Figure 2: Rapid Prototype Technical Demo of PolyMorpher, By: Joel Stokes (Team Silver, 2017)

● Keyboard: This is used for moving the main character, moving in on objects to

“morph,” and searching the API Book interface for help with C# coding

conventions. The keyboard is also used for typing in the C# code in the text editor

box to “morph” each object.

LAB II - POLYMORPHER 19

● Mouse: This is used for selecting each object to “morph”, choosing the API Book

interface to open in a text box, clicking multiple buttons to submit and cancel

code, and traversing the general TUI of the game.

2.3.4 API Book Interface

 The API Book Interface is opened when the API Book button is clicked in the game. The

API Book Algorithm describes the functionality of PolyMorpher’s API Book button in the game.

The API Book Algorithm acts as the primary method of information distribution from game

designer to player. It interacts directly with the Compiler Algorithm by determining the

knowledge base the player has to exploit in the Compiler Algorithm. It also directly influences

the outcome of the gameplay/challenges by offering the player a multitude of tools to interact

with their environment. The dataflow algorithm for the API Book Algorithm is displayed in

Figure 3.

Figure 3: Dataflow Algorithm - API Book Algorithm (Team Silver, 2017)

LAB II - POLYMORPHER 20

2.3.5 Compiler Interface

The Compiler Interface is opened whenever any editable object is selected with the

mouse by the user to “morph.” The Compiler Interface is essentially a text box that includes

incomplete C# code that is to be edited by the user to create syntactically correct code. The code

can be made correct to fit each unique situation, and to make each editable object have the

desired functionality to complete each level in the game. The Compiler Interface with compile,

reset, and cancel buttons is shown in Figure 4.

Figure 4: CS410 Technical Demonstration #2, By: Casey Batten (Team Silver, 2017)

When the compile button is clicked in the Compiler Interface, the Compiler Algorithm

processes the code that was input and returns it back as either passing or failing to compile. In

addition, the Compiler Interface allows the player to write custom scripts in order to morph

certain objects to progress in PolyMorpher. The Compiler Algorithm controls and continuously

affects the back-end system of the game itself. It directly determines the behavior of objects in

the game’s environments at a fundamental level. It is also responsible for the amount of control

LAB II - POLYMORPHER 21

and open design power the player is granted during gameplay. The Compiler Algorithm is, in

fact, co-dependant on the API Book Algorithm. This is based on the tools the player is likely to

find there to use within the Compiler Algorithm’s in-game dependencies. The dataflow

algorithm for the Compiler Algorithm is displayed in Figure 5.

Figure 5: Dataflow Algorithm - Compiler Algorithm (Team Silver, 2017)

3 Specific Requirements

The functional requirements of the PolyMorpher prototype, found in section 3.1, are

located in a separate document. Lab II Section 3.1 contains all requirements necessary to

complete the prototype. Each requirement contains specifications to ensure that nothing is to be

missed during implementation.

LAB II - POLYMORPHER 22

Appendix

PolyMorpher will have all of the features and capabilities necessary to be a successful

and competitive programming game. If any issues arise, Team Silver will take all necessary

actions to make sure that this prototype is built on time and properly. Each team member has

been assigned a role and will work in tandem to ensure that the prototype is completed as

specified; all of the important requirements will be made first priority. Any extra features or

plugins will be implemented after the completion of the main requirements to make sure the

programming game is fully functional upon its launch.

3.3 Reasons for Creating PolyMorpher for Students

Recent statistics show that students in the CS degree program at ODU are in decreasing

class sizes as they progress from the lower level to the upper level CS classes. Some of this

decrease in class size may be due to the fact that some of the lower level CS classes are required

for other majors as well as CS, wherein the higher level CS classes are only required for CS

degrees. However, there is still a significant decrease in class size when the focus is only on CS

students. PolyMorpher is going to help balance and lessen this decrease in class size as CS

students progress through their CS degree.

Reiterating the Problem Statement, students are in desperate need of a supplemental

resource that will teach them the programming skills needed to pass CS classes at ODU. Once

PolyMorpher is introduced to students, there will be a drastic reduction in situations where they

do not understand the basic fundamentals of CS, fail CS classes, drop out, or switch majors.

In addition, there is a ‘Student Progression Dilemma’ at ODU. Students are not following

the CS course series in the expected order. The collected data provides purpose behind the need

LAB II - POLYMORPHER 23

to reassess methods of assisting students’ progress in how they learn the topics at hand. The

provided data also shows exactly when during the learning process that this assistance would be

most effective. Changes in class volume could indicate that students are leaving the CS major for

less programming intensive fields.

Furthermore, there is a significant decline in enrollment of students who progress from

the classes CS150 to CS250, and then continue on to the classes CS330, CS361, and CS350 at

ODU. This decline in enrollment may be directly related to differing major requirements and

course overlap. However, the decrease in student body is still significant enough to warrant a

deeper look into later classes in the major path. In addition, decreasing class sizes show a steady

decline in CS course enrollments as course level difficulty advances. These decreases may be

indicative of students either dropping out of the CS program or changing majors. The Student

Progression Dilemma statistics from the ODU Factbook are displayed in Figure 7 as a pie graph.

Figure 7: Student Progression Dilemma - Pie Chart (Team Silver, 2017)

Figure 7 further shows the breakdown of the total number of students from 2014 to 2017

in CS classes at ODU. According to the ODU Factbook, from 2012 to 2016 the number of

LAB II - POLYMORPHER 24

undergraduate CS majors increased from 284 to 429. This shows the high demand in the CS

degree path at ODU. From 2014 to 2015 there were roughly 672 students enrolled in CS150,

compared to only about 327 students enrolled in CS250 from 2015 to 2016. In the years of 2016

to 2017, there were roughly only 199 students enrolled in CS361, 180 students enrolled in

CS330, and 182 students enrolled in CS350. Figure 7 displays these statistics in the form of

percentages to emphasize the impact of decreasing course sizes.

The ‘white noise’ of students progressing from the classes CS150 to CS250 at ODU has

to be accounted for. There is a less dramatic decrease in course sizes than initially thought from

the CS courses that are requirements for other majors. For example, CS150 is the first course that

CS majors have to take and is considered a ‘service course’ by ODU. This means that it is also

required to be taken by Physics, Math, Engineering, and Mod-Simulation majors. CS250 is

required to be taken by CS, Mod-Simulation, and Computer and Electrical Engineering majors.

CS330 is required to be taken by CS and Mod-Simulation majors. CS361 is required to be taken

by CS and Computer and Electrical Engineering majors. Lastly, CS350 is required to be taken by

CS and Computer Engineering majors. Table 3 further displays the Student Progression

Dilemma taking into account the ‘white noise’ of overlapping different majors.

[This space intentionally left blank]

LAB II - POLYMORPHER 25

Table 3: Student Progression Dilemma - Table & Graph (Team Silver, 2017)

As shown from Table 3, the approximated student headcount of the core student body for

CS majors is significantly less than when also considering the ‘white noise’ from course overlap.

Again, the values with the ‘white noise’ from course overlap are shown in Figure 7. The core

student body from 2014 to 2017 consists of approximately 300 students in CS150, 200 students

in CS250, 175 students in CS361, 180 students in CS330, and 178 students in CS350. As

evidenced above, only CS150 and CS250 are drastically affected by the ‘white noise’ from

course overlap.

