
Lab 1: PolyMorpher Product Description 1

Lab 1 - PolyMorpher Product Description

Matthew Tuckson

Old Dominion University

CS411W

Professor Thomas Kennedy

29 January 2018

Version 1

Lab 1: PolyMorpher Product Description 2

Table of Contents

1 Introduction 3
1.1 Team Members 3
1.2 Problem Statement 4
1.3 Problem Characteristics 4

1.4 Solution Characteristics 6
2 PolyMorpher Product Description 6

2.1 Goals and Objectives 7
2.2 Key Product Features and Capabilities 8

3 Identification of Case Study 9

3.1 Customers 9
3.2 End-User 10

3.3 Why Students Want PolyMorpher 10

4 Product Prototype Description 11
4.1 Prototype Architecture 12
4.2 Prototype Features and Capabilities 12
4.3 Prototype Development Challenges 21

4.4 Risk Identification and Mitigation 22
5 Development Pipeline 24

5.1 Unity Software 24
5.2 Source Tree 25
5.3 Version Control: GitLab 25

5.4 Agile Development 26
5.5 Work Management 27

Glossary 28

References 30

Table of Figures

1. Current Process Flow 4

2. Solution Process Flow 5

3. Competition Matrix 6

4. Student Enrollment Statistics 10

5. PolyMorpher Architecture 11

6. Core Algorithm 18

7. API Algorithm 19

8. Compiler Algorithm 20

9. Risk Matrix 22

10. Version Control 24

11. Agile Development 25

Table of Tables

1. Key to Table 2 15

2. Summary of Prototype Functions and Capabilities 16

Lab 1: PolyMorpher Product Description 3

1 Introduction

 CS150 is an introductory course to computer programming at ODU that over the past

four years over 2,500 students have taken. Although over 2,500 students start their college

computer science education in this course, only approximately 600 students over the past four

years have taken CS350, a more advanced computer programming course. This information lead

Team Silver to determine why there is a drastic change in students that take these two courses.

The conclusion found is that the more object-oriented programming (OOP) skills were required

by a class, the less students took said class. Under the Guidance of Professor Thomas Kennedy,

Team Silver decided a potential solution to this problem is to create a game, named

PolyMorpher, that would teach OOP to students.

1.1 Team Members

 The members and roles of Team Silver are as follows:

● Matthew Tuckson, Project Manager and Team Lead

● Casey Batten, Team Lead

● Daniel Dang, Team Member

● Nathaniel Dearce, Team Member

● Colten Everitt, Web Designer and Team Member

● Tyler Johnson, Team Member

● Peter Riley, Team Member

● Kevin Santos. Team Member

● Joel Stokes, Team Lead

Lab 1: PolyMorpher Product Description 4

1.2 Problem Statement

Team Silver’s problem statement is defined as follows, “Programming is intimidating for

the uninitiated. As a result, first time ODU programming students drop out or switch majors.

Existing tools fail to teach Object-Oriented Programming (OOP) concepts and problem solving

skills” (Team Silver).

1.3 Problem Characteristics

 Object Oriented Programming is an essential skill for students to learn for them to do

well in advanced level CS courses. However, at entry level courses students do not get taught

OOP concepts which can lead not the result of changing majors or leaving college entirely.

Lab 1: PolyMorpher Product Description 5

 Figure 1 expresses the current process a student will go through upon entering an entry

level CS course. They begin by entering the course, and after some time will be taught the

fundamentals of programming. If they understand them, they will pass the class. If they do not

they may seek for help, but if that is not enough they will eventually fail the course. They may

retake the course, but unless they reach the point of understanding the fundamentals of

programming they will eventually drop out of the class and potentially change majors. This is an

undesirable result, and Team Silver believes this can be solved through proper understanding of

Object Oriented Programming.

Figure 1. Current Process Flow.

Lab 1: PolyMorpher Product Description 6

1.4 Solution Characteristics

 Team Silver’s solution to this problem is PolyMorpher, a game in which the user will

experience puzzles that they must solve using real code. The puzzles will be aimed to teach the

user various concepts of OOP such as abstraction, inheritance, polymorphism, and encapsulation.

Figure 2 explains the process a typical CS student would go through after PolyMorpher

has been completed. The student would begin in an entry level course, however when faced with

problems understanding the fundamentals they will now use PolyMorpher to gain understanding

of OOP concepts. The foundational knowledge of OOP concepts would help the student then

pass their class and continue in their CS major.

2 PolyMorpher Product Description

 PolyMorpher will be a game where the player learns and then applies OOP skills to win.

They will be faced with challenges in the form of puzzles in which the only way to solve the

Figure 2. Solution Process Flow.

Lab 1: PolyMorpher Product Description 7

puzzles is to code their way out. This focus on OOP is what will separate PolyMorpher from

other games that currently exist that teach programming skills.

Figure 3 shows the competition matrix for PolyMorpher. As shown, although many

different games use OOP in their games, very few teach the concepts behind it. The only one that

does is Codewars, which teaches how to program in an object-oriented style, without teaching

the underlining principles behind it. PolyMorpher will teach the basic principles of OOP such as

abstraction, inheritance, encapsulation, and polymorphism through the various puzzles the player

will encounter.

2.1 Goals and Objectives

 The goals for PolyMorpher are as follows:

• Teach a basic understanding of abstraction and then have the user show the

learned skill through application

• Teach a basic understanding of encapsulation and then have the user show the

learned skill through application

Figure 3. Competition Matrix.

Lab 1: PolyMorpher Product Description 8

• Teach a basic understanding of inheritance and then have the user show the

learned skill through application

• Teach a basic understanding of polymorphism and then have the user show the

learned skill through application

• Help the user develop problem solving skills

• Create a fun gaming experience for the user along with their learning experience

2.2 Key Product Features and Capabilities

 There are two distinct aspects to the features and capabilities of PolyMorpher. The first

lies in the software of the game itself, and the second lies in the minimal hardware required for

the user to be able to play the game.

2.2.1 Game Concept

 The story line in PolyMorpher is that the user has found themselves in a dungeon and

need to escape. However, they have no fighting skills and are incapable of partaking in combat.

In order to escape the dungeon they need to manipulate their environment by hacking various

game objects. A simple example of this would be that there is a block in the way of the user and

the exit of a room. In order to get to the door the user must “hack” the block, attach a script to the

block telling it to move out of the way, and then go through the door. It is through this process of

“hacking” the world that the user will solve various puzzles which will require an understanding

of object oriented concepts.

2.2.2 Minimal Specs

 PolyMorpher will be optimized for a 4th gen i3 Intel Processor. The minimal operating

system needed for PolyMorpher will be Windows 7. These are the only two requirements needed

Lab 1: PolyMorpher Product Description 9

as PolyMorpher will be a 2D game requiring minimal processing power or graphic processing

power.

2.2.3 Obtaining PolyMorpher

 Customers will be able to obtain PolyMorpher by going to Team Silver’s website,

http://www.cs.odu.edu/~411silver/, and downloading the .exe file under the downloads tab.

3 Identification of Case Study

 In the first stages of deployment, PolyMorpher will have different end-users compared to

the customers who will but PolyMorpher.

3.1 Customers

 The customers who PolyMorpher will be advertised to will be those who would teach

OOP skills to students.

3.1.1 ODU

 PolyMorpher’s primary customer will be ODU.

3.1.2 Other Universities

 Later in deployment, other universities will become target customers as well.

3.1.3 Individual Teachers

 Individual teachers, such as high school teachers, will also be target customers to help

them teach their students more about OOP.

3.1.4 Programming Students

 Students of programming who are unaffiliated with any schools will also be target

customers, as PolymMorpher will help them grow in their programming knowledge. In this

case, the customer is also the end-user.

Lab 1: PolyMorpher Product Description 10

3.2 End-User

 The end-users of PolyMorpher will be various kinds of students. The type of student

depends on the customer they are affiliated with. In the beginning of deployment, ODU students

will be the primary end-users, as ODU will be the primary customer. Later in deployment all

university students will become potential end-users, as all Universities will become target

customers. If individual teachers, such as high school teachers, buy PolyMorpher, then their

students would also be end-users.

3.3 Why Students Want PolyMorpher

 Students would want to use PolyMorpher to help them better understand OOP.

3.3.1 OOP is the Problem

 To obtain a bachelor’s degree in computer science at ODU the following courses are

required to be taken and passed:

• CS150: Required to be taken by computer science, physics, math, engineering,

and mod-simulation majors

• CS250: Required to be taken by computer science, mod-simulation, computer

engineering, and electrical engineering majors

• CS330: Required to be taken by computer science and mod-simulation majors

• CS361: Required to be taken by computer science, computer engineering, and

electrical engineering majors

Lab 1: PolyMorpher Product Description 11

• CS 350: Required to be taken by computer science and computer engineering

majors

Figure 4 contains the number of students who enrolled in these five courses over the past

four years. It is important to note that the large drop in enrollment from CS150 to CS250 is

primarily due to the vast number of majors which require CS150 compared to CS250. However,

there is still about one-third less students in the 300 level courses in 2016-2017 compared to

CS250 in 2015-2016, suggesting that CS250 causes many students to stop pursuing a major in

computer science. CS250 is where OOP skills are required to understand in order to succeed in

the course. Team Silver, through the development and deployment of PolyMorpher, hopes to aid

students in understanding OOP concepts and this is why students will want to use PolyMorpher

in their studies.

4 Product Prototype Description

 The PolyMorpher prototype will be released is April of 2018, and however it will not

contain the full contents of the complete PolyMorpher product.

Figure 4. Student Enrollment Statistics.

Lab 1: PolyMorpher Product Description 12

4.1 Prototype Architecture

One can obtain the PolyMorpher prototype from Team Silver’s website,

http://www.cs.odu.edu/~411silver/. The prototype will be playa ble through a .exe file.

 Figure 5 contains a diagram of the architecture of the completed PolyMorpher game. The

prototype will not contain the dedicated web application, nor will it contain any databases.

4.2 Prototype Features and Capabilities

 The PolyMorpher prototype will maintain the overarching structure of the completed

version, however there will some eliminated features.

Figure 5. PolyMorpher Architecture.

http://www.cs.odu.edu/~411silver/

Lab 1: PolyMorpher Product Description 13

4.2.1 Prototype Deliverable Features

 The primary goal of PolyMorpher is to teach OOP, and the prototype will show how the

complete version of PolyMorpher will do so. The PolyMorpher prototype will successfully teach

a basic understanding of the following OOP principles:

• Abstraction

• Inheritance

• Encapsulation

• Polymorphism

These lessons will be taught through puzzles the player must complete to win the game.

The player must obtain a basic understanding of the principles to be able solve the puzzles put in

front of them. The player will be using the C# programming language, and therefore will gain

hands on experience with C# and how to program using it.

4.2.2 Fully Functional Components

 As PolyMorhper’s primary goal is to teach OOP, the focus of Team Silver while

developing the prototype will be to give a overall view on how PolyMorpher will do that. There

were two approaches to the prototype that could have been taken. The first approach is to have

only one principle of OOP taught, but have it completely taught through various puzzles making

sure the player completely understands the principle. The second approach, and the one Team

Silver decided to go with, is to have all four principles of OOP taught, but to have only one to

two puzzles in each principle and therefore only teach an aspect or two of each principle. The

primary reason Team Silver decided to go with the latter is to show how the overall structure of

PolyMorpher, and to determine if these four principles could actually be taught through a puzzle

solving game.

Lab 1: PolyMorpher Product Description 14

4.2.2.1 Game Assets

 The PolyMorpher prototype will contain various game assets such as sprites, various

sound effects, and textures.

4.2.2.2 Developed Story

 The PolyMorpher prototype will contain a developed story with a background,

progression, and completion. The story Team Silver has chosen is that the player is an old wizard

who has been trapped in a dungeon. The only way they can get through the dungeon is by using

their magic, sense they are too weak to fight in hand to hand combat. The way they will use this

magic is by attaching scripts to specific game objects to make them act differently than originally

intended.

4.2.2.3 Portable Compiler

 Due to PolyMorpher’s source code changing throughout the game, there will be a

compiler inside the game able to read and compile the scripts the player makes.

4.2.2.4 Scenes

 The PolyMorpher prototype will contain scenes that teach all four OOP principles,

however only on a basic level, each principle containing the necessary scenes to go through one

to two puzzles each. There will also be a scene in the beginning of each principle where the

student will receive a more standard “textbook” understanding of the principle, as Team Silver

has identified not all aspects of these principles can be taught through a game.

4.2.2.8 Tutorial section

 Prior to entering the primary part of PolyMorpher, the player will go through a two-part

tutorial. The tutorial will contain a section on the C# language, where basic syntax and any

concepts in C# that are game development specific will be explained. It will be assumed that the

Lab 1: PolyMorpher Product Description 15

player has used an OOP language before, as the purpose of this tutorial will primarily be to help

the user understand any game development concepts that they may not have experience with.

The second part of the tutorial will teach the mechanics of the game such as how to attach a

script to a game object, the different tools in the coding environment, and how to successfully

complete a level.

4.2.3 Time Permitted Functional Components

 A final sandbox level is an intriguing aspect of the game that Team Silver would like to

complete, but it is dependent on how efficient the rest of the prototype is developed. The

sandbox level would contain most, if not all, of the game objects used to create PolyMorpher.

Opposed to most scenes, where only some objects will allow the player to attach scripts to them,

in the sandbox level all objects can have scripts attached to them. In this level the player will

simply be able to do as they will with the objects, creating a learning environment driven by the

player.

4.2.4 Eliminated Capabilities

 There have been a few eliminated capabilities from the prototype version of

PolyMorpher. Some will be included in the completed version of PolyMorpher, and some have

been eliminated until future notice.

4.2.4.1 Multiplayer

 Originally Team Silver wanted to make PolyMorpher multiplayer, however through

researching the security issues with a multiplayer game where players are able to edit the source

code, it was decided to eliminate this capability until further notice.

Lab 1: PolyMorpher Product Description 16

4.2.4.2 Web Application

 Similarly, Team Silver wanted to have PolyMorpher hosted on a web application,

however with the current process for compiling code in the game, this is not possible. This

feature has been eliminated until further notice.

 A summary of what will and will not be included in the prototype of PolyMorpher

compared to the finished product of PolyMorpher can be found in Table 2.

KEY

Fully Functional

Partially Functional

Eliminated

Table 1. Key to Table 2

[This space was left intentionally]

Lab 1: PolyMorpher Product Description 17

Elements Description Real World

Product
Prototype

Teaches

Polymorphism
Provision of a single interface to entities of different types

Teaches

Abstraction
Technique for arranging complexity of systems

Teaches

Encapsulation
Building of data with the methods that operate on that data

Teaches

Inheritance
When an object or class is based on another object or class, using

the same implementation

Single Language

Taught
A single programming language will be focused on C#.

Single Player Focused on an experience targeted to interact with only one player

Downloadable

.EXE File
Desktop application version of the game

Game Assets Primary components that are used as building block to construct

the more complex features and levels of the game

Developed Story Narrative used to drive progression or direct player throughout a

more guided/linear experience

Portable Compiler Code compiler used to run player-made code on the fly in game

Tutorial Section Precursor series of levels meant to help the player adjust to the in-

game toolset given to them and also prep them with knowledge of

the language(s) they will be working with

Multiple Platforms Version support for multiple operating systems (Windows, Mac

OS, Linux)

Sandbox Level Open level where the player has access to all tools at once and can

build their own level sequences and puzzles

Player-Made

Content
Variant of Sandbox Level, potentially allows the player to share

custom levels with one another

Multiple Player An experience geared toward multiple players interacting with a

game environment together

Web Application Web based version of the game running in-browser

Table 2. Summary of Prototype Functions and Capabilities

Lab 1: PolyMorpher Product Description 18

Multiple

Languages Taught
Alternative programming languages for the player to use and learn

in-game

4.2.5 Algorithms

 There is truly only one algorithm needed for the development of PolyMorpher, which

Team Silver has called the core algorithm as shown in Figure 6. However, due to its size it was

decided to split the algorithm up into tw o parts, the API algorithm and the compiler algorithm.

4.2.5.1 Core Algorithm

 The Cor Algorithm consists of the process a play will go through from deciding to attach

a script of an object to the completion of the script. The algorithm begins with the player

selecting the “morph” icon. This icon will indicate that the player wants to attach a script to an

object. They will then select an object that is “morphable” or that is predetermined to allow

scripts to be attached to it. This will take them to the coding environment where they will have a

text box containing Start() and Update(), two functions that are included is most scripts. They

player can then do one of three things. They can either enter into the API algorithm shown in

Figure 7, type directly into the textbox, or select the reset icon, resetting the textbox back to its

original contents. Once completed editing the script they will click the compile icon and the

script will be checked for errors. If errors are present, they will be sent back to their editable

textbox. If there are no errors present, the script will be attached to the object and the player can

Lab 1: PolyMorpher Product Description 19

continue adding scripts.

]4.2.5.2 API Algorithm

 The purpose of the API algorithm, shown in Figure 7, is to help the user code in a similar

way the common APIs help software engineers code. While editing a script the player can click

an API icon, which causes the API UI to appear. The player finds the function inside the API

they wish to input into their code and selects it. The function will appear in the textbox and is

now editable to fulfill the player’s needs. This process will occur each time the player selects the

API icon.

Figure 6. Core Algorithm.

Lab 1: PolyMorpher Product Description 20

4.2.5.3 Compiler Algorithm

 The compiler algorithm, shown in Figure 8, explains what happens to the script the player

writes after they click compile. It begins by being saved to the streaming assets directory, then at

runtime an the object being edited is created with generic script called “LoadScript.cs” attached

to it. LoadScript.cs will then mark the player’s edited script as its source code. LoadScripts.cs is

then compiled through ScriptBundleLoader.cs which uses the CodeCompiler class. If there were

errors in compilation, the errors will be printed to the player and they will retry. If there were no

errors the script is attached to the object and the player continues playing the game.

Figure 7. API Algorithm

Lab 1: PolyMorpher Product Description 21

4.3 Prototype Development Challenges

 Through the designing of the PolyMorpher prototype, it became apparent that there

would be plenty of development challenges that needed to be addressed.

4.3.1 Design Continuity

 Keeping the design of a game consistent is extremely important when it comes to game

design. Through communication and weekly meetings Team Silver plans to keep the overall

design of PolyMorpher consistent.

4.3.2 Difficulty Debugging

 Debugging PolyMorpher will have its own unique challenges, as the different codes the

players can input into their scripts are countless. Team Silver plans to approach this primarily

through playtesting, and having various users try to break the game and cause glitches. These

glitches will then be debugged.

Figure 8. Compiler Algorithm.

Lab 1: PolyMorpher Product Description 22

4.3.3 Playtesting

 Playtesting is another challenge, as the PolyMorpher prototype will take approximately

an hour to play for the average player. This can lead to long playtesting sessions, which leads to

a lower number of times PolyMorpher gets playtested.

4.3.4 Maintaining Player Engagement

 Maintaining player engagement will be a new challenge for most of Team Silver. This

will be handled primarily through playtesting and receiving feedback from play testers of their

enjoyment of the game.

4.3.5 Teaching Adequate material

 Teaching adequate OOP material will not be a problem for the prototype, as it is in the

plans to leave out portions of OOP concepts. However, when developing the complete game this

will became a large problem, and will be handled through playtesting and receiving feedback to

what the players learned in their test.

4.4 Risk Identification and Mitigation

 Figure 9 contains Team Silver’s risk matrix for PolyMorpher. There are both customer

risks as well as technical risks that need to be addressed.

Lab 1: PolyMorpher Product Description 23

4.4.1 Technical risks

 There are four technical risks that need to be addressed and they are as follows:

• T1: User Implements Bad or Harmful Code – The primary way this will be

mitigated will be through sandboxing the game. This will allow scripts to only

effect PolyMorpher. Secondarily, if they implement harmful code the player will

be able to restart the level, resetting any changes they may have made.

• T2: Insufficient Hardware – This risk will be mitigated through developing the

game in 2D, and therefore will be compatible for any modern PC or laptop.

• T3: Critical Software Bugs – Vigurous testing, playtesting, and debugging will all

aid in mitigation this risk.

• T4: Insufficient API Support – The built in API will have all the necessary tools

to help the player refer the specific code syntax and OOP concepts they need to

learn to get through the levels of the game.

Figure 9. Risk Matrix.

Lab 1: PolyMorpher Product Description 24

4.4.2 Consumer risks

 There are three consumer risks that need to be addressed and they are as follows:

• C1: Player Gets Lost or Stuck – Helpful hints and tips will be included as well as

a tutorial section to help the player not get stuck on any specific puzzle.

• C2: Dissatisfied User with UI – The UI/UX design will contain an approachable

interface, clear menu options, and an easy to interact with interface for each level.

• C3: Insufficient Content/Time – The play may not learn enough or have enough

time to learn the materiel for their CS course. This will be mitigated through

vigorous playtesting.

5 Development Pipeline

 The development pipeline, or the process in which Team Silver plans to develop

PolyMorpher, contains game engine, IDE, version control, development model, and the work

management of the team.

5.1 Unity Software

 Unity is a powerful game engine used to create a multitude of games, and it will be used

to develop PolyMorpher. This decision was decided due to members of Team Silver who have

game development experience being most familiar with the Unity game engine.

5.1.1 Language: C#

 The language Team Silver will use both to code as well as to teach the player will be C#

due to the team’s familiarity with C++ and Java, two very similar languages to C# yet not

supported by Unity.

Lab 1: PolyMorpher Product Description 25

5.1.2 IDE: Monodevelop

 The IDE Team Silver will use is Monodevelop. This is due to the simplicity of the IDE,

the tools it contains for debugging, as well as the team’s familiarity with the IDE.

5.2 Source Tree

 Source tree is a free git client for windows or mac. The team will use Source Tree in

order to interact with GitLab and manage their local repositories.

5.3 Version Control: GitLab

 Team Silver’s version control can be summarized in Figure 10. The process begins with

the developer updating their local repository from the GitLab master branch through the PuTTY

pageant. This is completed by the developer through source tree, which will then allow the user

to start editing the source code. When finished their work session, the developer will use source

tree to update either a branch or the master branch of PolyMorpher.

Figure 10. Version Control

Lab 1: PolyMorpher Product Description 26

5.4 Agile Development

 Team Silver has decided to use the agile development model, shown in Figure 11, to

develop PolyMorpher. This is due to being able to see prototypes of features quickly, which

allows other team members to develop with every other developer’s work in mind.

Figure 11. Agile Development

Lab 1: PolyMorpher Product Description 27

5.5 Work Management

Team Silver will begin development by making a prototype level, which will contain the

common assets amongst the levels, the algorithms used throughout the game, as well as any

common scripts that will be used throughout the game. Doing so will create a much more

consistent theme throughout the various levels and create a more efficient development process.

Team Silver had decided to split into three sub groups to divide the work, each group

having a team lead. The groups have been assigned two topics each and will work primarily

amongst themselves to compete these assignments. The groups and assigned topics are as

follows:

● Team A

○ Members: Matthew Tuckson (team lead), Colten Everitt, and Tyler

Johnson

○ Topics: Abstraction and tutorial of game mechanics

● Team B

○ Members: Casey Batten (team lead), Daniel Dang, and Peter Riley

○ Topics: Inheritance and tutorial of C#

● Team C

○ Members: Joel Stokes (team lead), Kevin Santos, and Nathaniel Dearce

○ Topics: Polymorphism and encapsulation

Lab 1: PolyMorpher Product Description 28

Glossary

.exe: Executable file

API: Application Program Interface

CS: Computer Science

Game Object: any object in a game that the player can see and/or interact with.

Git: version control system for tracking changes in computer files and coordinating work on

 those files among multiple people.

GitLab: web-based git repository manager the includes wiki and issue tracking.

Gradle: an open-source build automation system that was designed for multi-project builds.

GUI: Graphical User Interface

IDE: Integrated Development Enviornment

JavaScript: a programming language commonly used in web development where the the code is

processed by the client’s browser.

Non-Technical Game: user-friendly gameplay able to be utilized by non-technical users.

Non-Technical User: user who lacks formal education or knowledge in computer science,

computer programming, object-oriented programming, or problem solving skills.

ODU: Abbreviation for Old Dominion University.

OOP: Object Oriented Programming

Platform: an integrated set of packaged and custom applications tied together with middleware.

Regression Testing: a type of application testing that determines if modifications to the

application have altered the application negatively.

Student Involvement: the amount of physical energy students exert and the amount of

psychological energy they put into their college experience.

Lab 1: PolyMorpher Product Description 29

TUI: Tangible User Interface

Ubuntu: open-source Linux operating system.

User-Friendly: easy to comprehend by non-technical users.

Virtual Machines: an emulation of a computer system that provide functionality of a physical

computer.

Web Application: a client-server computer program in which the client (including the user

interface and client-side logic) runs in a web browser.

Wiki: a website on which users collaboratively modify content and structure directly from the

web browser.

Lab 1: PolyMorpher Product Description 30

References

Batten, C. (Narrator). (2017). CS410 Dungeon Escape Demo (Short Version) [Online

video]. Online: YouTube. Retrieved from

https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (Narrator). (2017). CS410 Project Dungeon Demo [Online video]. Online:

YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (2017, November 21). CS410 Tech Demo 2 (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, November 29). VersionControlFlow. In draw.io. Retrieved December 21,

2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%221IQj6SYJqC6YLAK_

qMRVIQkHiUmr9laBu%22%5D,%22action%22:%22open%22,%22userId%22:%22108

692003133590583047%22%7D#G1IQj6SYJqC6YLAK_qMRVIQkHiUmr9laBu

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Play Now). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

“The Benefits of Video Games.” abcnews (2011, December 26). Retrieved October 19,

2017, from http://abcnews.go.com/blogs/technology/2011/12/the-benefits-of-video-

games/

Good-Morning-America

Edraw. (2017, May 12). Standard Flowchart Symbols and Their Usage. In Edraw

Visualization Solutions. Retrieved from https://www.edrawsoft.com/flowchart-

symbols.php

http://www.cs.odu.edu/~410silver/references.html

Lab 1: PolyMorpher Product Description 31

Everitt, C. (2017, September 6). Current Process Flow. In draw.io. Retrieved December

21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B-

5KdQEdqLUPd

nBFUnp2V05uMEE%22%5D,%22action%22:%22open%22,%22userId%22:%22108692

003133590583047%22%7D#G0B-5KdQEdqLUPdnBFUnp2V05uMEE

Everitt, C., & Dang, D. (2017, September 24). currentProcessFlow. In draw.io. Retrieved

December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B3Bc9

5zBWXg9TFZ6X0FMU1NTdEk%22%5D,%22action%22:%22open%22,%22userId%22

:%22108692003133590583047%22%7D#G0B3Bc95zBWXg9TFZ6X0FMU1NTdEk

Everitt, C., Santos, K. & DeArce, N. (2017, November 27). Work Breakdown Structure

(WBS). In draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%

220B-

5KdQEdqLUPWnNoSHhIUGg2OTQ%22%5D,%22action%22:%22open%22,%22userId

%22:%22108692003133590583047%22%7D#G0B-

5KdQEdqLUPWnNoSHhIUGg2OTQ

Everitt, C., Santos, K. & DeArce, N. (2017, October 13). ProcessFlowDiagram_silver. In

draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B

_xBnZ1ge4PlZTVjV3h6Y2pGSWc%22%5D,%22action%22:%22open%22,%22userId%

22:%22108692003133590583047%22%7D#G0B_xBnZ1ge4PlZTVjV3h6Y2pGSWc

Lab 1: PolyMorpher Product Description 32

Few, S. (2008, February 5). Practical Rules for Using Color in Charts. In Perceptual

Edge. Retrieved from

http://www.perceptualedge.com/articles/visual_business_intelligence/

Rules_for_using_color.pdf

Kennedy, T. (2017, September 6). kennedyData. In Google Drive. Retrieved from

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

O'Neill, M. (2017, March 6). Computer Science Before College. In Computer Science

Online. Retrieved from https://www.computerscienceonline.org/cs-programs-before-

college/

Riley, P. (2017, September 14). Using Games to Introduce Programming to Students

[PowerPoint slides]. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Stokes, J. (Narrator). (2017). CS410 Programming Game Pitch [Online video]. Online:

YouTube. Retrieved from

https://www.youtube.com/watch?v=QBvgzFgZaOQ&feature=youtu.be

Stokes, J. (2017, October 9). CS410 Programming Game Pitch (Download Source Code).

In PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Team Silver. “PolyMorpher.” December 2017. PolyMorpher Design Presentation.

Santos, K., Riley, P. & Dang, D.(2017. December 7) Risk matrix and description tables in

Design Presentation. Retrieved from

https://docs.google.com/presentation/d/1oY9lkSAHvg2OIRkljYJNZWCqVTbiw45STKg

lsJUQjJI/edit#slide=id.g283e74317a_0_177

Unity Technologies. (2017, August 10). Company Facts. In Unity. Retrieved from

https://unity3d.com/public-relations

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

Lab 1: PolyMorpher Product Description 33

Unity. (2016, July 6). Unity - Scripting API. In Unity. Retrieved December 21, 2017,

from https://docs.unity3d.com/530/Documentation/ScriptReference/index.html

Unity. (2017, October 11). Asset Store. In Unity. Retrieved December 21, 2017, from

https://www.assetstore.unity3d.com/en/

12 Free Games to Learn Programming. (2016, April 25). In Mybridge. Retrieved from

https://medium.mybridge.co/12-free-resources-learn-to-code-while-playing-games-

f7333043de11

