

Lab 1 - Polymorpher

Tyler L. Johnson

CS 411

Professor Thomas J. Kennedy

February 25, 2018

Version 2

Table of Contents

1. Introduction 4

2. PolyMorpher Product Description 7

2.1 Key Product Features and Capabilities 7

2.2 Major Components (Hardware/Software) 7

3 Identification of Case Study 8

4. Product Prototype Description 9

4.1 Prototype Architecture (Hardware/Software) 9

4.2 Prototype Features and Capabilities 10

4.3 Prototype Development Challenges 17

5.4 Agile Development 19

5.5 Work Management 19

6. Glossary 20

7. References 21

List of Figures

Figure 1 - ODU's Current Process Flow ... 5

Figure 2 - Solution Process Flow .. 6

Figure 3 - CS Course Demographics .. 8

Figure 4 - Core Algorithm Flow ... 15

Figure 5 - API Book Algorithm Flow ... 16

Figure 6 - Complier Algorithm Flow .. 16

Figure 7- Version Control Process Flow .. 18

Figure 8 - Agile Development Flow ... 19

List of Tables

Table 1 - Competition Matrix ... 6

Table 2 - Student Progression Dilemma ... 8

Table 3 - Deployment Flow .. 10

Table 4 - Prototype vs. Real-world Features .. 13

Table 5 - Key: Prototype vs. Real-world Features .. 13

Table 6 - Risk Matrix .. 18

1. Introduction

 Programming is intimidating for the uninitiated. As a result, first time ODU programming

students drop out or switch majors. Existing tools fail to teach Object-Oriented Programming

(OOP) concepts and problem-solving skills. The reality is that programming is a skill that can be

learned, like any other skill such as drawing, or cooking. The main problem is a lack of

understanding of the programming fundamentals. As a result of not knowing the fundamentals,

many students find themselves lost, frustrated, and end up dropping their core CS class or switch

majors. Current tools teach some fundamentals but fail to provide an understanding of Object-

Oriented Programming concepts and problem-solving skills.

 "Poor academics and knowledge decrement lead to stigma of video games being

detrimental to the learning process. However, research evidence has shown that traditional

learning through textbooks contributes to low engagement when compared to interactive media.”

The Office of Naval Research has found that 56 – 95% of people who play a game to learn a

certain subject, on average, tend to display an improvement in understanding of the subject.

 This problem provides the group an opportunity to fill the gap and provide students with

an engaging and fun way to learn OOP concepts and problem-solving skills. Team Silver under

the direction of their mentor Professor Thomas Kennedy and managed by project manager

Matthew Tuckson are developing a solution to this growing problem. The team consists of nine

members: Cole Everitt, Casey Batten, Peter Riley, Kevin Santos, Joel Stokes, Matthew Tuckson,

Nathaniel DeArce, Daniel Dang, and Tyler Johnson.

 The group’s solution is a game called PolyMorpher. It will help players learn Object-

Oriented Programing (OOP) concepts and program solving by using a management simulator

and a Tangible User Interface (TUI). Polymorpher will: teach OOP concepts, teach problem

solving, strive to teach multiple languages, be developed for multiple platforms, and potentially

have multiplayer capability. As shown in Figure 1, the current process for new CS students being

introduced to Computer Science is more complex and can more often lead to students dropping

their intended course or abandoning the major as whole. Figure 2 shows how this process can be

improved with Polymorpher. Polymorpher will increase the retention rate of students and the

possibility of passing.

Figure 1 - ODU's Current Process Flow

Figure 2 - Solution Process Flow

 There are currently many competing programming games. As show in Table 1, most of

the competition has low bar for entry, focus mainly on one or two languages and teach mostly

syntax. PolyMorpher also has a low bar for entry, focuses on one language, and focuses mostly

on OOP concepts as its main priority. Very few programming games teach OOP, which is major

paradigm of modern programming. This focus places Polymorpher’s solution above the rest.

Table 1 - Competition Matrix

2. PolyMorpher Product Description

 Polymorpher will be initially aimed at ODU and other educational institutes that teac

players computer programming, Object-Oriented Programming concepts, and problem-solving

skills. The game’s goal is to better prepare students for the rigors of their respective computer

science program. This will be done by teaching them the fundamentals of programming in a fun

and engaging way.

2.1 Key Product Features and Capabilities

Polymorpher will feature a main character that the player of the game will control. The

player will then face several challenges at each level that can only be solved by programming.

The game will do this by featuring an in-game code editor which will allow the player to run and

compile scripts. The player’s script will then be checked for correctness, and if they pass they

will move on to the next level.

2.2 Major Components (Hardware/Software)

Most modern computers will be able to run the game. The game will be an executable

that will be available to download on the group’s website. The system requirements for the game

will include: fourth generation i3 Intel or AMD equivalent processor, at least 4GB of RAM or

more and at least 500MB of available Hard Disk space.

3 Identification of Case Study

 Polymoprher is mainly aimed at ODU students who are entering ODU’s computer

science program. As shown in Figure 3, the majority of students are in CS150 which is an

introductory programming class. If the other majors are removed and the focus is solely upon CS

majors as in Table 2, then the results are clear.

Figure 3 - CS Course Demographics

Table 2 - Student Progression Dilemma

A majority of students are in CS150 and CS250 whereas fewer students are in the upper

level CS classes. It can be inferred that those students have either dropped the introductory

courses or have switched majors. In those cases, Polymorpher could be used to help those

students learn the material needed to pass those courses.

 Polymorpher would not only be for ODU students but could be used by anyone who is

interested in learning programming. It could also be used by professors or programming

instructors to teach beginner students programming concepts such as OOP. Polymorpher could

be used by anyone who is just interested in learning programming. There are many courses

available online, but most of them have the students going through repetitive exercises. This

could leave eager to learn programmers bored and thinking they may have made a mistake. A

game, which most people enjoy, could be used to alleviate that bored and make learning

programming a fun process.

4. Product Prototype Description

 The goal of the Polymorpher prototype is to provide a baseline for the product. It will

include features fundamental to the RWP. It will be playable but may not be as engaging as the

full-fledge game.

4.1 Prototype Architecture (Hardware/Software)

The prototype will be distributed as an executable file. This will be all that is needed to

play the game.

Table 3 - Deployment Flow

4.2 Prototype Features and Capabilities

The prototype will teach players the key concepts of OOP, it will only feature a single

programming language and will be single player. The real-world version of the product would

contain the features of the prototype but would include multiplayer, multiple languages and be

deployed also as a web application. The differences between the prototype and the real-world

version of the product can be found in Table 4 and Table 5.

Elements Description Real World

Product

Prototype

Teaches Polymorphism Provision of a single interface to entities of

different types

Teaches Abstraction Technique for arranging complexity of

systems

Teaches Encapsulation Building of data with the methods that

operate on that data

Teaches Inheritance When an object or class is based on another

object or class, using the same

implementation

Single Language Taught A single programming language will be

focused on C#.

Elements Description Real World

Product

Prototype

Single Player Focused on an experience targeted to interact

with only one player

Downloadable .EXE File Desktop application version of the game

Game Assets Primary components that are used as

building block to construct the more

complex features and levels of the game

Developed Story Narrative used to drive progression or direct

player throughout a more guided/linear

experience

Portable Compiler Code compiler used to run player-made code

on the fly in game

Tutorial Section Precursor series of levels meant to help the

player adjust to the in-game toolset given to

them and also prep them with knowledge of

the language(s) they will be working with

Multiple Platforms Version support for multiple operating

systems (Windows, Mac OS, Linux)

Elements Description Real World

Product

Prototype

Sandbox Level Open level where the player has access to all

tools at once and can build their own level

sequences and puzzles

Player-Made Content Variant of Sandbox Level, potentially allows

the player to share custom levels with one

another

Multiple Player An experience geared toward multiple

players interacting with a game environment

together

Web Application Web based version of the game running in-

browser

Multiple Languages Taught Alternative programming languages for the

player to use and learn in-game

Table 4 - Prototype vs. Real-world Features

 Table 5 - Key: Prototype vs. Real-world Features

4.2.1 Prototype Deliverable Features

 The prototype will teach polymorphism, abstraction, encapsulation and inheritance that

will be driven by a developed story. As the players engage in the story of the game, they will

face varying OOP based challenges. These challenges will be contained throughout the various

levels of the game. The player must demonstrate a measured level of competency for each

concept in order to move on. The main goal is to keep the players engaged while teaching them

OOP and problem-solving skills.

KEY Fully

Functional

Partially

Functional

Eliminated

4.2.2 Fully Functional Components

A fully functional game will have many more assets than the prototype.

Game assets will be essential in providing a good gaming experience. The full

game will also include a fully developed story, more scenes teaching OOP, and a

tutorial section.

4.2.3 Partially/Maybe Functional Components

A partially functional component would be a sandbox level. This level

would allow the player to with much more freedom in regard to what they can

do. The current levels will be much more restricting.

4.2.4 Eliminated Capabilities

Multiplayer and hosting the game on a web server have been eliminated

from the prototype’s features. Multiplayer gameplay will be difficult from a

security stand point since each player is given access to an editor that allows

them to run C# code. As for the hosting the game on the web server, this would

be difficult to maintain from a maintenance perspective.

4.2.5 Algorithms

There are three algorithms that will be present in the prototype and the

full product. These three algorithms are essential to the game and are necessary

for gameplay.

4.2.5.1 Core Algorithms

The Core Algorithm of the game is the main algorithm of the game’s

flow. It is the main entry point for all the other algorithms. The Core Algorithm

features the initial GUI interaction the player will have during gameplay.

Figure 4 - Core Algorithm Flow

4.2.5.2 API Algorithms

The API Algorithm is the main way the user will solve the challenges that

are presented to them. It will allow them to edit C# code and run it. The API

Algorithm is one of the most important algorithms of the game.

Figure 5 - API Book Algorithm Flow

4.2.5.3 Compiler Algorithms

The Complier Algorithm is the algorithm that is necessary for allowing

the player to have their code run during runtime. This algorithm will allow the

user to run the code that they have entered during the Book API.

Figure 6 - Complier Algorithm Flow

4.3 Prototype Development Challenges

Projected development difficulties include: design continuity, issues with debugging

code, playtesting, maintaining player engagement and whether the game has taught the play

enough material. There will multiple levels of the game with groups designing their own level.

This will present a challenge as the group must maintain a level of continuity in the design of

game assets. Another issue is debugging, the main feature of the prototype will be allowing the

user to run code during runtime. This presents a great challenge to the group as it is impossible to

try every single possible piece of code a user may try. Another issue is playtesting, this issue is

similar to the previous issue of debugging. The last two issues represent game design challenges.

Each group that creates a level must ensure they are engaging the player and thoroughly teaching

their required OOP concept.

4.4 Risk Mitigation/Risk Matrix

The biggest risk is the user implementing bad code. It is impossible to test for every

possible piece of code a user will implement. It is possible to potentially mitigate this risk by

using representative testing. This would allow the most likely user implemented code to be tested

for. The other two higher risks would be not having enough material and insufficient API

support. As long as each level contains enough material to teach the user the core concepts of its

assigned OOP concept then this risk can be mitigated. The insufficient API ties into the risk of

user implementing bad code. If the API does not support a majority of the user’s actions than the

user may leave the product. This can be mitigated by ensuring the API is capable of supporting

the most likely user code implementations. The previous risks are shown in Table 6.

Table 6 - Risk Matrix

5. Development Pipeline

All development will be done in Unity. Unity has its own built-in IDE called

MonoDevelop which be used for all of the coding aspects of the prototype. The project will be

put under version control and stored in a repository on GitLab. The software SourceTree will be

used locally on each development machine to push and pull code to the repository in GitLab.

Figure 7- Version Control Process Flow

5.4 Agile Development

 The project will be run using an Agile Development process, as shown in Figure 8. This

method of development is well suited for a game, an ever-evolving project. This will allow the

group as a whole to remain flexible when making changes to the game.

Figure 8 - Agile Development Flow

5.5 Work Management

 The game will be divided into levels with each level teaching one kind of OOP concept.

The entire group will then be divided into sub-groups that will design and develop each level.

Each group will be responsible for teaching their assigned OOP topic. This will allow the group

cover developing a wide range of levels at once.

6. Glossary

OOP (Object Oriented Programming): a programming paradigm that requires programmers to

define data types of data structures and also functions of those data structures.

API: Application Programming Interface

GUI: Graphical User Interface

Player Script: A C# script that is tied to the main character. This script controls properties such

as: speed, gravity, health, and attack power.

Streaming Assets Directory: File directory where all scripts accessible to the

player via the in-game Coding Interface are stored and organized according to

level and programming concept relevance. It is unique in that it is one of the few

source file directories that are accessible to the player in the Unity Engine under

any condition.

Code Compiler Directory: File directory holding the portable compiler, and the

associated companion files, which are used to manipulate the scripts in the

Streaming Assets Directory.

LoadScripts.cs: Manages files accessed by the entire portable compilation

system by identifying which script is currently in focus as the “source” script for

any selected object in game, pulling this file from the Streaming Assets Directory

and passing it off to the Script Bundle Loader for compilation.

ScriptBundleLoader.cs: Takes scripts passed off from the Load Script file and

marks them for compilation, setting up the Assembler and Compiler and running

the selected script through them. In the event of any compilation errors it will

send out an error report through the Unity Error and Log files, otherwise it will

attach the script to whichever game object was selected.

Coding Interface: An in-game GUI accessible to the player that pulls specified

scripts from the Streaming Assets Directory for them to edit and compile using

the portable compiler from the Code Compiler Directory.

7. References

Batten, C. (Narrator). (2017). CS410 Dungeon Escape Demo (Short Version) [Online video].

Online: YouTube. Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (Narrator). (2017). CS410 Project Dungeon Demo [Online video]. Online: YouTube.

Retrieved from https://www.youtube.com/watch?v=ynhdd1IKgps

Batten, C. (2017, November 21). CS410 Tech Demo 2 (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, November 29). VersionControlFlow. In draw.io. Retrieved December 21,

2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%221IQj6SYJqC6YLAK_

qMRVIQkHiUmr9laBu%22%5D,%22action%22:%22open%22,%22userId%22:%22108692003

133590583047%22%7D#G1IQj6SYJqC6YLAK_qMRVIQkHiUmr9laBu

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Batten, C. (2017, October 26). CS410 Dungeon Escape Demo (Play Now). In PolyMorpher.

Retrieved from http://www.cs.odu.edu/~410silver/references.html

http://www.cs.odu.edu/~410silver/references.html

“The Benefits of Video Games.” abcnews (2011, December 26). Retrieved October 19, 2017,

from http://abcnews.go.com/blogs/technology/2011/12/the-benefits-of-video-games/

Good-Morning-America

Edraw. (2017, May 12). Standard Flowchart Symbols and Their Usage. In Edraw Visualization

Solutions. Retrieved from https://www.edrawsoft.com/flowchart-symbols.php

Everitt, C. (2017, September 6). Current Process Flow. In draw.io. Retrieved December 21,

2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B-5KdQEdqLUPd

nBFUnp2V05uMEE%22%5D,%22action%22:%22open%22,%22userId%22:%22108692003133

590583047%22%7D#G0B-5KdQEdqLUPdnBFUnp2V05uMEE

Everitt, C., & Dang, D. (2017, September 24). currentProcessFlow. In draw.io. Retrieved

December 21, 2017, from https://www.draw.io/?state=%7B%22ids%22:%5B%220B3Bc9

5zBWXg9TFZ6X0FMU1NTdEk%22%5D,%22action%22:%22open%22,%22userId%22:%221

08692003133590583047%22%7D#G0B3Bc95zBWXg9TFZ6X0FMU1NTdEk

Everitt, C., Santos, K. & DeArce, N. (2017, November 27). Work Breakdown Structure (WBS).

In draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B-

5KdQEdqLUPWnNoSHhIUGg2OTQ%22%5D,%22action%22:%22open%22,%22userId%22:%

22108692003133590583047%22%7D#G0B-5KdQEdqLUPWnNoSHhIUGg2OTQ

Everitt, C., Santos, K. & DeArce, N. (2017, October 13). ProcessFlowDiagram_silver. In

draw.io. Retrieved December 21, 2017, from

https://www.draw.io/?state=%7B%22ids%22:%5B%220B

_xBnZ1ge4PlZTVjV3h6Y2pGSWc%22%5D,%22action%22:%22open%22,%22userId%22:%2

2108692003133590583047%22%7D#G0B_xBnZ1ge4PlZTVjV3h6Y2pGSWc

Few, S. (2008, February 5). Practical Rules for Using Color in Charts. In Perceptual Edge.

Retrieved from http://www.perceptualedge.com/articles/visual_business_intelligence/

Rules_for_using_color.pdf

Kennedy, T. (2017, September 6). kennedyData. In Google Drive. Retrieved from

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

O'Neill, M. (2017, March 6). Computer Science Before College. In Computer Science Online.

Retrieved from https://www.computerscienceonline.org/cs-programs-before-college/

Riley, P. (2017, September 14). Using Games to Introduce Programming to Students

[PowerPoint slides]. Retrieved from http://www.cs.odu.edu/~410silver/references.html

Stokes, J. (Narrator). (2017). CS410 Programming Game Pitch [Online video]. Online:

YouTube. Retrieved from

https://www.youtube.com/watch?v=QBvgzFgZaOQ&feature=youtu.be

Stokes, J. (2017, October 9). CS410 Programming Game Pitch (Download Source Code). In

PolyMorpher. Retrieved from http://www.cs.odu.edu/~410silver/references.html

https://drive.google.com/drive/u/1/folders/0B_xCQd8Vk2BnSU1hNnJwSXB1NEE

Santos, K., Riley, P. & Dang, D.(2017. December 7) Risk matrix and description tables in

Design Presentation. Retrieved from

https://docs.google.com/presentation/d/1oY9lkSAHvg2OIRkljYJNZWCqVTbiw45STKglsJUQjJ

I/edit#slide=id.g283e74317a_0_177

Unity Technologies. (2017, August 10). Company Facts. In Unity. Retrieved from

https://unity3d.com/public-relations

Unity. (2016, July 6). Unity - Scripting API. In Unity. Retrieved December 21, 2017, from

https://docs.unity3d.com/530/Documentation/ScriptReference/index.html

Unity. (2017, October 11). Asset Store. In Unity. Retrieved December 21, 2017, from

https://www.assetstore.unity3d.com/en/

12 Free Games to Learn Programming. (2016, April 25). In Mybridge. Retrieved from

https://medium.mybridge.co/12-free-resources-learn-to-code-while-playing-games-

f7333043de11

	2. PolyMorpher Product Description
	2.1 Key Product Features and Capabilities
	2.2 Major Components (Hardware/Software)

	3 Identification of Case Study
	4.1 Prototype Architecture (Hardware/Software)
	4.2 Prototype Features and Capabilities
	4.3 Prototype Development Challenges
	5.4 Agile Development The project will be run using an Agile Development process, as shown in Figure 8. This method of development is well suited for a game, an ever-evolving project. This will allow the group as a whole to remain flexible when maki...

	5.5 Work Management

	6. Glossary
	7. References

