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Abstract
With the growing interest in studying scholarly data, one of the
understudied types of scholarly data – Electronic Theses and Dis-
sertations (ETDs) needs more attention as ETDs have distinct fea-
tures compared with conference proceedings and journal articles
in many aspects. They are book-length documents, the topics may
shift across chapters, exhibits the major contribution of the research
work of a student, and have different metadata schema (e.g., univer-
sity, department, disciplines) from regular scholarly papers. Most
existing frameworks are designed for journals and conference pro-
ceedings. There is a lack of frameworks to extract information from
ETDs, including ETD segmentation, metadata extraction, metadata
quality improvement, and parsing reference strings. To address
the gap, we develop ETDSuite, a library that consists of various
frameworks for mining ETDs by exploiting artificial intelligence
(AI) methods. We demonstrate the performance of the frameworks
at the preliminary stage and propose tasks to improve the perfor-
mance of existing modules and add modules with new functions.
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1 Introduction
ETDs represent scholarly works of students pursuing higher educa-
tion and successfully meeting the partial requirement of academic
degrees. Since 1997, pioneered by Virginia Tech, students have been
required to submit their theses and dissertations electronically (i.e.,
ETDs) hosted by university digital libraries (DLs). ETDs contain rich
metadata, bibliographies, figures, tables, and discoveries in specific
subject areas. However, DL still lacks computation models, tools,
and services for discovering and accessing the knowledge found
in ETDs. To build a scalable DL, one can exploit machine learning
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and deep learning methods to extract and parse key document ele-
ments of these ETDs to improve the accessibility and discoverability
problems, allowing users to easily assess their relevance.

To address the limitations, Ahuja et al. proposed an object de-
tection model by fine-tuning YOLOv7 [20] on the ETD dataset to
classify several document elements [1]. This method is powerful for
automatically annotating a fraction of major structural components
but still underperformed in detecting minority classes (e.g., date,
degree, equation, algorithms) due to a lack of training samples. Lay-
outLMv2 [22] was introduced to perform downstream document
understanding tasks (e.g., entity extraction and document image
classification) and evaluated against different evaluation bench-
marks. For example, the RVL-CDIP dataset [9] was used for evalu-
ating document image classification tasks, consisting of scanned
document images belonging to 16 classes (e.g., letter, form, email,
resume). We fine-tuned LayoutLMv2 [22] on ETDs for segmenting
pages, but it performed poorly (e.g., achieved 9% accuracy). In addi-
tion, few other SOTA task-specific applications (e.g., GROBID [14])
can parse bibliographic data published in journals and conference
proceedings. However, these applications are not able to extract
metadata from ETD cover pages. Moreover, the DL of ETDs is ac-
companied by incomplete, inconsistent, and incorrect metadata. To
our best knowledge, no AI-based frameworks have been proposed
and implemented to improve the metadata quality for ETDs. Hence,
further methods must be addressed to mine ETDs because ETDs
have complex document structures, and low-resolution scanned
images of typewritten and handwritten text make OCR-ing (i.e.,
Optical Character Recognition task) challenging.

Therefore, our main contribution to this thesis is to propose a
library called ETDSuite, containing novel methods that segment,
extract, parse, and restructure raw ETD documents into structured
JSON documents leveraging natural language processing (NLP) and
computer vision (CV) models. As a part of the preliminary work, we
introduce AutoMeta [10] and MetaEnhance [4] to extract metadata
from ETDs and improve the metadata quality in the DL of ETD
repositories. We will further demonstrate our ongoing research
effort on segmenting and parsing citations of ETDs.

2 Research Questions
The research questions (RQs) are the following:
• RQ 1: Segmenting ETDs will allow us to perform ETD mining
tasks. Can we develop a multimodal framework that classifies
ETD pages by different types?

• RQ 2: ETDs can be scanned and born-digital (e.g., using LaTeX).
Can we build an AI method to extract metadata from ETDs?

• RQ 3: Library provided metadata often exhibit incomplete, incon-
sistent, and incorrect values. How can we leverage AI methods
instead of a manual effort [21] to improve metadata quality?

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


JCDL’23, June 26–30, 2023, Santa Fe, New Mexico Muntabir Hasan Choudhury

• RQ 4: Parsing citations allow us to enrich metadata by linking
ETDs to millions of papers in a public DL corpus [13]. Can we
develop a method to parse citations in many styles from ETDs?

3 Data Collection
We crawled more than 114 US university libraries, collected over
533,047 ETDs, including full text in PDF format, and harvested
metadata from university library repositories and ProQuest [18].
The major datasets we have built based on this collection include
the following: a) ETD500 – it consists of 500 annotated metadata
of ETD cover pages in PDF, TXT, XML, and TIFF format, including
library-provided ground truth metadata. The ETDs in ETD500 were
published between 1945 and 1990. There are 350 STEM and 150
non-STEM majors from 468 doctoral, 27 master’s, and 5 bachelor’s
degrees. In addition, wemanually annotated 92,375 pages of ETD500
into 14 categories (e.g., abstract, chapters, dedication), available in
PNG format, from which we extracted text and the bounding boxes
(bbox) using AWS Textract. b) ETDQual500 – it consists of 500
ETD benchmark evaluations (different from ETD500) by combining
subsets (i.e., 4 ETD subsets from university, year, department, and
degree fields) sampled using multiple criteria. The selection criteria
ensure that we cover samples with errors (e.g., missing values,
acronyms, misspellings) in different metadata fields.

4 Methodology

4.1 Preliminary Work
Metadata Extraction To overcome the limitation that existing
frameworks such as GROBID [14] do not work well on parsing
ETDs, we first introduced a baseline method [5] using regular ex-
pressions by analyzing the text patterns to extract metadata. We
applied Tesseract-OCR to extract text and then applied the rule-
based method. The method achieved up to 97% accuracy depending
on the metadata fields. However, this method performed poorly
on ETD500 as it was biased and trained on only 100 ETD cover
pages from MIT and Virginia Tech. To address the limitation, we
implemented AutoMeta [10]. It uses conditional random field (CRF)
[17], a sequence classifier that leverages text and visual features.
The model was evaluated on ETD500 and achieved an F1 score
ranging from 81.3% – 96% depending on the metadata fields.
Metadata Quality Improvement Addressing the metadata quality
problem (e.g., missing values, incomplete, and inconsistent) found
in DLs of ETDs, we implemented MetaEnhance [4], used AI models
and achieved a remarkable performance against ETDQual500 in
detecting, correcting, and canonicalizing metadata errors, achieved
an F1 score of 0.85 - 1.00 depending on the metadata fields.

4.2 Propose Work
Multimodal ETD Segmentation The existing SOTA models (e.g.,
DocFormer [2]) for document understanding task uses the multi-
modal model that employs visual modalities (i.e., uses RESNET50
[11] or RCNN [7]) and text modalities (i.e., uses transformers [19])
with an attention mechanism by fusing visual, text, and spatial
features (e.g., bbox using Tesseract-OCR). Despite the novelty of
the architecture, these models [2] performed poorly on ETDs (e.g.,
DocFormer performs 26% F1 score). Due to this limitation, using
ETD500, we propose a multimodal model that uses a vision encoder

(e.g., RCNN [7] with bbox) and a text encoder (e.g., LMs [6] [12]) to
extract individual embeddings. Later, we will combine the embed-
dings in an identical space. Further, we will apply the multimodal
model to segment ETDs. To achieve a better performance, we will
adopt Faster-RCNN [16] for the vision encoder and introduce CRF
[17] at the softmax layer to segment ETD pages.
Citation Parsing Academic disciplines have adopted different
citation styles in their research. For example, the APA format is
commonly used in Education, while the MLA format is used in
Humanities. Due to the variation of citation styles, automatically
parsing citations became challenging. Existing frameworks such as
Neural ParsCit [15]) use deep learning to overcome the challenge
of parsing citations accurately but are trained on focused domains
with fewer citation styles. To address the limitation, we will fine-
tune BERT [6] on citation strings using the GIANT-1B [8] dataset,
containing synthesized annotated citationswith 1500 styles. Further,
we will use a sequence classifier such as CRF [17] as a decoder
to parse citations. To evaluate the performance, we will build an
evaluation benchmark with 1000 citation strings in many styles
from ETDs focusing on key metadata fields (e.g., title, author, venue,
and year). Parsing citations fromETDswill help us predict the career
trajectories of graduate students [3] by building a citation network.
Enhancing Metadata Quality AutoMeta [10] can extract meta-
data from the first page of ETD. We found this cover page expands
to more than one page, containing a list of advisor names appearing
on the following page other than the first page. To overcome this
limitation, integrating the ETD segmentation framework will help
AutoMeta [10] to be more scalable and reliable in extracting meta-
data fields from more than the first page. Moreover, MetaEnhance
[4] uses AutoMeta [10] to fill in missing values and overwrite the
incorrect values. However, AutoMeta [10] achieved F1 scores of
0.67 to 0.91 against ETDQual500 for most metadata fields. There-
fore, enhancing the ability of AutoMeta [10] will significantly help
MetaEnhance [4] to achieve the best performance. In addition, de-
spite the performance of MetaEnhance [4] against ETDQual500, the
dataset lacks a significant amount of data points in two of four ma-
jor criteria, including misspellings and incorrect values to measure
the robustness of the model. Hence, we will build a challenging
dataset by augmenting more misspellings and incorrect surface
values to the ETDQual500.

5 Conclusion
We introduced ETDSuite, a library that is capable of performing
various tasks usingmachine learning and deep learning-basedmeth-
ods by incorporating text and visual features to segment, extract,
and parse ETDs. We demonstrated the results in the preliminary
works and briefly discussed our ongoing research effort to success-
fully built such an intelligent system. Moreover, we demonstrated
various challenges and the research gap for each framework. Devel-
oping ETDSuite will help us perform further downstream tasks. For
example, parsing citations from ETDs will help us build a citation
recommendation system for ETDs. Thus, building the ETDSuite
library will benefit all librarians, students, and scientists in the
academia and digital library domain.
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