An overview of problem, process & product

⇒ Chapters 3 - 9
 ⇒ Concepts
 ⇒ Metrics - measurements to direct management
 ⇒ Planning
 ⇒ Risk Analysis
 ⇒ Quality Assurance
 ⇒ Configuration management
People, product, process, project

⇒ People
 ⇒ Senior management
 ⇒ Technical management
 ⇒ Engineers & scientist - technical personnel
 ⇒ Customers
 ⇒ End users
As many approaches as managers

⇒ Decentralized leadership
 ⇒ democratic (group, consensus) - decisions by agreement, no designated decision makers.
 ⇒ communication - mainly within group and by group members with upper leadership

⇒ Centralized leadership
 ⇒ hierarchical - may be multi-level
 ⇒ leader with designated authority and responsibility.
 ⇒ decisions made by leader - consults with team members
 ⇒ communication - formal to and through team leader. leader may establish interface with team members

⇒ Combination - mix between decentralized and centralized
⇒ Adversarial - find other teams’ errors
⇒ Management by walking around - additional insight
Reasons for selection

⇒ The normal management structure of the organization

⇒ Difficulty of the problem

⇒ Personnel familiarity - past activity & project estimated time

⇒ Modularity of the problem & product

⇒ Many other aspects of the problem
 ⇒ Delivery schedule
 ⇒ Socializability of the project

May need to revise management approach during project
Coordination and communication

⇒ Formal - impersonal
 ⇒ designated documents, tech memos, milestones, schedules, error tracking reports, repository, etc.

⇒ Formal - interpersonal
 ⇒ focus on quality assurance activities, status reviews, code reading and inspection meetings

⇒ Informal
 ⇒ collocation - with encouragement to “water-cooler” activities
 ⇒ communications with persons with experience and insight

In most cases all types of communication exist to some degree
Customer communication - need definition, prel. approach, justification

Planning - requirements, preliminary design, solution approach(s)

Risk analysis - solution criticality, need and failure problems

Design - decomposition, modularization, interface definitions

Construction - coding, using components, packages, frameworks, libraries, etc.

Test and evaluation - unit, I/O module testing, white and black box

Customer release and evaluation
Project definition

W5HH Principle

⇒ Why? - Justification
⇒ What? - Solution approach
⇒ When? - Define the criticality. when and where does the need exist
⇒ Who? & Where? - The overall team including management, outside contracting and customer interface
⇒ How - technically and managerially - establish the organization, the technical strategy
⇒ How much - the resources including new capital expenditures required for success

⇒ All parts need to be in place. Omit even one may well lead to failure
“If you can’t measure it, you really don’t understand it”

- Viable data
 - Lines of Code
 - Effort - people - time may be subdivided between project tasks
 - Cost - direct and possibly overhead costs
 - Documentation pages
 - Errors - problems found before release. Due to many causes. It may be important to relate error to cause.
 - Defects - after release

- Metrics
 - Errors per KLOC, Defects per KLOC, $ per KLOC, Documentation per KLOC
Function Oriented Metrics

Object - Function Point

⇒ A means of providing project independent metrics

<table>
<thead>
<tr>
<th>Measure. Par</th>
<th>Par. Value</th>
<th>Weight factor</th>
<th>Weighted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Inputs</td>
<td>10</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Num. of Files</td>
<td>6</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>Ext. Interfaces</td>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Function Point Total 92

⇒ Use - Errors per FP; $ per FP, etc.
Project Assembled Metrics

<table>
<thead>
<tr>
<th>No</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>3.2</td>
<td>4.4</td>
<td>1.3</td>
<td>5.1</td>
<td>3.3</td>
<td>4.9</td>
<td>2.0</td>
<td>4.5</td>
<td>4.6</td>
<td>2.3</td>
<td>3.6</td>
<td>5.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>3.1</td>
<td>3.8</td>
<td>1.8</td>
<td>1.6</td>
<td>2.9</td>
<td>2.5</td>
<td>0.1</td>
<td>2.3</td>
<td>1.3</td>
<td>2.1</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Steps:

1. Calc. Moving Range: $|\text{Dif}|$
2. Plot Mean of $|\text{Dif}|$ - mR_bar
3. Multiply - $\text{mR_bar} \times 3.26$ (Upper Control Limit)
4. Question - are moving aver. inside UCL - yes - stable
Metric Evaluation (cont’d)

Indicates Management Software Operations are “Stable”
Beyond statistical analysis where failure is critical

⇒ Analyze the reason for each failure
⇒ For start determine reason(s) for failure (Fig. 4.3)
 ⇒ Bad specification
 ⇒ Improper coding due to miss interpretation
 ⇒ Change not coordinated properly
 ⇒ Wrong customer input - inadequate inquiry
⇒ Determine how best the failure can be corrected in future.
⇒ Implement the necessary changes in procedure to alleviate any future failures
⇒ Do so without looking for scapegoats, blame, etc.

You can learn more from failure than from success.
Management Metrics - Summary

⇒ Goals - provide quantitative information

⇒ about Software Development Group’s viability

⇒ to direct improvements to Groups capabilities

⇒ to enable better individual project management

⇒ to better serve the company’s customers while improving profits