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ABSTRACT
Electronic Theses and Dissertations (ETDs) contain domain knowl-

edge that can be used for many digital library tasks, such as ana-

lyzing citation networks and predicting research trends. Automatic

metadata extraction is important to build scalable digital library

search engines. Most existing methods are designed for born-digital

documents, so they often fail to extract metadata from scanned

documents such as ETDs. Traditional sequence tagging methods

mainly rely on text-based features. In this paper, we propose a con-

ditional random field (CRF) model that combines text-based and

visual features. To verify the robustness of our model, we extended

an existing corpus and created a new ground truth corpus consist-

ing of 500 ETD cover pages with human validated metadata. Our

experiments show that CRF with visual features outperformed both

a heuristic and a CRF model with only text-based features. The

proposed model achieved 81.3%-96% F1 measure on seven metadata

fields. The data and source code are publicly available on Google

Drive
1
and a GitHub repository

2
, respectively.
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1 INTRODUCTION
A thesis or dissertation is one type of scholarly work that shows a

student pursuing higher education has successfully met key require-

ments of a degree. An ETD is usually accessible from a university’s

digital library or a third-party ETD repository such as ProQuest.

Since the inception of ETDs around 1997, pioneered by Virginia

Tech, many ETDs are generated electronically (i.e., born-digital) by

computer software such as Latex and Microsoft Word. However,

the majority of the ETDs produced before 1997 and a significant

fraction of ETDs after 1997 are scanned from physical copies (i.e.,

non-born digital). These ETDs are valuable for digital preservation,

but to make them accessible, it is necessary to index metadata of

these ETDs.

Many ETD repositories are accompanied by incomplete, little, or

no metadata, posing challenges for accessibility. For example, advi-

sor names appearing on the scanned ETDs may not be available in

the metadata provided in the library repository. Thus, an automatic

approach should be considered to extract metadata from scanned

ETDs. Many tools [7–10] have been developed to automatically

extract metadata for relatively short and born-digital documents,

such as conference proceedings and journals published in recent

years. However, they do not work well with scanned book-length

documents such as ETDs. Extracting metadata from scanned ETDs

is challenging due to poor image resolution, typewritten text, and

imperfections of the OCR technology. Many commercial-based OCR

tools such as OmniPage, ABBYY FineReader, or Google Cloud API

OCR could be used for converting PDFs to text, but they usually

incur a cost. Therefore, we adopted Tesseract-OCR, an open-source

OCR tool, to extract metadata from the cover pages of scanned

ETDs. Tesseract-OCR supports printed and scanned documents and

more than 100 languages. It returns output in plain text, hOCR,

PDF, and other formats.

In our preliminary work, we proposed a heuristic method to

extract metadata from the cover pages of scanned ETDs. However,

heuristic methods usually do not generalize well. They often fail

when applied to a set of data with different a feature distribution.

In this paper, we investigate the possibility of improving the gener-

alizability of our method based on a learning-based model.

2 RELATEDWORK
Many frameworks have been proposed to extract metadata from

scholarly papers. CERMINE[10] was developed to extract structured

bibliographic data from scientific articles. It can extract informa-

tion related to title, author, author’s affiliation, abstract, keywords,
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journal, volume, issue, pages, and year. For the metadata extraction

tasks, they used both machine learning models such as Support

Vector Machine (SVM) and simple rule based models. The model

achieved an average F1 score of 77.5% for most metadata types and

the benchmark evaluation outperformed the existing tools, includ-

ing GROBID [9] and ParCit [2], while extracting metadata such as

title, email addresses, year, and references. One limitation of this

tool is that the PDF documents which contain scanned pages in the

form of images will not be properly processed.

GROBID[9] is a text mining library for extracting bibliographic

metadata from born-digital papers. GROBID is based on eleven

different CRF models and each uses the same CRF-based framework

which utilizes position (e.g., beginning or ending of the line), lexical

information, and layout information. It is capable of extracting

header and bibliographic metadata such as title, authors, affiliations,

abstract, date, keywords, and references. It achieves an accuracy of

74.9% per complete header instance but it fails to extract metadata

from non-born digital documents such as the cover page of scanned

ETDs.

In our previous work [1], we have introduced a heuristic model

to extract metadata fields from scanned ETD cover pages. It is a

rule based method where the metadata fields are captured using

a set of carefully designed regular expressions. Table 1 shows the

accuracy values obtained for each field for the sample of 100 ETDs.

These range from 39% to 97%.

3 DATASET
The dataset used in our previous study [1] consisted of a relatively

small number of ETDs from only two universities. To overcome this

limitation, we created a new dataset of 500 ETDs, which includes

450 ETDs from 15 US universities and 50 ETDs from 6 non-US

universities as illustrated in Figure 1. These ETDs were published

between 1945 and 1990. There are 350 STEM and 150 non-STEM

majors from 468 doctoral, 27 master’s, and 5 bachelor’s degrees. We

derived the following seven intermediate datasets from our set of

500 ETDs.

(1) The cover page of each ETD in PDF format.

(2) TIFF images of (1). The TIFF format is used as the input to

Tesseract because it tends to produce fewer errors than JPEG.

(3) TXT-OCR: The output of the Tesseract containing noisy text

extracted from the TIFF images.

(4) TXT-clean: The cleansed version of TXT-OCR dataset after

correcting misspellings, fixing the mistakes during OCR,

lowercasing the text, and removing empty lines between

text. We did not remove line breaks.

(5) TXT-annotated: Seven metadata fields annotated using the

GATE annotation tool [3].

(6) GT-meta: The ground truth from metadata provided by li-

braries. The data were gathered in the XML-format from

MIT, JSON-format from Virginia Tech, and in HTML format

for all other universities from the ProQuest database.

(7) GT-rev: Revised metadata from GT-meta after manually rec-

tifying discrepancies between library provided metadata and

the data present in the cover page of PDF documents.

We observed several challenges to convert scanned ETDs to text

(Figure 2).

Figure 1: Distribution of metadata fields: University (i) and
Program (ii) in the corpus of 500 ETDs.

Figure 2: OCR challenges for ETDs: scribble (i), stamp (ii),
overlapped letters (iii), and copyright character (iv).

(1) Some fields were not available on the cover page.

(2) Lines were present to fill the title, degree, author, etc.

(3) Multiple years are provided, such as “submitted year” and

“publication year.”

(4) There were ETD cover pages where author’s previous edu-

cational certifications are listed (e.g., University of British

Columbia) making it difficult to extract the degree field.

(5) College name is mentioned instead of university name (e.g.,

University of Oxford).

4 METHODOLOGY
4.1 CRF with Sequence Labeling (CRF Model)
CRF is a statistical modeling algorithm. This model assumes that

the features are dependent on each other, but also considers future

observation when modeling a sequence. It encodes each token of

the annotated fields as the beginning (B) and inside (I). For example,

if the token represents an author’s name, we will tag it as B-author

and I-author. The tokens which are not a part of the metadata fields

should be tagged as outside (O). The BIO tagging schema has been

applied in studies such as named entity recognition [11][2] and

keyphrase extraction [6].

We tagged each token with Part of Speech (POS). POS tags are

important here if the phrase consists of pronoun, preposition, or

determiner, e.g., “at the Massachusetts Institute of Technology.” If

the current token is “Massachusetts” tagged as NNP, we can infer

the POS of the two tokens before the current token. This assigns

to the previous two tokens, “at” and “the,” the POS tags IN and DT,

respectively. Our model extracts the following features.
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(1) Whether all the characters in the string are uppercase.

(2) Whether all the characters in the string are lowercase.

(3) Whether all the characters in a string are numeric.

(4) Last three characters of the current word.

(5) Last two characters of the current word.

(6) POS tag of the current word.

(7) Last two characters in the POS tag of the current word.

(8) POS of the two tokens after the current word.

(9) Whether the first character of consecutive words is upper-

case. For example, a title would have consecutive words that

start with an uppercase letter.

(10) Whether the first character is uppercase for the word that is

not at the beginning or end of the document. This is useful for

metadata fields such as author, advisor, program, degree, and

university. These fields are not generally at the beginning or

end of the document.

4.2 CRF with Visual Features (CRF-visual)
In the heuristic and the CRF models, we only incorporate text-based

features. When humans annotate the documents, they not only rely

on text, but also visual features, such as the positions of the text and

their lengths. For example, thesis titles usually appear in the upper

half of the cover page and the authors and advisors usually appear

in the lower half of the cover page. This inspires us to investigate

whether incorporating visual features can improve performance.

Visual information is represented by corner coordinates of the

bounding box (bbox) of a text span. We extract all x-coordinate

values (e.g., x1, x2) and y-coordinate values (e.g, y1, y2) for each

token. This information is available from hOCR files and XML

files, which are output from Tesseract. Figure 3(a) illustrates the

bounding box information of the token with x and y coordinates.

x1 is the distance from the left margin to the bottom right corner

of bbox, y1 is the distance from bottom margin to the bottom right

corner of bbox, x2 is the distance from left margin to the upper

right corner of bbox, and y2 is the distance from the bottom margin

to the upper right corner of the bbox. All coordinates are measured

with reference to the bottom-left corner of the token.

(a)

(b)

Figure 3: (a) Bounding boxmeasurement (b) OCRoutput text
(i.e., noisy) alignment with clean text

However, transferring these visual features is challenging be-

cause the ground truth text is output by Tesseract and rectified by

humans. Therefore, the characters in the rectified text are not neces-

sarily alignedwith Tesseract’s output. The position informationwas

only available for the OCR output. We applied text alignment us-

ing the longest common sequence [5]. In Bioinformatics, sequence

alignment has been commonly applied to align protein, DNA, and

RNA sequences which are usually represented by a string of char-

acters. We used an open-source tool known as Edlib [13] to align

the noisy text data and clean text. Edlib computes the similarity

and minimum edit distance between two text sequences. Then we

map the positions for each token from TXT-OCR to TXT-clean. Fig-

ure 3(b) illustrates an example of the alignment. We incorporated

three visual features to enhance the performance of the CRF model.

The following three features have been normalized between 0 and

1.

(1) left margin — x1 as a feature for all tokens in the same line.

(2) upper left corner — y2 as a feature for all tokens.

(3) bottom right corner — y1 as a feature for all tokens.

4.3 BiLSTM-CRF Model
Bidirectional Long Short Term Memory (BiLSTM) can learn the

hidden features automatically. It has been proven to be effective in

sequence labeling problems [12] and in encoding sequence tokens

into fixed-length vectors. BiLSTM tries to learn the context of the

given sentence in both forward and backward directions. We added

a CRF layer that classifies tokens based on their encoding. We

investigated BiLSTM-CRF to extract seven metadata fields. The

architecture of the classifier consists of three components: a word-

embedding layer, a BiLSTM as an encoder, and a CRF layer. BiLSTM

learns the forward and backward context in a sequence and feeds it

into the CRF layer, which further predicts the labels for each token

in a sequence. We used Adam as the optimizer and Keras word

embedding initialized with random weights. The batch size is set

to 32, and the model runs for up to ten epochs.

5 EVALUATION AND RESULTS
5.1 Heuristic Model
We apply the heuristic method on 500 variant sets of ETDs (Table 1).

The accuracy of the heuristic method on the 500 ETDs is consider-

ably lower than the accuracy in the 100 ETDs in the previous study

[1]. This is because the new dataset contains ETDs from a more

diverse set of universities and majors.

5.2 CRF Model and CRF-Visual
We divide the samples into two sets: 350 samples for training and

150 samples for testing. The CRF model predicts the labels for each

metadata field at the token level. However, we must glue together

the predicted tokens for each metadata field and compare them

against the corresponding GT-meta and GT-rev. While comparing

the title field against the GT-meta and GT-rev, a fraction of pre-

dicted titles did not match exactly, with a small difference such as a

punctuation mark or a space character. For example, the model pre-

dicted the title as “thermo- fluid dynamics of separated two - phase

flow.” However, in the GT meta it is “thermo-fluid dynamics of
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Table 1: Performance (accuracy) comparison between the
heuristic model on two datasets.

Field Accuracy% (100) Accuracy% (500)

Title 81% 45.0%

Author 78% 62.8%

Degree 81% 58.0%

Program 97% 8.0%

Institution 94% 18.8%

Year 65% 37.8%

Advisor 36% 5.0%

Figure 4: Performance (F1) comparison of the models
separated two-phase flow.” These small offsets are not caused by

the model but by line breaks and additional punctuation marks

added in text justification. Therefore, the predicted span should

be counted as a true positive. We use a fuzzy matching algorithm

based on Levenshtein distance and set a threshold of 0.95 when

matching predicted and ground truth titles. Figure 4 illustrates the

performance of our model. The model outperformed the baseline

model whereas CRF-visual outperformed both the baseline model

and CRF.

5.3 BiLSTM-CRF Model
The BiLSTM-CRF model generated poor results for all fields. The

F1 scores for token level labels such as B-title, I-title, B-author, and

I-author were only 34%, 34%, 24%, and 23%, respectively. The F1

measures for the remaining fields were even lower, so we did not

plot them in Figure 4. There are several possible reasons. One major

reason is the small size of the training data. The training set contains

350 ETD cover pages. Some fields contain less than 100 samples.

This is likely to overfit the neural model, so it does not generalize

well. Another reason could be due to the default word embedding

model provided by Keras. In light of recent advances in pre-trained

language models that rely on contextualized word embeddings [4],

it is possible to fine-tune these models on a relatively small set of

training data, which is a promising approach to beat the CRF model.

6 CONCLUSION
We applied three models including CRF, CRF-Visual, and BiLSTM-

CRF to extract seven metadata fields. We have observed that CRF-

visual outperformed our Heuristic Baseline model and CRF with

Sequence Labeling. Although BiLSTM-CRF did not perform well as

we expected, we will fine-tune this model in the future by adding

a pre-trained language models such as Bert. In the future, we will

also add Post-OCR error correction to our model and run directly

on real data (i.e., TXT-OCR) instead of rectified data (i.e., TXT-

clean). Although we used our model on rectified data, it reflects the

performance when the model will be used on real-world data.
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