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Abstract
We introduce SmartCiteCon (SCC), a Java
API for extracting both explicit and implicit ci-
tation context from academic literature in En-
glish. The tool is built on a Support Vector Ma-
chine (SVM) model trained on a set of 7,058
manually annotated citation context sentences,
curated from 34,000 papers in the ACL An-
thology. The model with 19 features achieves
F1=85.6%. SCC supports PDF, XML, and
JSON files out-of-box, provided that they are
conformed to certain schemas. The API sup-
ports single document processing and batch
processing in parallel. It takes about 12–45
seconds on average depending on the format
to process a document on a dedicated server
with 6 multithreaded cores. Using SCC, we
extracted 11.8 million citation context sen-
tences from ∼33.3k PMC papers in the CORD-
19 dataset, released on June 13, 2020. The
source code is released at https://gitee.
com/irlab/SmartCiteCon.

1 Introduction

Citations are ubiquitous in scientific publications.
With proper citations, statements in research pa-
pers are supported by existing works, and readers
obtain relevant information beyond the current pa-
per. Citations also form graphs, which provide
unique models for ranking, sentimental classifica-
tion, and plagiarism detection. Therefore, citation
analysis plays an important role in helping to under-
stand the deep connection between literature. Accu-
rate citation context recognition is the prerequisite
of many downstream applications. Recently, cita-
tion context, the text segment that appears around
the citation mark in the body text, has been used
for enhancing and improving keyphrase extraction
(Caragea et al., 2014) and document summarization
(Cohan and Goharian, 2015).

There are two types of citation context. Explicit
citation contexts (ECC) are sentences containing ci-

tation marks. Each citation thus corresponds to one
explicit citation context sentence. Implicit citation
contexts (ICC) are sentences that are semantically
relevant to the cited articles but do not contain ci-
tation marks. ICC may appear before or after but
may not immediately precede or follow the ECC
sentence. One paper could be cited multiple times
and each time may have different citation contexts.
In the example below, the ECC, containing the ci-
tation mark “(Ma et al. 2004)”, is highlighted in
green. The ICC sentences are highlighted in yel-
low. The nonhighlighted sentence is not a citation
context for the given citation.

We investigate the impact of
semantic constraints on sta
tistical word alignment models
as prior knowledge. In (Ma
et al. 2004), bilingual se
mantic maps are constructed
to guide word alignment. The
framework we proposed seamlessly
integrates derived semantic
similarities into a statistical
word alignment model. And we
extended monolingual latent se
mantic analysis in bilingual
application.

Most existing tools extract ECC, i.e., sentences
containing citation marks. Although the results
are highly relevant, the method omits ICC if the
author uses multiple sentences to summarize the
results. To our best knowledge, there are no off-
the-shelf tools dedicated to ICC extraction. Unlike
ECC sentences with citation marks, the lack of
explicit marks makes citation context recognition
challenging.

In this work, we develop a Java API that imple-
ments a supervised machine learning model trained
on 7058 manually labeled sentences to extract both
ECC and ICC. The model achieves an F1-measure
of 85.6%. The Java API can be deployed on a local
machine or as a web service.

https://gitee.com/irlab/SmartCiteCon
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2 Related Work

Several citation context extraction methods have
been developed. In Nanba and Okumura (1999),
the scope of the citation context covered several
consecutive sentences before and after the sen-
tences with citation marks (i.e., citation sentence),
identified based on a referential relationship with
the citation sentence. In another work, Markov
model was used for identifying citation context
(Qazvinian and Radev, 2010). Sugiyama (2010) de-
scribed a support vector machine (SVM) and maxi-
mum entropy (ME) model for identifying citation
sentences using shallow features such as proper
nouns and contextual classification of the previous
and next sentence (Sugiyama et al., 2010). They
found that the performances of SVM and ME do
not exhibit significant differences. The positive
samples were selected as sentences including cita-
tion marks using regular expression matching, ICC
extraction was not covered.

ParsCit is an open-source software commonly
used for citation parsing and citation context extrac-
tion (Councill et al., 2008). ParsCit parses citation
strings using a Conditional Random Field (CRF)
model. The citation context extraction was per-
formed by extracting a fixed window size of 200
characters on either side of the citation mark. GRO-
BID (Lopez, 2009) is a library to extract informa-
tion from scholarly documents. The documentation
reports the F1-measure of citation context resolu-
tion is around 75%, which counts both the correct
identification of citation marks and its correct asso-
ciation with bibliographic references.

In summary, existing citation context extraction
tools focus on ECC but ignore ICC, the latter of
which includes more sentences semantically related
to the cited papers.

3 Supervised Machine Learning Model

Our system is based on a supervised machine learn-
ing model proposed in Lei et al. (2016), which
classifies a sentence into ICC and non-ICC.

We adopted the ground truth built by Lei et al.
(2016) containing 130 articles from 34,000 com-
putational linguistics conference proceedings in
ACL Anthology. The original PDF files were con-
verted to XML format using OCR (Schäfer and
Weitz, 2012). The training set was labeled by 13
graduate students majoring in information manage-
ment. The labeling agreement was tested using
Cohen’s Kappa Coefficient (κ = 0.937). The fi-

nal ground truth contains 3,578 positive and 3,480
negative samples. The preprocessing uses Apache
OpenNLP for sentence segmentation. Citation
marks are identified using regular expressions. Ci-
tation marks are then removed, and the original
sentences are converted into regular sentences for
following analyses such as part-of-speech (POS)
tagging. Each sentence is represented by up to 19
features of four types (Table 1). The best model us-
ing all features achieves 86% F1-measure in a the
10-fold cross validation. The SVM outperformed
CRF by about 5% in F1-measure (Table 2).

4 Architecture

The SCC system completes the extraction in four
steps (Figure 1): (1) file type recognition, (2) pre-
processing, (3) feature extraction, and (4) sentence
classification. The output is a JSON file containing
ECC and ICC and other citation-related informa-
tion. The API was written based on the Springboot
framework in Java. The machine learning model
was implemented with WEKA.

4.1 File Type Recognition

SCC first recognizes the uploaded file type. For a
PDF file, SCC invokes GROBID and converts it
to an XML file under the TEI schema. If an XML
file is uploaded as input, SCC checks whether the
schema is in compliance with TEI or PloS ONE
schema and passes it to corresponding preproces-
sors. If a JSON file is uploaded, it checks if it is
in compliance with the S2ORC schema, published
by Semantic Scholar (Lo et al., 2020). We apply
Apache Tika to identify file format. Other format
of data files will not be processed.

4.2 Preprocessing

The preprocessing step reads files passed from the
last step with customized preprocessors depend-
ing on the schema and prepares a canonicalized
XML for feature extraction. This step includes the
following modules.

4.2.1 Tag removal
This module involves removing irrelevant tags from
the DOM structure in the XML file. For example,
in the PloS ONE XML files, the <fig>, <sub>, and
<italic> tags used for marking up figures, super-
scripts, and italic font are all moved. Only the text
inside these tags are retained. The <xref> tags
mark positions of citations, which will be used for



# Features Categories

1 Distance to the citation sentence Location
2 In the same paragraph as the citation sentence Location
3 Include any citation marks Location
4 The preceding sentence is not a citation sentence Location
5 The following sentence is not a citation sentence Location
6 The preceding sentence is the first in paragraph Location
7 Is the first sentence in the paragraph Location
8 Section the sentence is in Location
9 Is the last sentence in the paragraph Location

10 Trigram Jaccard similarity Content
11 Bigram Jaccard similarity Content
12 Unigram Jaccard similarity Content
13 Include author names Reference
14 Include any words in the citation sentence Reference
15 Include He/She/It or their variants Reference
16 Include Lexical hooks (Murray, 2015) Reference
17 Include Work Nouns (Murray, 2015) Reference
18 Number of citation marks Type
19 Include certain conjunction Structure

Table 1: Features of the SVM model. A citation sentence is the sentence containing a citation mark.

Model Precision Recall F1-measure

SVM 19 85.6% 85.6% 85.6%
CRF 19 82.2% 79.9% 80.8%

Table 2: Evaluation of SVM and CRF models on 19
features.

restoring citations. We use a separate data struc-
ture to store the positions of <xref> tags before
removing them.

4.2.2 Sentence segmentation
We compared five commonly used sentence seg-
mentation tools, including the Pragmatic Seg-
menter by Kevin Dias1, lingpine2, NLTK3, a reg-
ular expression parser, and the Stanford CoreNLP
(Manning et al., 2014) sentence splitter. The golden
standard contains 52 sentences provided by Kevin
Dias, which covers most possible sentence forms.
According to Dias’ comparison, the Pragmatic Seg-
menter receives an accuracy of 98% and the Stan-
ford CoreNLP’s accuracy is 59.6%. In our exper-
iments, the accuracies for Lingpipe, NLTK, and

1https://github.com/diasks2/pragmatic_
segmenter

2http://www.alias-i.com/lingpipe/
3https://www.nltk.org/

regular expression parsers are 61.5%, 50.0%, and
38.5%, respectively. The Pragmatic Segmenter is
implemented by Ruby on Rails. To make our API
less dependent on a second programming language,
we decided to employ Lingpipe for sentence seg-
mentation. We select up to five sentences before
and after the current citation sentence as the can-
didates for classification. This covers almost all
sentences that could be classified as ICC.

4.2.3 Canonicalization

Because the input XML may have different
schemas, this module takes the processed docu-
ments from the above modules and transforms them
into a unified schema for feature extraction. The
canonicalized schema defines new IDs for chapters,
paragraphs, sentences, and citations. The canon-
icalized XML also includes whether the current
sentence contains citation marks.

4.3 Feature Extraction and Text
Classification

This step extracts 19 features (Table 1) from the
canonicalized XML files and represents each can-
didate sentence as a vector saved in Livsvm files4.

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvm/

https://github.com/diasks2/pragmatic_segmenter
https://github.com/diasks2/pragmatic_segmenter
http://www.alias-i.com/lingpipe/
https://www.nltk.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


Figure 1: SmartCiteCon architecture.

The SVM model classifies each sentence and out-
puts a binary indicating whether a sentence is ICC
or not. The output JSON file contains citation
marks and their positions, citation sentences, and
sentences classified as ICC.

4.3.1 User Interfaces
Users can install SCC on a local machine. The API
interface supports 3 modes:

1. Single document mode – using the /extract

service;

2. Batch extraction model with files zipped
and transferred through TCP/IP – using
/batchExtract;

3. Local extraction model with files re-
trieved from a local directory – using
/localExtract.

In the single document and batch extraction
modes, the API will return JSON objects and ex-
ecution status. For the local extraction mode, the
API will return the execution status and the results
will be saved in JSON files.

5 SCC API Performance

We test the SCC API on a computer with 16GB
RAM and an Intel Core i7-8570H CPU@2.20GHz,
which has 6 hyperthreaded cores (12 threads in to-
tal). In a preliminary experiment, we compare the
runtime of processing 10 XML documents using
a single process under different JVM heap sizes.
The runtimes corresponding to 12GB, 8GB, 4GB,

and 2GB are 23.8 min, 12.7 min, 7.3 min, and
7.6 min, respectively. Higher heap does not boost
processing speed probably due to garbage collec-
tion. Based on the results, in the following exper-
iments, 4GB heap was allocated to JVM. The ex-
periments were set to extract citation context from
randomly selected documents in different formats.
The datasets include 10 PDF documents from PLoS
ONE, 10 XML documents corresponding to the
PDF documents, and 10 JSON documents from the
CORD-19 dataset. We monitor the system using
Jprofiler (version 11) and calculate the median time
it takes for processing one document as we vary the
number of processes Np. Figure 2 shows that the
CPU utilization increases from about 10% and sat-
urates when Np reaches 8. The memory utilization
climbs up slowly as Np increases but are mostly
well below the maximum allocated heap, because
processed documents are not stored in memory
anymore. The average processing time for all three
types gradually decreases as Np increases but in
general, it takes longer to process PDF files than
JSON and XML files. The maximum and mini-
mum processing time are shown in Table 3. The
runtime can be further reduced by running the API
on a computer with more processes on a multicore
server. On average, JSON files take the least time
to process.

6 Extracting Citation Context from
CORD-19

SCC is different from similar tools such as ParsCit
and GROBID in that it extracts both ECC and ICC.
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Figure 2: The performance of SCC on a multicore computer. Runtime is normalized at the 177 seconds; the middle
panel shows the CPU utilization monitored by Jprofiler; the right panel shows the memory utilization normalized
at 4GB.

XML PDF JSON

Max Min Max Min Max Min

164 43 177 45 39 12

Table 3: Runtime in seconds for different document
formats. The maximum and the minimum runtime are
achieved at Np = 1 and Np = 8, respectively.

We apply SCC and extract ECC and ICC from the
CORD-19 dataset. CORD-19 is an open-access
dataset compiled by Allen Institute of Artificial In-
telligence about COVID-19, SARS, MERS, and re-
lated keyphrases conforming to the S2ORC schema
(Lo et al., 2020). We downloaded the data released
on June 13, 2020 including 50,818 and 69,646 full
text papers under the PMC and the PDF folders re-
spectively. The PMC folder contains full-text files
obtained by parsing JATS5 XML files available for
PMC papers using a custom parser, generated to
the same target output JSON format. This resulted
in 1,605,695 ECC and 10,215,848 ICC sentences
from 33,319 documents. A fraction of documents
was not processed due to the lack of citation marks
and runtime exceptions.

SCC code is released at https://gitee.com/
irlab/SmartCiteCon. The dataset is available on
Microsoft OneDrive with a link on the code reposi-
tory.

7 Lessons Learned

The results in Table 3 indicate that SCC takes about
45 seconds on average to process a PDF document,
which is still relatively slow. Using Jprofiler, we
found that more than 90% time was spent on pre-
processing, specifically canonicalization, followed
by sentence classification (for XML and JSON) or

5https://jats.nlm.nih.gov/

file type recognition (for PDF). The bottleneck is
partially attributed to the word tokenization and
POS tagging in the Stanford CoreNLP API. One
way to mitigate this problem is to use the Stan-
ford CoreNLP Server6. Alternatively, we can use
Stanza (Qi et al., 2020), the successor of Stanford
CoreNLP. Empirical results have shown that it is
faster than CoreNLP in several NLP tasks. Stanza
was written in Python, but we can develop a REST-
ful service. The slowness can also be attributed
to the poor garbage collection in Java, which can
impact CPU usage massively. A more systematic
and fine-grained profiling is needed to diagnose the
root cause of this problem.

8 Conclusions and Future Works

We developed SmartCiteCon (SCC), a Java API to
extract explicit and implicit citation context from
academic literature. The API implements an SVM
model achieving an F1 = 85.6%. SCC accepts
XML (in PLoS ONE schema or GROBID schema),
PDF, and JSON (in S2ORC schema) formats. The
output of SCC is a JSON file containing marked
citation contexts and paper metadata if available.
We applied SCC on the PMC subset of the CORD-
19 dataset and obtained about 11.8 million citation
context sentences in which 10.2 million are implicit
citation context.

One limitation of SCC is that the model was
trained on papers in computational linguistics, so
more careful evaluation and feature distribution
analysis should be performed when applying the
model to other domains. In the future, we will
explore word embedding models to enrich semantic
features and improve scalability by overcoming
performance bottlenecks.

6https://stanfordnlp.github.io/
CoreNLP/corenlp-server.html

https://gitee.com/irlab/SmartCiteCon
https://gitee.com/irlab/SmartCiteCon
https://jats.nlm.nih.gov/
https://stanfordnlp.github.io/CoreNLP/corenlp-server.html
https://stanfordnlp.github.io/CoreNLP/corenlp-server.html


Acknowledgments

We thank Zikun Feng for setting up a web-based
user interface and Shengwei Lei for constructive
discussion.

References
Cornelia Caragea, Florin Adrian Bulgarov, Andreea

Godea, and Sujatha Das Gollapalli. 2014. Citation-
enhanced keyphrase extraction from research papers:
A supervised approach. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1435–1446.

Arman Cohan and Nazli Goharian. 2015. Scientific ar-
ticle summarization using citation-context and arti-
cle’s discourse structure. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 390–400, Lisbon, Portugal.
Association for Computational Linguistics.

Isaac Councill, C Lee Giles, and Min-Yen Kan. 2008.
ParsCit: an open-source CRF reference string pars-
ing package. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’08).

Shengwei Lei, Haihua Chen, Yong Huang, and Wei
Lu. 2016. Research on automatic recognition of aca-
demic citation context. Library and Information Ser-
vice, 60(17).

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. As-
sociation for Computational Linguistics.

Patrice Lopez. 2009. GROBID: combining auto-
matic bibliographic data recognition and term ex-
traction for scholarship publications. In Proceed-
ings of the 13th European Conference on Re-
search and Advanced Technology for Digital Li-
braries, ECDL’09, pages 473–474, Berlin, Heidel-
berg. Springer-Verlag.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Jonathan Murray. 2015. Finding implicit citations in
scientific publications. Master’s thesis, KTH Royal
Insitute of Technology.

Hidetsugu Nanba and Manabu Okumura. 1999. To-
wards multi-paper summarization using reference in-
formation. In Proceedings of the Sixteenth Interna-

tional Joint Conference on Artificial Intelligence, IJ-
CAI ’99, page 926–931, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Vahed Qazvinian and Dragomir R. Radev. 2010. Identi-
fying non-explicit citing sentences for citation-based
summarization. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 555–564, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, ACL 2020, On-
line, July 5-10, 2020, pages 101–108. Association
for Computational Linguistics.
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