
ScanBank: A Benchmark Dataset for Figure Extraction from
Scanned Electronic Theses and Dissertations

Sampanna Yashwant Kahu
Virginia Polytechnic Institute and

State University
Blacksburg, VA, USA
sampanna@vt.edu

William A. Ingram
Edward A. Fox

Virginia Polytechnic Institute and
State University

Blacksburg, VA, USA
{waingram,fox}@vt.edu

Jian Wu
Old Dominion University

Norfolk, VA, USA
jwu@cs.odu.edu

Abstract
We focus on electronic theses and dissertations (ETDs), aiming to
improve access and expand their utility, since more than 6 million
are publicly available, and they constitute an important corpus to
aid research and education across disciplines. The corpus is growing
as new born-digital documents are included, and since millions of
older theses and dissertations have been converted to digital form to
be disseminated electronically in institutional repositories. In ETDs,
as with other scholarly works, figures and tables can communicate
a large amount of information in a concise way. Although methods
have been proposed for extracting figures and tables from born-
digital PDFs, they do not workwell with scanned ETDs. Considering
this problem, our assessment of state-of-the-art figure extraction
systems is that the reason they do not function well on scanned
PDFs is that they have only been trained on born-digital documents.
To address this limitation, we present ScanBank, a new dataset
containing 10 thousand scanned page images, manually labeled by
humans as to the presence of the 3.3 thousand figures or tables found
therein. We use this dataset to train a deep neural network model
based on YOLOv5 to accurately extract figures and tables from
scanned ETDs. We pose and answer important research questions
aimed at finding better methods for figure extraction from scanned
documents. One of those concerns the value for training, of data
augmentation techniques applied to born-digital documents which
are used to train models better suited for figure extraction from
scanned documents. To the best of our knowledge, ScanBank is
the first manually annotated dataset for figure and table extraction
for scanned ETDs. A YOLOv5-based model, trained on ScanBank,
outperforms existing comparable open-source and freely available
baseline methods by a considerable margin.

CCS Concepts
• Information systems→Digital libraries and archives; •Com-
putingmethodologies→ Object detection; •Computer systems
organization→ Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
JCDL ’21, September 27–30, 2021, Virtual
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Keywords
Dataset, Digital Libraries, Deep Neural Networks, YOLOv5, Figure
Extraction, Electronic Theses and Dissertations

ACM Reference Format:
Sampanna Yashwant Kahu, William A. Ingram, Edward A. Fox, and Jian
Wu. 2021. ScanBank: A Benchmark Dataset for Figure Extraction from
Scanned Electronic Theses and Dissertations. In JCDL ’21: ACM/IEEE Joint
Conferences on Digital Libraries, September 27–30, 2021, Virtual. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction
Over the past decade, deep learning techniques have significantly
boosted the accuracy of object detection and classification in natu-
ral images [16, 18]. Document objects like figures and tables contain
important information. Their automatic identification and extrac-
tion from PDF files is key to enhancing computational access to
scholarly works. This facilitates important operations such as se-
mantic parsing, searching, and summarizing. Our research focuses
on Electronic Theses and Dissertations (ETDs), aiming to improve
access and expand their utility. Since more than 6 million ETDs
are publicly available, they constitute an important corpus to aid
research and education across disciplines. Beginning with Virginia
Tech in 1997, graduate programs all over the world allow (or of-
ten mandate) electronic submission of an ETD as a requirement
for graduation. University libraries often provide public access to
digital libraries of ETDs. Some universities scan older theses and
dissertations to provide electronic access to these older works. For
instance, Virginia Tech’s ETD collection dates back to the year 1903.
Most ETDs before the late 1990s are scanned versions of physical
copies. Our work aims at identifying and extracting figures and
tables from scanned ETDs. For brevity, we use figure extraction to
refer to the extraction of both figures and tables.

There are many challenges to accurately identifying figures in
scanned ETDs. The image resolution and scanning quality may
vary across the collection. OCR output is often error-ridden. Most
older ETDs were typewritten. In very old documents, figures and
tables may have been hand-drawn or rendered in a separate process
and literally cut-and-pasted into typewritten documents. Further,
since ETD collections are cross-disciplinary, the documents in them
present a variety of layout styles.

In the past decade, there has been a significant amount of effort
onmining scholarly big data, represented by hundreds of millions of
scholarly papers [15]. Comprehensive frameworks were developed
to segment scholarly papers into different levels of elements (e.g.,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

JCDL ’21, September 27–30, 2021, Virtual Kahu et al.

GROBID [23] and CERMINE [31]). Table and figure extraction soft-
ware also was developed [3] (e.g., PDFFigures [5], PDFFigures2 [4],
TableBank [20], DocBank [21], and DeepFigures [28]). However,
these either rely on the underlying document structure of a PDF
file [3–5, 31], or exclusively cater to the analysis of born-digital
documents [20, 21, 28].

One of the models that inspired our work is DeepFigures [28],
which generated high-quality labels for figures extracted in scien-
tific documents. DeepFigures was trained on data derived from
arXiv and PubMed datasets with a reported average precision of
96.8%. However, it performed poorly on scanned ETDs, as we
demonstrate in the experiments below.

Following are some of the contributions of our paper:
(1) We curate and release ScanBank, a new manually labeled

dataset for figure extraction from scanned ETDs with 10K
candidate page images labeled by humans as to the presence
of the 3.3K figures or tables found therein [14].

(2) We pose and answer important research questions aimed at
finding better methods for figure extraction from scanned
documents.

(3) We train and evaluate the performance of the YOLOv5 model
to extract figures and tables from scanned ETDs. To the best
of our knowledge, no existing baseline achieves comparable
performance.

(4) We propose novel data augmentation techniques to make
born-digital documents look like scanned ETDs.

(5) We also release the source code used for producing the results
in this paper, along with the trained models [13].

2 Related Work
In PDFFigures2 [4], Clark and Divvala proposed a new approach
that analyzes the structure of individual pages by detecting chunks
of body text, graphical elements, and captions – and then locates
figures and tables by reasoning about the empty regions in the
pages. Their results were used as a baseline in later work [28].
PDFFigures2 was designed for born-digital PDF documents since
it used a rule-based approach to extract figures by leveraging the
underlying document structure of the PDF document, which is not
explicit for scanned PDF documents.

Siegel et al. proposed DeepFigures [28], a method for extracting
figures, and tables from scholarly PDFs. Data from arXiv1 and
PubMed2 were used for locating figures in scientific papers, which
were then used for training a deep learning model, consisting of
ResNet [11] in conjunction with the Overfeat architecture [27], to
predict coordinates of the bounding boxes around figures.

Li et al. [20] proposed TableBank, an image-based table detec-
tion and recognition framework. Their contribution was a weakly
supervised machine learning (ML) model trained on a dataset of
Microsoft Word and LaTex documents crawled from the Web. The
authors included documents of different languages (e.g., Chinese,
English, Japanese, etc.) in TableBank, thereby making it more gen-
eral. The method also modified the document source code, allowing
them to generate a ground truth dataset of figures and tables, with
known bounding boxes. The authors took a step further and built a

1https://arxiv.org/help/bulk_data
2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist

recurrent neural network that converted a detected table (in an im-
age format) into a table markup format (i.e., a table parsed into text).
In other words, it converted an image of a table into a structured
machine readable format; this was called table structure recogni-
tion.

Hansen et al. [9] employed an object detection model called
Faster R-CNN, allowing them to achieve better region assignments
for tables in a PDF document than DeepFigures. They introduced a
dataset with 31,639 manually labeled PDF pages with image bound-
ing boxes. Like DeepFigures, Faster R-CNN and TableBank were
trained on born-digital documents.

Recently, Lee et al. [19] proposed the Newspaper Navigator
dataset, used for extracting and analyzing visual content from 16
million historic newspaper pages from “Chronicling America.” This
work used a manually labeled dataset of historic newspaper pages
containing labels for seven classes (headlines, photographs, illus-
trations, maps, comics, editorial cartoons, and advertisements). A
pre-trained Faster R-CNN model was fine-tuned on this dataset to
enable the extraction of the targeted visual content. The documents
used by this work were archived newspapers, which have different
visual structures from scholarly documents, such as ETDs.

YOLO is a popular deep learning framework, designed to detect
multiple objects in an input image in a single inference pass. It
is also well-known for its low space and time complexity during
inference, which makes it an ideal alternative for deployment on
devices where low resource consumption is vital. The initial version
of YOLO (YOLOv1) was proposed by Redmon et al. in 2016 [25]. This
was the first work which, instead of repurposing classifiers as object
detectors, framed object detection as a regression problem. YOLOv1
detects multiple bounding boxes in a single forward pass, so it
can be trained end-to-end directly for detection. Many subsequent
versions of YOLOwere proposed by various authors in the following
years. In 2020, the fifth version of YOLO (YOLOv5) was proposed
[32], which achieved the best detection performance among the
versions. It has four different network sizes (small, medium, large,
and extra-large), which allows users to make trade-offs between
the time and space complexity. We adopt the extra-large version of
YOLOv5 containing about 89 million trainable parameters.

Data augmentation [24] is a popular technique in deep learn-
ing that helps to train a model better without collecting new data.
Some of the common data augmentation methods are affine trans-
formations, random rotations, additive noise (e.g., salt-and-pepper,
Gaussian), perspective transformations, and random cropping [30].
We use the popular ImgAug 3 open-source software, which pro-
vides the capability to augment not only the image but also the
corresponding bounding boxes around images.

3 Research Questions
We address the following research questions (RQs) in this paper.

RQ1: How well can existing methods (e.g., DeepFigures), extract
figures from scanned ETDs? Existing methods, like DeepFigures,
have been trained and tested exclusively on born-digital documents.
Since scanned and born-digital documents differ considerably in vi-
sual appearance, it is necessary to investigate how well the existing
methods for figure extraction perform on scanned ETDs.

3https://github.com/aleju/imgaug

ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations JCDL ’21, September 27–30, 2021, Virtual

RQ2: Can the performance of existing methods (e.g., DeepFigures)
be improved by training them using an augmented version of their
original data or by weight initialization? Since the visual appearance
of scanned and born-digital ETDs differ significantly, we apply
different data augmentation techniques on born-digital documents
to make them visually look like scanned documents which are
then used to train existing methods and evaluate their performance.
Answers to RQ1 and RQ2 can help clarify if there is value in creating
a dataset like ScanBank.

RQ3: Can figure-extraction performance for scanned ETDs be im-
proved by training the DeepFigures or YOLOv5model on our ScanBank
dataset? The original DeepFigures model was trained using the
born-digital arXiv dataset. The model in RQ2 was also trained using
the born-digital arXiv dataset, albeit with augmentations. However,
the source of the data in both cases is still born-digital and labels
are automatically generated (Section 4.1.1). Therefore, to answer
this question, we train a state-of-the-art model (YOLOv5) using the
ScanBank dataset.

RQ4: Can transfer learning improve performance, training only
some of the layers of the deep neural network used in DeepFigures?
We freeze some of the layers of the pre-trained deep neural network
in DeepFigures and re-train the model.

4 Existing Frameworks

4.1 DeepFigures
Since our work builds upon DeepFigures [28], we review the gen-
eral strategy employed in that work. The overall approach of Deep-
Figures is to generate high-quality labels for figure extraction in a
large number of scientific documents for training a deep learning
model (ResNet-101 [11] + Overfeat [27]).

4.1.1 Label induction This step of the DeepFigures pipeline deals
with two types of datasets. The first is the arXiv4 dataset which
can be obtained using AWS’s S3 API5 as mentioned on their bulk
access website6. This dataset contains the LaTeX source code for
each research paper in the dataset which is first used to compile the
PDF which is converted to a list of page images. Then the LaTeX
source code is modified to add bounding boxes around figures. This
is achieved by adding a few lines of LaTeX code at the beginning
of the source code. These modified LaTeX files are compiled to
generate PDFs that are converted to images.

Using this method, each scholarly paper in the dataset can be
transformed into two lists of images. The first does not have any
bounding boxes around its figures but the second list does. Each
image in these two lists represents a single page from the PDF
document. Subtraction on each corresponding pair of images from
these two lists in a pixel-by-pixel fashion yields a subset of the
images, each of which has a bounding box around the figures. The
images resulting from the subtraction contain only the difference
between the subtrahend and minuend, which are the bounding
boxes around the figures. The top-left and the bottom right of each
of the bounding boxes is found using simple image processing
operations and used as the co-ordinates of the bounding boxes.

4https://arxiv.org
5https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
6https://arxiv.org/help/bulk_data

Labels are also generated for the PubMed dataset using its aux-
iliary data which includes image files for all graphics and XML
markup indicating the locations of captions. These image files are
used for multi-scale template matching on the page images of the
original paper to obtain the figure locations which are then used as
labels for training the DeepFigures model. The quality of a model
is evaluated by manually labeling randomly sampled images and
comparing against predicted labels.

4.2 YOLOv5
Our proposed approach is based on YOLOv5 [32], which offers
better usability with superior performance on the MS COCO bench-
mark [22] compared with YoloV4. The backbone network (for object
detection) of YOLOv5 implements BottleneckCSP [33]. YOLOv5
chooses PANet [34] for feature aggregation and adds an SPP [10]
block after BottleneckCSP to increase the receptive field and sep-
arate out the most important features from the backbone [2]. In
general, the models in the YOLO family have better performance
and are more compact than models of similar or larger size.

4.2.1 Data augmentation Before passing the input images to the
model, YOLOv5 uses three methods to augment the data: scaling,
color space adjustment, and mosaic augmentation. The mosaic
augmentation was a novel augmentation technique when YOLOv5
was developed, which works by combining four images into four
tiles with random ratios [29].

4.2.2 Anchor boxes The YOLOv5model predicts bounding boxes as
deviations from a list of anchor boxes. Using K-means and a genetic
algorithm, an initial set of anchor bounding boxes is learned from
the training set. These anchor boxes are then used as references for
learning the deviation to get the predicted bounding boxes [29].

4.2.3 Architecture Cross Stage Partial (CSP) networks [33] used in
YOLOv5 have significantly lower number of trainable parameters
and use fewer flops since they address the problem of duplicate
gradients from larger convolutional networks [29] resulting in a
faster inference time for YOLOv5.

4.3 Comparison of YOLOv5 and DeepFigures
4.3.1 Parameters vs. inference times Table 1 compares the Deep-
Figures and YOLOv5 models on the number of trainable param-
eters, the average inference time across 500 images processed on
an Nvidia Tesla P100 GPU, and the year the model was proposed.
The inference times in Table 1 do not include any time needed for
pre-processing the image or post-processing the predictions. We
measure only the time to make a single forward pass for a single
pre-processed image on the GPU.

Table 1: Comparison between DeepFigures and YOLOv5.

Model # params Inference time Year published

DeepFigures 45 million 33.514 ms 2018
YOLOv5 (XL) 89 million 35.048 ms 2020

The inference times are almost the same even though the number
of parameters in YOLOv5 is almost double that of DeepFigures,
which is because of the CSP network.

JCDL ’21, September 27–30, 2021, Virtual Kahu et al.

4.3.2 Architectural comparison The backbone of the DeepFigures
model is ResNet-101, and the head uses the Overfeat architecture.
The ResNet backbone consists of several CNN layers stacked on
top of each other with skip connections between them. With these
skip connections, an entire copy of the previous layer’s outputs
is bypassed and added to the current layer’s outputs. This makes
the back-propagation of gradients much easier for deep layers, and
significantly reduces learning parameters and convergence time
for deep neural networks.

The backbone and the head of YOLOv5 consist of a number of
stacked 1D and 2D convolution, up-sampling, and BottleNeckCSP
layers. BottleNeckCSP layers are BottleNeck layers that incorporate
the CSP architecture. In this architecture, a part of the outputs of the
base layers is split into two parts. The first part is directly linked
to the end of the stage, thereby skipping the model stage. The
second part goes through the model stage and is then concatenated
together with the first part.

Apart from these architectural differences, YOLOv5 also per-
forms mosaic data augmentation, which is absent in DeepFigures.
Furthermore, YOLOv5 has adaptive bounding box anchors which
are absent in DeepFigures. These anchors help with better predic-
tion in case the classes to be detected have a bias for shapes.

5 Data

5.1 arXiv dataset
The arXiv dataset consists of the LaTeX source code of research
papers. The authors of DeepFigures [28] used these LaTeX files
to induce labels for figures and then trained their models based on
these labels. We augment the data to make it visually similar to
scanned data, used for training models. Our proposed augmentation
techniques are elaborated in Section 6.2.

The arXiv dataset is born-digital by nature, which is still different
from scanned (non-born-digital) ETDs. This is why the MIT dataset
is introduced.

5.2 MIT dataset
As opposed to the arXiv dataset, PDFs in the MIT dataset are not
compiled from LaTeX source but by scanning physical hard-copies
of ETDs. However, because of a lack of bounding box information,
we need to manually label PDFs in this dataset. The result is Scan-
Bank, a manually labeled subset of the MIT dataset, described in
Section 6.1. We use it for training and evaluation.

5.3 Characteristics of scanned PDFs
As opposed to born-digital PDFs, scanned PDFs originally existed
as hard-copies and were later digitized into PDF using scanning
tools such as flat-bed scanners. The process of scanning introduces
certain artifacts in PDFs. For example, the content for some pages
might be slightly rotated or tilted because of errors in the placement
of paper in the scanner. Other kinds of noise such as salt-and-
pepper noise, blurring, and perspective transformations are also
possible. The content of the PDFs could have been typed using a
typewriter, or even hand-written. Therefore, the overall appearance
of a scanned PDF can vary significantly from a born-digital PDF. As
a result, the feature distribution of the data on which DeepFigures
was trained is significantly different from that of scanned PDFs. This

Figure 1: Year-wise distribution of ETDs sampled for the
ScanBank dataset.

leads to worse performance for DeepFigures for scanned ETDs,
according to our experiments.

6 Proposed Methods

6.1 The ScanBank dataset
To overcome the limitation of this born-digital dataset, we create a
new non-born-digital benchmark standard dataset for evaluation.

6.1.1 Collecting ETDs We download the PDFs and metadata of all
ETDs from MIT’s DSpace repository7. We choose this source for
three reasons. First, all of these ETDs were initially submitted as
paper copies and scanned into PDF. Second, the ETDs are organized
by department8 which facilitates sampling over different fields of
study. Third, each ETD has associated metadata that can be used
for sampling across years.

From the downloaded ETDs, we randomly sampled ETDs with
the following constraints. The publication date needs to be prior to
1990. At most one ETD comes from each sub-community (doctoral,
master’s, and bachelor’s) within each department. After accounting
for empty sub-communities, our sample contained a total of 70
ETDs (see Figure 1).

6.1.2 Labeling ETDs Next, we converted each page from PDF to
an image. Thus, if an ETD had 100 pages, we would have a total of
100 images. Then, we scaled the resolution to 100 dots per inch, so
an image resembles a “screenshot” of a page from the PDF. We did
not change the original aspect ratio of the pages when converting
them to images.

A total of 10,182 images of pages were obtained across the 70
sampled ETDs. We used the VGG Image Annotator (VIA) [7, 8] to
manually label these images with bounding boxes around figures.
The VIA tool provides a graphical user interface for manual labeling
of images. We used rectangular bounding boxes whose coordinates
can be recorded using mouse click-and-drag in the VIA tool. Each
bounding box contains the coordinates of the top left corner of the
bounding box and its actual width and height in pixels.

The following labeling guidelines were used:
(1) Some ETDs contained source code snippets. These code snip-

pets were not labeled.

7https://hdl.handle.net/1721.1/7582/
8https://dspace.mit.edu/

ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations JCDL ’21, September 27–30, 2021, Virtual

(2) “Table of Contents,” “List of Figures,” and “List of Tables”
sections were labeled since they are visually similar to tables.

(3) Captions for both figures and tables were labeled.
(4) The bibliography was not labeled since it can neither be

classified as a figure nor a table.
(5) Math equations (including matrices) were not labeled.
(6) For screen-captures (including newspaper clippings that con-

tain figures), the individual figures within the figures were
labeled. The encompassing figure was not labeled. No nested
or overlapping labelling was done.

When manually labeling the ScanBank dataset, the captions for
respective figures were included in their respective bounding boxes
to be consistent with the choice of DeepFigures. In total, 3,375
figures were labeled across the entire dataset.

6.1.3 Validation and test splits We split the ScanBank dataset into
two equal halves after shuffling it randomly. The first half will
be used as the validation set for fine-tuning or choosing the best
model during training. The second half will be used as the test set
for evaluating the model.

6.1.4 Accessing ScanBank The ScanBank dataset is freely available
online [14]. This contains a .json file which contains the coordinates
of the 3.3K bounding boxes that represent the figures in the 10K
images. Further, to limit the size of the downloaded file, this dataset
only contains the URLs of the ETDs which were used to create the
10K images in this dataset. The Python source code and instructions,
which are included in the dataset, can be executed to download the
ETDs and convert them into the individual 10K page images.

6.2 Data augmentation
We propose to improve the performance of DeepFigures by apply-
ing data augmentation strategies to the training data. The purpose is
to apply data augmentation techniques on born-digital documents
with the purpose of making them resemble scanned documents..
We use image-based and LaTeX-based transformations to modify
the original documents.

6.2.1 Image-based transformations Weuse a software library called
ImgAug9 to apply image-based transformations on each page. Each
transformation below is available as a function in ImgAug.
Random affine rotation While scanning the hard-copy of a doc-
ument, pages may be slightly rotated, and hence might not be
perfectly aligned.. Therefore, we rotate each page of a PDF file
by n degrees, where n is a float sampled from a standard uniform
distribution.
Additive Gaussian noise A flatbed scanner works by reflecting the
light from paper and creating an image of the paper based on the
naturally reflected light. Hence, we use Additive Gaussian Noise
to mimic this effect. The parameters of this noise are heuristically
chosen using trial-and-error.
Salt-and-pepper noise Salt-and-pepper noise is often seen on images
caused by sharp and sudden disturbances in the image signal [26].
We heuristically chose 0.1 as the probability of replacing a pixel by
noise.

9https://github.com/aleju/imgaug

Gaussian blur Unlike natural (analog) images, digital images must
be encoded with a specified resolution resulting in a pre-determined
number of bytes, and some loss of sharpness. Therefore, we apply
Gaussian blurring to smoothen the images using a Gaussian Kernel
(𝜎 = 0.5).
Linear contrast Although today’s scanners are built using modern
technology, they are incapable of capturing all colors of a natural
object. To incorporate this scanning effect, we add Linear Contrast
(parameterized by 𝛼 = 1).
Perspective transform Since scanned pages can sometimes look
stretched, we implement Perspective Transform10 in which a part
of the image (formed by randomly selecting 4 points) is stretched.

Random affine rotation and perspective transform might cause
geometric changes in the images which could lead to a mismatch
between the locations of bounding boxes and locations of the fig-
ures. To correct this mismatch, we use a feature in ImgAug that
transforms the bounding boxes according to the transformations
being applied.

Figure 2 (middle) shows the image of a page from a research paper
from arXiv [1] after applying the image-based data augmentation
operations mentioned above.

6.2.2 LaTeX-based data augmentations Although image-based trans-
formations change the overall appearance of a page, they do not
change the inherent structure of the text within the page. The text
still is well-formed and does not quite resemble the text from a PDF
scanned from a typewritten document. To achieve such effects, we
impose modifications in the LaTeX source code in addition to the
image-based transformations.
Change font size We incorporate this effect by modifying the fol-
lowing command at the beginning of each document.

\documentclass[sigconf]{acmart}

We replace it with the following command:
\documentclass[sigconf,12pt]{acmart}

Modify LaTex macros We add the following LaTeX source code
before the beginning of the document to change the font type of
the document to look more like a typewriter font and also increases
the line spacing to 1.5:

\renewcommand\ttdefault{cmvtt}
\renewcommand{\familydefault}{\ttdefault}
\linespread{1.5}

Figure 2 (right) shows the image after applying LaTeX-based
transformations. The change in the font type and text layout as
compared to the original page is shown in Figure 2 (left). The overall
processes for obtaining the labels from these augmented images are
illustrated in Figure 3; they occur after incorporating the proposed
modifications.

7 Results

7.1 Experiment 1: Evaluating the pre-trained
DeepFiguresmodel using ScanBank

7.1.1 Experimental setup Siegel et al. [28] released their source
code and model weights used for training DeepFigures. In this
10https://imgaug.readthedocs.io/en/latest/source/overview/geometric.html

JCDL ’21, September 27–30, 2021, Virtual Kahu et al.

Figure 2: (a) The left image shows the original page from [1] (page number 7). (b) The middle image shows the same page
after applying only image-based transformations. (c) The right image shows the page after applying both image-based and
LaTeX-based transformations. Note the change in font-size and font layout.

experiment, we evaluate its performance on our proposed Scan-
Bank dataset consisting of scanned ETDs. We run inference for
DeepFigures (using the trained model weights released in [28]) on
the validation and test splits of ScanBank.

Table 2: Performance of DeepFigures on 4 Datasets.

Model Precision Recall F1

CS-Large - - 0.849
PubMed - - 0.806

Validation 0.461 0.491 0.475
Testing 0.439 0.445 0.442

7.1.2 Evaluation metrics The DeepFigures model outputs a set of
bounding boxes for each figure it detects in the page image. We
filter out the bounding boxes whose confidence scores are lower
than 0.5. We match the predicted bounding boxes with the true
bounding boxes to minimize the total Euclidean distance between
the centers of paired bounding boxes. This is an instance of the
linear assignment problem [4, 28] solved using the Hungarian algo-
rithm [17]. Once the predicted boxes have been matched with the
true boxes, we deem a predicted box as correct if its intersection
over union (IOU) with the true box is greater than or equal to 0.8
(true positive), incorrect if less than 0.8 (false positive) [28]. When
a ground truth is present in the image and the model fails to detect
it, we deem it a false negative. Using these metrics, we calculate
the precision, recall, and F1 scores. The choices of the thresholds
described in Section 7.1.2 are made to be consistent with choices
made in DeepFigures [28].

7.1.3 Results Table 2 shows the performance of DeepFigures eval-
uated on four datasets. CS-Large and PubMed datasets are born-
digital scholarly documents. (Only the F1 scores were reported.)
The “Validation” and “Testing” are scanned ETDs. The performance
of DeepFigures with scanned ETDs is considerably lower than its
performance on CS-Large and PubMed datasets, indicating that it
is not suitable for accurately extracting their figures and tables.

7.2 Experiment 2: Ablation studies
7.2.1 Motivation In Section 6.2, we described the different pro-
posed data augmentation transformations, which were chosen
heuristically. To know the effectiveness of these transformations
we conduct ablation studies in two parts — first for LaTeX-based
transformations and then for image-based transformations.

In our implementation, each transformation in the list mentioned
in Section 6.2.1 and Section 6.2.2 can easily be disabled or enabled.
The total number of possible combinations for this is 2𝑛 , where n
is the number of transformations possible. Training 2𝑛 models for
a significantly large number of transformations may not always be
computationally feasible. Therefore, we propose a leave-one-out
ablation study to get a better idea about which transformations are
actually helpful.

7.2.2 Leave-one-out ablation study We train 𝑛 different models
in parallel (𝑛 is the total number of possible transformations). For
each model, we keep all of the hyper-parameters constant, except
the list of transformations to apply. For the 𝑖-th model, we disable
the 𝑖-th transformation and leave the remaining enabled. Based
on the results, if the 𝑖-th model performs poorly, we can say that
disabling the 𝑖-th transformation has worsened the performance
and therefore, enabling that transformation contributes positively
towards the model performance.

ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations JCDL ’21, September 27–30, 2021, Virtual

Figure 3: Our proposed pipeline to obtain training labels us-
ing data augmentation. Our proposed modifications on top
of DeepFigures [28] are highlighted using dotted lines.

Although the leave-one-out ablation study gives us some idea
about the performance of each transformation, it does not give the
entire picture. For instance, two transformations performing well
on their individual ablation studies could perform worse when used
together. This can be further extended for combinations of more
than two transformations. Therefore, we do not claim that the leave-
one-out strategy gives us the best combination of transformations.
However, it is helpful for weeding out the transformations that led
to a poor performance.

7.2.3 Results We trained 11 deep learning models described in
Section 7.2.2 for 24 hours. For eachmodel, we choose the checkpoint
that performed the best on the validation set of ScanBank. Then, we

reported its performance on the test set (Table 3). The performance
of the original pre-trained DeepFigures model was computed by
directly running inference on our testing dataset.

Table 3: Performance of the original DeepFigures model on
the ScanBank dataset compared to the models trained as
part of our leave-one-out ablation study. Inside parentheses
are transformations disabled and the training time in hours.

Model Precision Recall F1

DeepFigures 0.450 0.468 0.459

Ours (All enabled, 24) 0.550 0.521 0.535
Ours (All enabled, 72) 0.556 0.498 0.526

Ours (Gaussian Noise, 24) 0.547 0.456 0.498
Ours (Gaussian Noise, 72) 0.578 0.492 0.531

Ours (Affine, 24) 0.521 0.496 0.508
Ours (Affine, 72) 0.591 0.457 0.516

Ours (Gaussian Blur, 24) 0.450 0.471 0.460
Ours (Gaussian Blur, 72) 0.557 0.542 0.550

Ours (Linear Contrast, 24) 0.559 0.527 0.542
Ours (Linear Contrast, 72) 0.567 0.488 0.524

Ours (Perspective Transform, 24) 0.526 0.517 0.521
Ours (Perspective Transform, 72) 0.431 0.586 0.497

Ours (Salt and Pepper, 24) 0.574 0.579 0.576
Ours (Salt and Pepper, 72) 0.554 0.525 0.539

Ours (Line spacing 1.5, 24) 0.454 0.642 0.532
Ours (Line spacing 1.5, 72) 0.542 0.641 0.588

Ours (Typewriter font, 24) 0.543 0.465 0.501
Ours (Typewriter font, 72) 0.624 0.490 0.549

We make the following observations from Table 3. (1) The F1-
scores of almost all of ourmodels surpass the F1-score of the original
DeepFigures model, indicating that the performance of figure ex-
traction for scanned documents can be improved using augmented
data. (2) The model in which Gaussian Blur was disabled has a
score of 0.460. This is close to the F1-score of the original Deep-
Figures model (0.459). In all of the other models, Gaussian Blur
was enabled, and their performance is significantly higher than the
original DeepFiguresmodel. Apparently, Gaussian Blur is the most
helpful transform.

To find out how the model performance changes with training
time, we re-run this experiment by re-training the eleven models
for 72 hours. Again, we observe that almost all of our models sig-
nificantly out-perform the original DeepFigures model, which is
consistent with the observations when models were trained for 24
hours (Table 3). However, the new experiments show contrastive
results when the models are trained for 72 hours. For example,
the F1-score of the model in which Gaussian Blur is disabled is
no longer the model with the lowest performance. In contrast, it
significantly outperforms the model when the training time is 24
hours. On the other hand, the F1-score of the model in which Addi-
tive Gaussian Noise is disabled (0.531) is higher than the F1-score

JCDL ’21, September 27–30, 2021, Virtual Kahu et al.

of the model in which Affine transform is disabled (0.516). The
F1 decreases the most when Perspective Transform was disabled,
indicating that Perspective Transform seemed the most helpful.
Because of these contrasting observations, the current experiments
do not prove which type of transformation is the most helpful.
The significant change of F1 when the training time is 72 hours
indicated the model at 24 hours may not be sufficiently trained.
Training for a longer time is needed to observe the decrease of F1
for certain features before conclusively assessing their importance
in data augmentation.

7.3 Experiment 3: Training YOLOv5
7.3.1 Experimental setup Experiments 1 and 2 used the DeepFig-
ures model. However, the best F1-score we have obtained is still
less than 0.588. In this experiment, we use YOLOv5, a state-of-the-
art object detection framework. We choose the extra-large version
of YOLOv5 with about 89 million trainable parameters (Section 2).
We train on the ScanBank dataset with batch size of eight, and use
eight-fold cross-validation to report its performance.

7.3.2 Results We observe that the mean F1-score of all the cross
validation folds is 0.860 with a standard deviation of 0.073 (Table 4).
This F1-score is significantly higher than the F1-score of the original
DeepFigures model evaluated on our ScanBank standard dataset
(Table 2). This F1-score is also significantly higher than the F1-score
obtained in any of our previous experiments.

In the previous experiments, we used the DeepFigures model
architecture which uses a combination of ResNet-101 and Overfeat.
The total number of parameters in DeepFigures is about 45 mil-
lion. YOLOv5’s model contains about 89 million parameters. This
means that the number of trainable parameters in YOLOv5 is al-
most double that of DeepFigures (Table 1). This result is consistent
with previous observation that empirically, a model’s performance
increases with the model size [12].

Table 4: Performance of the original DeepFigures model on
the ScanBank dataset compared with the 8-fold cross valida-
tion of YOLOv5.

Model Precision Recall F1

DeepFigures 0.450 0.468 0.459

YOLOv5 (K=0) 0.749 0.869 0.804
YOLOv5 (K=1) 0.870 0.821 0.845
YOLOv5 (K=2) 0.75 0.691 0.720
YOLOv5 (K=3) 0.928 0.972 0.949
YOLOv5 (K=4) 0.886 0.937 0.911
YOLOv5 (K=5) 0.887 0.935 0.910
YOLOv5 (K=6) 0.804 0.889 0.844
YOLOv5 (K=7) 0.859 0.932 0.894

YOLOv5 (Mean) 0.842 0.881 0.860
YOLOv5 (Std. dev.) 0.066 0.090 0.073

7.4 Experiment 4: Comparison with other
models

7.4.1 Experimental setup In this section, we compare our results
with other models on this problem. In our work, we try to extract
figures from scanned ETDs. Other similar models were not exactly
designed for this task. Therefore, we compare our results with other
research in this field which aims to achieve similar goals. For exam-
ple, Google Cloud’s commercial machine learning offering AutoML,
and Microsoft Azure’s Custom Vision, allow users to upload a la-
belled dataset and train it on the cloud without the need to select
any model architecture or hyper-parameters.

We uploaded our labeled ScanBank dataset to Google Cloud and
Microsoft Azure and trained our model on these platforms. For
Google Cloud AutoML, we let the platform choose how to split
the dataset into different classes for training. Such an option is
not available for Microsoft Custom Vision, so we used 80% of the
dataset for training and validation, and the rest for testing. Amazon
AWS’s SageMaker (AutoPilot) supports only Regression, Binary
Classification, and Multiclass Classification11. Since it does not yet
support Object Detection, we exclude it from this experiment. An-
other baseline we compare is [19] proposed by Lee et al. In their
work, a Detectron2 model is trained to extract figures from a manu-
ally labelled dataset of historic scanned American newspapers, the
visual appearance of which significantly differs from scanned ETDs.
We used the pre-trained model released in [19] to run inference
on our ScanBank dataset. Each predicted bounding box is labelled
with one of the following seven classes: Photograph, Illustration,
Map, Comics/Cartoon, Editorial Cartoon, Headline, and Advertise-
ment. The last two classes (i.e., Headline, and Advertisement) are
not figure-like. Therefore, for the purpose of this experiment, we
only consider the predictions for the first five classes, and apply
non-maximal suppression to eliminate duplicate predictions (confi-
dence/objectness threshold = 0.5, IOU threshold = 0.8).

For all of these models, we used a confidence threshold of 0.5
to filter out less confident predictions. Further, to compare the
predicted labels with ScanBank’s labels, we used an IOU threshold
of 0.8 to maintain parity with our previous experiments and with
DeepFigures.

7.4.2 Results The performance of the Newspaper Navigator model
[19] is significantly lower than the YOLOv5 model trained on our
ScanBank dataset (Table 5). This is likely because the Newspaper
Navigator model was originally trained on a different dataset, while
AutoML and Custom Vision models were trained on the ScanBank
dataset. Moreover, our ScanBank dataset includes the labels for
tables too, which the Newspaper Navigator model was not explicitly
trained to extract. This drop in performance further highlights the
novelty and distinct use-case satisfied by our ScanBank dataset.
The drop in performance could also be potentially explained by the
different model architectures used (i.e., YOLOv5 vs. Detectron2).
However, such a significant drop in performance for similar tasks
is highly unlikely in two state-of-the-art models from a similar
time-period.

11https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-
development-problem-types.html

ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations JCDL ’21, September 27–30, 2021, Virtual

Since Custom Vision does not disclose the architecture of its
model(s), it is difficult to investigate its performance trends. How-
ever, it was surprising that even when trained on our ScanBank
dataset, CustomVision performs significantly lower than the YOLOv5
model trained in Section 7.3. Similar to CustomVision, AutoML does
not disclose the specifics of its models. However, it is mentioned
that AutoML12 uses Neural Architecture Search (NAS) to automat-
ically find the best model architecture for the given task, which
could be one of the reasons for higher performance of AutoML on
ScanBank (Table 5). However, NAS usually is more computationally
expensive than a regular fixed-architecture neural network.

Table 5: Performance comparison of various models with 8-
fold cross validation of YOLOv5 trained in Section 7.3.

Model Precision Recall F1

DeepFigures 0.450 0.468 0.459

Newspaper Navigator (LOC) 0.328 0.311 0.320
Azure Custom Vision 0.468 0.564 0.511

Google AutoML 0.908 0.878 0.893

YOLOv5 (trained on ScanBank) 0.842 0.881 0.860

8 Discussion
In Section 7.1, we evaluated the performance of the pre-trained
DeepFigures model on ScanBank (Table 2) which served as the
baseline for subsequent experiments. We observed that the F1-score
of the pre-trained DeepFigures model was substantially lower for
extracting figures from scanned scholarly documents than that of
born-digital ones. This is likely due to the different visual char-
acteristics of a scanned document and a born-digital document
introduced during scanning hard copies.

Answer to RQ1: The performance of the original DeepFigures
is significantly lower for figure extraction from scanned ETDs as
compared to its performance for figure extraction from born-digital
documents.

In Section 7.2, we use the various data augmentation techniques
described in Section 6.2.1 and Section 6.2.2 to improve the per-
formance of DeepFigures. The goal of these data augmentation
techniques is to leverage the LaTeX source code of the training
data to make the compiled PDFs look more like scanned PDFs. In
Table 3, we observe that models trained using augmented data
almost always produced a higher F1-score than the original pre-
trained DeepFiguresmodel, indicating the effectiveness of our data
augmentation techniques.

Answer to RQ2: The original DeepFigures model can be im-
proved by retraining it on augmented data using weight initializa-
tion from the pre-trained model.

In Section 7.3, we train YOLOv5 to improve the F1-score further.
We initialized the weights randomly since we did not have any pre-
trained set of YOLOv5 weights for a similar task. When we trained
the YOLOv5 (extra-large) on the ScanBank dataset using 8-fold
cross-validation, we obtained a mean F1-score of 0.86, indicating

12https://www.fast.ai/2018/07/23/auto-ml-3/

the advantages introduced by YOLOv5 and its relatively big size
compared to DeepFigures (see Table 1). A similar trend was seen
in improvement of image classification tasks with larger models
[12].

The better performance of YOLOv5 compared withDeepFigures
could also be attributed to themosaic data augmentation in YOLOv5.
Although our data augmentation techniques try to make the pages
look more like scanned pages, the mosaic data augmentation has
been shown to provide a stronger regularization effect [2]. Fur-
thermore, the backbones used in these two networks are different
which contribute to the difference in their performance. YOLOv5’s
backbone heavily borrows from CSPNet while DeepFigures uses
the ResNet-101.

Answer to RQ3: The performance of the original DeepFigures
model was not improved by training on manually labeled data.
However, by using YOLOv5, we were able to achieve an F1-score
much higher than any of the trained DeepFigures models.

All models in Section 7.2 were trained on the augmented born-
digital arXiv dataset. To check whether the performance of Deep-
Figures can be further improved, we conducted two more experi-
ments. In both of these experiments, we initialized the weights of
the DeepFigures model with the weights released in the original
DeepFigures paper [28] and trained the models on the ScanBank
dataset with an 80-20 split. In the first model, we allowed all lay-
ers to train, while in the second model, we allowed only the final
fully-connected layers to train (a.k.a., the Overfeat layers). In both
experiments, the F1-score decreased and never surpassed the origi-
nal score.

Answer to RQ4: The performance of the original DeepFigures
model was not improved by using transfer learning.

9 Conclusion and Future Work
This work focuses on extracting figures from scanned ETDs. We
introduce our ScanBank dataset, which, to the best of our knowl-
edge, is the first manually annotated dataset for figure and table
extraction from scanned ETDs. In our ablation study, some of our
augmentation methods did not help (e.g. Salt-and-pepper and line
spacing 1.5), others resulted in F1-scores even higher than the pre-
trained DeepFigures model (e.g. Gaussian Blur). Table 3 shows the
results of our leave-one-out ablation study. Finally, the YOLOv5
model trained on the ScanBank dataset beats all of the previous
models by a significant margin.

One of the real-world applications of this type of research would
be to enhance the search engines for academic publications. This
was demonstrated in DeepFigures by deploying their system at
scale on the Semantic Scholar website. Another potential applica-
tion is for visual question answering from the extracted figures.
Examples include finding the number of bar charts from the ex-
tracted figures, or answering questions from the extracted figures,
such as “What is the peak value in a given plot?” Our work can be
potentially used for building search interfaces of archived periodi-
cals in digital libraries such as HathiTrust [6].

We plan to boost the performance by doubling the size of the
ground truth dataset and combining heuristic methods (as in PDF-
Figures2) and learning basedmethods. An alternative and promising
approach to generate scanned ETDs out of born-digital ETDs is to

JCDL ’21, September 27–30, 2021, Virtual Kahu et al.

leverage the recent advances in style transfer using CycleGANs [35].
We will also investigate differential performance of the proposed
model on figures and tables, respectively, given separate labels for
these two content types. Figures and tables extracted from our
model can be used for building figure search functionalities for
large scale digital library search engines for ETDs.

Acknowledgments
Support was made in part by the Institute of Museum and Library
Services for grant LG-37-19-0078-198.We thank Dr. Ammar at Allen
Institute of Artificial Intelligence for helpful suggestions.

References
[1] Simon Barthelmé, Hans Trukenbrod, Ralf Engbert, and Felix Wichmann.

2012. Modelling fixation locations using spatial point processes. (2012).
arXiv:1207.2370 [stat.AP] http://arxiv.org/abs/1207.23701

[2] Alexey Bochkovskiy, Chien-YaoWang, and Hong-YuanMark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. CoRR abs/2004.10934 (2020).
arXiv:2004.10934 https://arxiv.org/abs/2004.10934

[3] Sagnik Ray Choudhury, Suppawong Tuarob, Prasenjit Mitra, Lior Rokach, Andi
Kirk, Silvia Szep, Donald Pellegrino, Sue Jones, and Clyde Lee Giles. 2013. A figure
search engine architecture for a chemistry digital library. In 13th ACM/IEEE-CS
Joint Conference on Digital Libraries, JCDL ’13, Indianapolis, IN, USA, July 22 - 26,
2013. 369–370. https://doi.org/10.1145/2467696.2467757

[4] Christopher Clark and Santosh Divvala. 2016. PDFFigures 2.0: Mining Figures
from Research Papers. In Proceedings of the 16th ACM/IEEE-CS Joint Conference
on Digital Libraries (Newark, New Jersey, USA) (JCDL ’16). ACM, New York, NY,
USA, 143–152. https://doi.org/10.1145/2910896.2910904

[5] Christopher Andreas Clark and Santosh Kumar Divvala. 2015. Looking Beyond
Text: Extracting Figures, Tables and Captions from Computer Science Papers. In
Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Papers from the 2015
AAAI Workshop, Austin, Texas, USA, January, 2015. http://aaai.org/ocs/index.
php/WS/AAAIW15/paper/view/10092

[6] J. S. Downie, Sayantani Bhattacharyya, Francesca Giannetti, Eleanor Koehl, and
Peter Organisciak. 2020. The HathiTrust Digital Library’s potential for musicol-
ogy research. International Journal on Digital Libraries (2020), 1–16.

[7] A. Dutta, A. Gupta, and A. Zissermann. 2016. VGG Image Annotator (VIA).
http://www.robots.ox.ac.uk/ vgg/software/via/. Version: 2.0.9, Accessed: March
2, 2020.

[8] Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation Software for
Images, Audio and Video. In Proceedings of the 27th ACM International Conference
on Multimedia (Nice, France) (MM ’19). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3343031.3350535

[9] Matthias Hansen, André Pomp, Kemal Erki, and Tobias Meisen. 2019. Data-
Driven Recognition and Extraction of PDF Document Elements. Technologies 7,
3 (2019), 65.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. Spatial Pyramid
Pooling in Deep Convolutional Networks for Visual Recognition. In Computer
Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 8691),
David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer,
346–361. https://doi.org/10.1007/978-3-319-10578-9_23

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385. arXiv:1512.03385 http:
//arxiv.org/abs/1512.03385

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(Eds.). 103–112. http://papers.nips.cc/paper/8305-gpipe-efficient-training-of-
giant-neural-networks-using-pipeline-parallelism

[13] Sampanna Kahu, William A. Ingram, Edward A. Fox, and Jian Wu. 2021. Sam-
pannaKahu/ScanBank: v0.2. https://doi.org/10.5281/zenodo.4663540

[14] Sampanna Kahu, William A. Ingram, Edward A. Fox, and Jian Wu. 2021. The
ScanBank Dataset. https://doi.org/10.5281/zenodo.4663578

[15] Madian Khabsa and C. Lee Giles. 2014. The number of scholarly documents on
the public web. PLoS ONE 9, 5 (May 2014), e93949.

[16] Nick Koudas, Raymond Li, and Ioannis Xarchakos. 2020. Video Monitoring
Queries. In 36th IEEE International Conference on Data Engineering, ICDE 2020,

Dallas, TX, USA, April 20-24, 2020. IEEE, 1285–1296. https://doi.org/10.1109/
ICDE48307.2020.00115

[17] H. W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, 1-2 (1955), 83–97. https://doi.org/10.1002/nav.
3800020109

[18] Rayson Laroca, Evair Severo, Luiz A. Zanlorensi, Luiz S. Oliveira, Gabriel Resende
Gonçalves, William Robson Schwartz, and David Menotti. 2018. A Robust Real-
Time Automatic License Plate Recognition Based on the YOLO Detector. In 2018
International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro,
Brazil, July 8-13, 2018. IEEE, 1–10. https://doi.org/10.1109/IJCNN.2018.8489629

[19] Benjamin Charles Germain Lee, Jaime Mears, Eileen Jakeway, Meghan Ferriter,
Chris Adams, Nathan Yarasavage, Deborah Thomas, Kate Zwaard, and Daniel S.
Weld. 2020. The Newspaper Navigator Dataset: Extracting and Analyzing Visual
Content from 16 Million Historic Newspaper Pages in Chronicling America.
CoRR abs/2005.01583 (2020). arXiv:2005.01583 https://arxiv.org/abs/2005.01583

[20] Minghao Li, Lei Cui, Shaohan Huang, FuruWei, Ming Zhou, and Zhoujun Li. 2019.
TableBank: Table Benchmark for Image-based Table Detection and Recognition.
CoRR abs/1903.01949 (2019). arXiv:1903.01949 Retrieved October 9, 2019 from
http://arxiv.org/abs/1903.01949

[21] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, FuruWei, Zhoujun Li, and Ming
Zhou. 2020. DocBank: A Benchmark Dataset for Document Layout Analysis.
arXiv:2006.01038 [cs.CL]

[22] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 8693), David J. Fleet, Tomás Pajdla, Bernt Schiele, and
Tinne Tuytelaars (Eds.). Springer, 740–755. https://doi.org/10.1007/978-3-319-
10602-1_48

[23] Patrice Lopez. 2009. GROBID: Combining Automatic Bibliographic Data Recog-
nition and Term Extraction for Scholarship Publications. In Proceedings of the
13th European Conference on Research and Advanced Technology for Digital Li-
braries (Corfu, Greece) (ECDL’09). Springer-Verlag, Berlin, Heidelberg, 473–474.
https://dl.acm.org/doi/10.5555/1812799.1812875

[24] Luis Perez and Jason Wang. 2017. The Effectiveness of Data Augmentation
in Image Classification using Deep Learning. CoRR abs/1712.04621 (2017).
arXiv:1712.04621 http://arxiv.org/abs/1712.04621

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[26] Zhibin Ren, Xingyuan He, Haifeng Zheng, and Hongxu Wei. 2018. Spatio-
Temporal Patterns of Urban Forest Basal Area under China’s Rapid Urban Expan-
sion and Greening: Implications for Urban Green Infrastructure Management.
Forests 9, 5 (May 2018), 272. https://doi.org/10.3390/f9050272

[27] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and
Yann LeCun. 2013. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks. CoRR abs/1312.6229 (2013). arXiv:1312.6229
Retrieved October 9, 2019 from http://arxiv.org/abs/1312.6229

[28] Noah Siegel, Nicholas Lourie, Russell Power, and Waleed Ammar. 2018. Ex-
tracting Scientific Figures with Distantly Supervised Neural Networks. CoRR
abs/1804.02445 (2018). arXiv:1804.02445 Retrieved October 9, 2019 from http:
//arxiv.org/abs/1804.02445

[29] Jacob Solawetz. 2020. YOLOv5 New Version - Improvements And Evaluation.
Retrieved March 27, 2021 from https://blog.roboflow.com/yolov5-improvements-
and-evaluation/

[30] Martin A Tanner. 2012. Tools for statistical inference: observed data and data
augmentation methods. Vol. 67. Springer Science & Business Media. https:
//doi.org/10.1007/978-1-4684-0510-1

[31] Dominika Tkaczyk, Paweł Szostek, Mateusz Fedoryszak, Piotr Jan Dendek, and
Łukasz Bolikowski. 2015. CERMINE: Automatic Extraction of Structured Meta-
data from Scientific Literature. International Journal on Document Analysis and
Recognition (IJDAR) 18, 4 (2015), 317–335. https://doi.org/10.1007/s10032-015-
0249-8

[32] Ultralytics. 2020. YOLOv5. Retrieved October 10, 2020 from https://github.com/
ultralytics/yolov5

[33] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-
Wei Hsieh, and I-Hau Yeh. 2020. CSPNet: A New Backbone that can Enhance
Learning Capability of CNN. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020.
IEEE, 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203

[34] Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi Feng. 2019.
PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment. In
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019. IEEE, 9196–9205. https://doi.org/
10.1109/ICCV.2019.00929

[35] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks. CoRR
abs/1703.10593 (2017). arXiv:1703.10593 http://arxiv.org/abs/1703.10593

https://arxiv.org/abs/1207.2370
http://arxiv.org/abs/1207.23701
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1145/2467696.2467757
https://doi.org/10.1145/2910896.2910904
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10092
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10092
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1007/978-3-319-10578-9_23
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://papers.nips.cc/paper/8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism
http://papers.nips.cc/paper/8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism
https://doi.org/10.5281/zenodo.4663540
https://doi.org/10.5281/zenodo.4663578
https://doi.org/10.1109/ICDE48307.2020.00115
https://doi.org/10.1109/ICDE48307.2020.00115
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/IJCNN.2018.8489629
https://arxiv.org/abs/2005.01583
https://arxiv.org/abs/2005.01583
https://arxiv.org/abs/1903.01949
http://arxiv.org/abs/1903.01949
https://arxiv.org/abs/2006.01038
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://dl.acm.org/doi/10.5555/1812799.1812875
https://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
https://doi.org/10.3390/f9050272
https://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1804.02445
http://arxiv.org/abs/1804.02445
http://arxiv.org/abs/1804.02445
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://doi.org/10.1007/978-1-4684-0510-1
https://doi.org/10.1007/978-1-4684-0510-1
https://doi.org/10.1007/s10032-015-0249-8
https://doi.org/10.1007/s10032-015-0249-8
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/ICCV.2019.00929
https://doi.org/10.1109/ICCV.2019.00929
https://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Existing Frameworks
	4.1 DeepFigures
	4.2 YOLOv5
	4.3 Comparison of YOLOv5 and DeepFigures

	5 Data
	5.1 arXiv dataset
	5.2 MIT dataset
	5.3 Characteristics of scanned PDFs

	6 Proposed Methods
	6.1 The ScanBank dataset
	6.2 Data augmentation

	7 Results
	7.1 Experiment 1: Evaluating the pre-trained DeepFigures model using ScanBank
	7.2 Experiment 2: Ablation studies
	7.3 Experiment 3: Training YOLOv5
	7.4 Experiment 4: Comparison with other models

	8 Discussion
	9 Conclusion and Future Work
	Acknowledgments
	References

