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Abstract

Most existing large-scale academic search engines are built to
retrieve text-based information. However, there are no large-
scale retrieval services for scientific figures and tables. One
challenge for such services is understanding scientific fig-
ures’ semantics, such as their types and purposes. A key ob-
stacle is the need for datasets containing annotated scien-
tific figures and tables, which can then be used for classi-
fication, question-answering, and auto-captioning. Here, we
develop a pipeline that extracts figures and tables from the
scientific literature and a deep-learning-based framework that
classifies scientific figures using visual features. Using this
pipeline, we built the first large-scale automatically anno-
tated corpus, ACL-FIG consisting of 112,052 scientific fig-
ures extracted from ≈ 56K research papers in the ACL An-
thology. The ACL-FIG-PILOT dataset contains 1,671 manu-
ally labeled scientific figures belonging to 19 categories. The
dataset is accessible at link1.

Introduction
Figures are ubiquitous in scientific papers illustrating exper-
imental and analytical results. We refer to these figures as
scientific figures to distinguish them from natural images,
which usually contain richer colors and gradients. Scientific
figures provide a compact way to present numerical and cat-
egorical data, often facilitating researchers in drawing in-
sights and conclusions. Machine understanding of scientific
figures can assist in developing effective retrieval systems
from the hundreds of millions of scientific papers readily
available on the Web (Khabsa and Giles 2014). The state-
of-the-art machine learning models can parse captions and
shallow semantics for specific categories of scientific fig-
ures. (Siegel et al. 2018) However, the task of reliably classi-
fying general scientific figures based on their visual features
remains a challenge.

Here, we propose a pipeline to build categorized and con-
textualized scientific figure datasets. Applying the pipeline
on 55,760 papers in the ACL Anthology (downloaded
from https://aclanthology.org/ in mid-2021), we built two
datasets: ACL-FIG and ACL-FIG-PILOT. ACL-FIG con-
sists of 112,052 scientific figures, their captions, inline refer-
ences, and metadata. ACL-FIG-PILOT (Figure 1) is a subset
of unlabeled ACL-FIG, consisting of 1671 scientific figures,

1link hidden for annonymity

Figure 1: Example figures of each type in ACL-FIG-PILOT.

which were manually labeled into 19 categories. The ACL-
FIG-PILOT dataset was used as a benchmark for scientific
figure classification. The pipeline is open-source and con-
figurable, enabling others to expand the datasets from other
scholarly datasets with pre-defined or new labels.

Related Work

Scientific Figures Extraction Automatically extracting
figures from scientific papers is essential for many down-
stream tasks, and many frameworks have been developed.
A multi-entity extraction framework called PDFMEF in-
corporating a figure extraction module was proposed (Wu
et al. 2015). Shared tasks such as ImageCLEF (de Herrera,
Müller, and Bromuri 2015) drew attention to compound fig-
ure detection and separation. Clark and Divvala (2015) pro-
posed a framework called PDFFIGURES that extracted fig-
ures and captions in research papers. The authors extended
their work and built a more robust framework called PDF-
FIGURES2 (Clark and Divvala 2016). DEEPFIGURES was
later proposed to incorporate deep neural network models
(Siegel et al. 2018).



Table 1: Scientific figure classification datasets.

Dataset Labels #Figures Image Source

Deepchart 5 5,000 Web Image
Figureseer1 5 30,600 Web Image
Prasad et al. 5 653 Web Image
Revision 10 2,000 Web Image
FigureQA3 5 100,000 Synthetic figures

DeepFigures 2 1,718,000 Scientific Papers
DocFigure2 28 33,000 Scientific Papers
ACL-FIG-PILOT 19 1,671 Scientific Papers
ACL-FIG (inferred)4 - 112,052 Scientific Papers
1 Only 1000 images are public.
2 Not publicly available.
3 Scientific-style synthesized data.
4 ACL-FIG does not contain human-assigned labels.

Scientific Figure Classification Scientific figure classifi-
cation (Savva et al. 2011; Choudhury and Giles 2015) aids
machines in understanding figures. Early work used a vi-
sual bag-of-words representation with a support vector ma-
chine classifier (Savva et al. 2011). Zhou and Tan applied
hough transforms to recognize bar charts in document im-
ages. Siegel et al. (2016) used handcrafted features to clas-
sify charts in scientific documents. Tang et al. (2016) com-
bined convolutional neural networks (CNNs) and the deep
belief networks, which showed improved performance com-
pared with feature-based classifiers .

Figure classification Datasets There are several existing
datasets for figure classification such as DocFigure (Jobin,
Mondal, and Jawahar 2019), FigureSeer (Siegel et al. 2016),
Revision (Savva et al. 2011), and datasets presented by
Karthikeyani and Nagarajan (2012) (Table 1). FigureQA is
a public dataset that is similar to ours, consisting of over
one million question-answer pairs grounded in over 100,000
synthesized scientific images (Kahou et al. 2018) with five
styles. Our dataset is different from FigureQA because the
figures were directly extracted from research papers. Espe-
cially, the training data of DEEPFIGURES are from arXiv
and PubMed, labeled with only “figure” and “table”, and
does not include fine-granular labels. Our dataset contains
fine-granular labels, inline context, and is compiled from a
different domain.

Data Mining Methodology
The ACL Anthology is a sizable, well-maintained PDF cor-
pus with clean metadata covering papers in computational
linguistics with freely available full-text. Previous work on
figure classification used a set of pre-defined categories (e.g.,
(Kahou et al. 2018), which may only cover some figure
types. We use an unsupervised method to determine figure
categories to overcome this limitation. After the category la-
bel is assigned, each figure is automatically annotated with
metadata, captions, and inline references. The pipeline in-
cludes 3 steps: figure extraction, clustering, and automatic
annotation (Figure 2).
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Figure 2: Overview of the data generation pipeline.

Figure Extraction

To mitigate the potential bias of a single figure extractor,
we extracted figures using PDFFIGURES2 (Clark and Div-
vala 2016) and DEEPFIGURES (Siegel et al. 2018) which
work in different ways. PDFFIGURES2 first identifies cap-
tions and the body text because they are identified relatively
accurately. Regions containing figures can then be located
by identifying rectangular bounding boxes adjacent to cap-
tions that do not overlap with the body text. DEEPFIGURES
uses the distant supervised learning method to induce labels
of figures from a large collection of scientific documents in
LaTeX and XML format. The model is based on TensorBox,
applying the Overfeat detection architecture to image em-
beddings generated using ResNet-101 (Siegel et al. 2018).
We utilized the publicly available model weights2 trained on
4M induced figures and 1M induced tables for extraction.
The model outputs the bounding boxes of figures and ta-
bles. Unless otherwise stated, we collectively refer to figures
and tables together as “figures”. We used multi-processing
to process PDFs. Each process extracts figures following the
steps below. The system processed, on average, 200 papers
per minute on a Linux server with 24 cores.

1. Retrieve a paper identifier from the job queue.
2. Pull the paper from the file system.
3. Extract figures and captions from the paper.
4. Crop the figures out of the rendered PDFs using detected

bounding boxes.
5. Save cropped figures in PNG format and the metadata in

JSON format.

2https://github.com/allenai/deepfigures-open



Clustering Methods
Next, we use an unsupervised method to label extracted fig-
ures automatically. We extract visual features using VGG16
(Simonyan and Zisserman 2014), pretrained on ImageNet
(Deng et al. 2009). All input figures are scaled to a dimen-
sion of 224 × 224 to be compatible with the input require-
ment of VGG16. The features were extracted from the sec-
ond last hidden (dense) layer, consisting of 4096 features.
Principal Component Analysis was adopted to reduce the
dimension to 1000.

Next, we cluster figures represented by the 1000-
dimension vectors using k-means clustering. We compare
two heuristic methods to determine the optimal number of
clusters, including the Elbow method and the Silhouette
Analysis (Rousseeuw 1987). The Elbow method examines
the explained variation, a measure that quantifies the differ-
ence between the between-group variance to the total vari-
ance, as a function of the number of clusters. The pivot point
(elbow) of the curve determines the number of clusters.

Silhouette Analysis determines the number of clusters by
measuring the distance between clusters. It considers mul-
tiple factors such as variance, skewness, and high-low dif-
ferences and is usually preferred to the Elbow method. The
Silhouette plot displays how close each point in one cluster
is to points in the neighboring clusters, allowing us to assess
the cluster number visually.

Linking Figures to Metadata
This module associates figures to metadata, including cap-
tions, inline reference, figure type, figure boundary coordi-
nates, caption boundary coordinates, and figure text (text ap-
pearing on figures, only available for results from PDFFIG-
URES2). The figure type is determined in the clustering step
above. The inline references are obtained using GROBID
(see below). The other metadata fields were output by figure
extractors. PDFFIGURES2 and DEEPFIGURES extract the
same metadata fields except for “image text” and “regionless
captions” (captions for which no figure regions were found),
which are only available for results of PDFFIGURES2.

An inline reference is a text span that contains a reference
to a figure or a table. Inline references can help to under-
stand the relationship between text and the objects it refers
to. After processing a paper, GROBID outputs a TEI file (a
type of XML file), containing marked-up full-text and refer-
ences. We locate inline references using regular expressions
and extract the sentences containing reference marks.

Results
Figure Extraction
The numbers of figures extracted by PDFFIGURES2 and
DEEPFIGURES are illustrated in Figure 3, which indicates
a significant overlap between figures extracted by two soft-
ware packages. However, either package extracted (≈ 5%)
figures that were not extracted by the other package. By in-
specting a random sample of figures extracted by either soft-
ware package, we found that DEEPFIGURES tended to miss
cases in which two figures were vertically adjacent to each
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Figure 3: Numbers of extracted images.

other. We took the union of all figures extracted by both soft-
ware packages to build the ACL-FIG dataset, which con-
tains a total of 263,952 figures. All images extracted are
converted to 100 DPI using standard OpenCV libraries. The
total size of the data is ∼ 25GB before compression. Inline
references were extracted using GROBID. About 78% fig-
ures have inline references.

Automatic Figure Annotation
The extraction outputs 151,900 tables and 112,052 figures.
Only the figures were clustered using the k-means algo-
rithm. We varied k from 2 to 20 with an increment of 1 to
determine the number of clusters. The results were analyzed
using the Elbow method and Silhouette Analysis. No evi-
dent elbow was observed in the Elbow method curve. The
Silhouette diagram, a plot of the number of clusters versus
silhouette score exhibited a clear turning point at k = 15,
where the score reached the global maximum. Therefore, we
grouped the figures into 15 clusters.

To validate the clustering results, 100 figures randomly
sampled from each cluster were visually inspected. During
the inspection, we identified three new figure types: word
cloud, pareto, and venn diagram. The ACL-FIG-PILOT
dataset was then built using all manually inspected figures.
Two annotators manually labeled and inspected these clus-
ters. The consensus rate was measured using Cohen’s Kappa
coefficient, which was κ − 0.78 (substantial agreement) for
the ACL-FIG-PILOT dataset. For completeness, we added
100 randomly selected tables. Therefore, the ACL-FIG-
PILOT dataset contains a total of 1671 figures and tables la-
beled with 19 classes. The distribution of all classes is shown
in Figure 4.

Supervised Scientific Figure Classification
Based on the ACL-FIG-PILOT dataset, we train supervised
classifiers. The dataset was split into a training and a test
set (8:2 ratio). Three baseline models were investigated.
Model 1 is a 3-Layer CNN, trained with a categorical cross-
entropy loss function and the Adam optimizer. The model
contains three typical convolutional layers, each followed
by a max-pooling and a drop-out layer, and three fully-
connected layers. The dimensions are reduced from 32× 32
to 16× 16 to 8× 8. The last fully connected layer classifies
the encoded vector into 19 classes. This classifier achieves
an accuracy of 59%.

Model 2 was trained based on the VGG16 architecture
,except that the last three fully-connected layers in the orig-
inal network were replaced by a long short-term memory
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Figure 4: Figure class distribution in the ACL-FIG-PILOT
dataset.

layer, followed by dense layers for classification. This model
achieved an accuracy of ∼ 79%, 20% higher than Model 1.

Model 3 was the Vision Transformer (ViT) (Dosovitskiy
et al. 2020), in which a figure was split into fixed-size
patches. Each patch was then linearly embedded, supple-
mented by position embeddings. The resulting sequence of
vectors was fed to a standard Transformer encoder. The ViT
model achieved the best performance, with 83% accuracy.

Conclusion
Based on the ACL Anthology papers, we designed a pipeline
and used it to build a corpus of automatically labeled scien-
tific figures with associated metadata and context informa-
tion. This corpus, named ACL-FIG, consists of ≈ 250k ob-
jects, of which about 42% are figures and about 58% are ta-
bles. We also built ACL-FIG-PILOT, a subset of ACL-FIG,
consisting of 1671 scientific figures with 19 manually veri-
fied labels. Our dataset includes figures extracted from real-
world data and contains more classes than existing datasets,
e.g., DeepFigures and FigureQA.

One limitation of our pipeline is that it used VGG16 pre-
trained on ImageNet. In the future, we will improve figure
representation by retraining more sophisticated models, e.g.,
CoCa, (Yu et al. 2022), on scientific figures. Another limi-
tation was that determining the number of clusters required
visual inspection. We will consider density-based methods
to fully automate the clustering module.
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