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Abstract—The COVID-19 pandemic catalyzed a large body
of scientific work, much of which was completed and dis-
seminated with groundbreaking speed. A significant portion
of COVID-related work was posted to preprint servers and
COVID-related preprints were more widely cited than their
counterparts. This work leverages information retrieval, natural
language processing, and supervised learning to predict the
subsequent publication, within a year, of COVID-related papers
posted to preprint servers in peer-reviewed venues. Our work
is inspired by prior work surveying human experts for the
same task. We compare the performance of ML and human
predictions and discuss the implications of our findings for
scientific publishing. The findings demonstrate that the Multi-
Layer Perceptron yielded the highest performance, achieving a
macro F1 score of 0.674 on the held-out set. This underscores
the challenge of accurately predicting the outcomes of the
human peer review process. The data and code are available
at https://github.com/Sai90000/preprint prediction.git.

Index Terms—machine learning, publication forecasting,
preprints, science of science

I. INTRODUCTION

Changes to research publishing were amongst the countless
impacts of the COVID-19 pandemic [1], [2]. Many journals
significantly shortened review and publication timelines [1],
[3]; a study of COVID-19 related papers published on PubMed
during early months of the pandemic found the median time
between paper submission and acceptance to be 6 days [3].
The rapid turn-around of COVID-related work came in tan-
dem with an increase in sheer volume of papers published
– both COVID-related and otherwise [2]. Preprints became
a significant source of information for the community. Of
125,000 COVID-19–related scientific articles published within
10 months of the first confirmed case, more than 30,000 were
hosted by preprint servers [4].

Amid the flurry of COVID-related papers, long-standing
discussions about the role of peer review processes have been
revisited in the context of the global health crisis [5]. A
study of the COVID “paperdemic” found that a substantial
fraction of low-quality research papers including flawed and/or
questionable data and methods appeared as preprints [6].
While, another study suggests that COVID-related publications
were overrepresented in the Retraction Watch Database in
2020 [5]. Low-quality research poses real risks to broader
scientific and public discourse, and these risks were magnified

during the pandemic as discussion moved to social media and
scientific misinformation and disinformation spread quickly.

One assessment that may be useful for the evaluation of
a given preprint is a measure of whether the paper would be
likely to pass peer-review processes. Recent work using crowd-
based forecasting has demonstrated some success predicting
whether COVID-related preprints would be published in a
peer-reviewed venue within 1 year and, if so, whether the
venue would be one with high impact factor [7]. However,
collecting such predictions from groups of human experts is
generally time-consuming and incentives are usually required.

Machine learning (ML) methods have shown comparable or
even superior performance to humans on many complex tasks
involving high-dimensional data such as object recognition
[8], question-answering [9]. In many cases, e.g., deep neural
networks, the performance of ML algorithms is attributed to
large volumes of human- or automatically-labeled training
data. These models can be easily overfitted with limited
training data. They also typically lack explainability, which
limits potential application and raises critical questions about
bias and trust. Recent research has demonstrated that tradi-
tional machine learning models, e.g., Support Vector Machines
(SVM), can match human performance on multi-class legal
text labeling tasks [10]. Prior work has shown the capability
of simple ML models for the task of predicting the outcomes
of replication studies of published findings [11] – a task which
has been studied extensively with human participants and
which is similar to the task of publication prediction which
is our focus here. In the context of this work, we use the
terms prediction and prediction within a year of posting on
a preprint server interchangeably, and they carry the same
meaning.

Our study addresses three primary research questions.
• Can ML algorithms be used to predict the subsequent

publication of a posted preprint in a peer-reviewed venue?
• Can ML algorithms match or outperform human experts

on the task of predicting the publication of preprints?
• Which features of a preprint or its corresponding meta-

data are strong predictors of subsequent publication in a
peer-reviewed venue?

Following, we explore two widely used ML algorithms,
Random Forest, Multi-Layer Perceptron, for publication pre-



diction. We compare the performance of these models to
human expert predictions on the same dataset and discuss
implications of these findings for scientific publishing.

II. RELATED WORK

Our work is built on an existing framework for content-
based feature extraction from scientific papers [12]. This
framework extracts 41 distinct features within five major
categories from a scientific paper. Although developed for
papers in the social and behavioral sciences, most feature ex-
tractors can be directly transferred to papers in other domains,
e.g., acknowledgments, p-value expressions, because relevant
patterns are standardized across the literature. The subset of
features related to citation counts or publication venues were
excluded from consideration for this work, as their inclusion
would result in data leakage. Other frameworks have been
proposed to extract scientific measurements from text, such
as temperature sensor values in the geo-spatial context [13],
but this framework is not applicable to most papers related to
COVID-19.

To our knowledge, there are only a few papers that have
attempted to predict the publication status of preprints. In re-
cent work [14], after exploring 100 matched preprint–journal-
article pairs using the NIH’s iSearch COVID-19 Portfolio,
authors showed that there was no obvious difference in expert
opinions of preprints published vs. those not published. Using
a simple regression, the authors attempted to predict the
publication status of these papers but did not find a strong
correlation between the publication status and the review
scores of preprints. Another study [5] showed that COVID-
related preprints are more likely to be published after peer
reviews than non-COVID-19-related papers with a consider-
ably shortened submission-to-acceptance time.

The closely-related task of citation prediction seeks to
understand features that effectively predict citation counts or
other impact factors. Citation prediction was used as a KDD
cup challenge back in 2003 [15]; the winning team treated the
task as a time-series prediction problem. Citation prediction
typically involves using features derived from different aspects
of a publication as inputs. Among these are the features from
semantic information contained within the publication text.
Studies have shown that the text complexity and sentiment of
abstracts are positively correlated with future citations [16].
Analysis of publications from American Economic Review
revealed that publications that are difficult to read tended to
receive lower citations [17]. In contrast, the assessment of top-
cited publications in neuro-imaging found that articles pub-
lished in high-impact journals are less readable [18]. Another
set of features are related to references within a publication; a
study of publications from the Nanoscience and Nanotechnol-
ogy fields showed that reference counts and their impact are
most effective determinants of future citation counts [19]. Ref-
erence counts were shown to be strong predictors of citations
in other fields as well [20]. Another feature with predictive
power is acknowledgement of funding; a paper’s funding status
has a statistically significant positive correlation to the number

of citations it receives [21]. Studies show that collaborative
articles received higher visibility [22]. Furthermore, author
prestige impacts peer review decisions [23]. Statistical in-
formation within a publication also impacts the peer review
studies analyzing published literature shows that p-values
reported effect the peer review decisions [24]. In another paper
[25], the authors proposed a model based on paper metadata
to predict the long-term citation count. A recent paper [26]
provides a comprehensive review of the citation prediction
literature and proposes a taxonomy consisting of six types of
features and four types of forecasting methods.

The social impact of a publication has also been studied.
Studies have shown a stronger correlation between citation-
based metrics and the quality of a publication than the number
of tweets [27]. Furthermore,a recent study that tracks changes
between preprints found that although preprints undergoing
discrete textual changes are commented upon and cited more
often, the amount of attention given to preprints does not
reflect their impact upon publication [28].

Our work is the first to investigate machine learning to pre-
dict publication status using a comprehensive list of content-
based features.

III. DATA

In this section, we provide an overview of the data reduction
process from the raw data to the final data. We elaborate details
of each step in the process in subsequent sections.

This study considers the set of preprint articles curated for a
prior study surveying researchers to predict the eventual pub-
lication of preprints in peer-reviewed outlets [7]. The original
dataset contains 8,176 preprints, collected from the bioRxiv
and medRxiv COVID-19 SARS-CoV-2 collection, uploaded to
the repositories between January 2020 and August 2020. We
collected their full text PDFs using the repositories’ appli-
cation programming interfaces (APIs). PDFs were input to a
feature extraction pipeline developed for previous work [11]
and further detailed below. Certain features have been shown
important for reproducibility assessments [11].

After the feature extraction pipeline, the dataset was reduced
to 5,893 preprints. There are several reasons that could lead to
a reduction of sample size. First, in the feature extraction step,
a fraction of PDFs cannot be successfully converted to text.
Therefore, the DOIs may not be able to be correctly extracted
from the full text. The second reason was that the papers were
not indexed by Semantic Scholar [29] (SS), so certain features
(e.g., reference features) could not be obtained. After feature
extraction, we built the ground truth by identifying preprints
that were officially accepted for publication. The workflow
that shows the data reduction process is illustrated in Fig. 1.

IV. FEATURE EXTRACTION

A. Content-based Features

An automated pipeline generates features from each paper’s
full text as an input. The PDFs were first converted to text
using GROBID. The pipeline outputs up to 18 features for each
paper in 4 categories: Reference features, Authorship features,



Statistical features and the Acknowledgement feature (Table I).
Because our goal is to predict publication of preprint, we focus
on the pre-publication features, excluding post-publication
features like citation counts.

• Reference features. This group contains 5 features ex-
tracted from preprint’s references, obtained from SS API.
It includes number of important references and references
that are cited for different purposes, such as background,
methodology, and results.

• Authorship features. This group contains 2 shallow fea-
tures: the number of authors and the university rank of
the leading author. We collected university ranking data
from the 2020 Times Higher Education rankings and use
it as a lookup table to determine the feature value.

• Statistical features. This group contains 10 features fo-
cusing on extracting p-values, reported associated with
hypothesis tests. The extraction method was adopted from
[30], which uses regular expressions against the full text
to identify 10 most frequently used tests, such as t-
test, and f-test. This method also aggregates multiple
p-values when found in a preprint. Additionally, we
calculate readability, sentiment, and subjectivity of ab-
stracts. Readibility is calculated using the Flesch–Kincaid
score [31]. Sentiment is calculated using the AllenNLP
package based on the RoBERTa Large model [32]. The
subjectivity is calculated using the TextBlob package
[33].

• Acknowledgement feature. The acknowledgment feature
is a binary feature indicating whether a funding agency
is acknowledged. We adopt the hybrid method proposed
in [34], which achieved a performance of F1 = 0.92.

It should be noted that for a given preprint, not all features
may be available. In this case, a null value distinct from all
possible values is used.

B. Early Popularity Features

We acquired eight features that are early indicators of
preprint popularity by automatically scraping data from the
Altmetric pages for the papers in our corpus, e.g., https:
//biorxiv.altmetric.com/. These features can be divided into two
different groups.

• Usage features. Features like first-month PDF downloads
and abstract views, are valuable for gauging community
engagement with preprints. These metrics are good indi-
cators of publication status for papers submitted to high-
impact journals [35]. Features of this type include the
first month PDF downloads and the rate, the first-month
abstract views and the rate, and the first-month full text
views and the rate. The bioRxiv and medRxiv servers
track and update the number of abstracts, full-text HTML
views, and PDF downloads on a daily basis and aggregate
them monthly. This means that the daily counts for usage
metrics are not accessible during our data collection. This
can potentially, introduce a bias, as preprints uploaded at
the start of a calendar month, which can garner higher

feature values, with respect to the values obtained when
the preprints were submitted at the end of the month. To
address this, we added the change rates of these features
by calculating the difference of counts between the first
and the second calendar months as features.

• Social interaction features. Features that capture how the
contents create community engagement through social
interactions are shown to correlated with early cita-
tions [36]. Features of this type include the number of
tweets within a month, and the Altmetric score [37].
We counted number of tweets within the first 30 days
using the tweet timestamps relative to preprint upload. To
quantify the level of attention received by a preprint, we
use its initial Altmetric score [38]. An Altmetric score
is a weighted count of various indicators such as the
number of news articles and the number of blog mentions.
The features were obtained from the data from the prior
work [7].

C. Result Type Features

We extracted a categorical feature representing the type
of outcomes of the study presented within a preprint, using
the information provided by the reprint repositories. These
were provided by the authors during the process of submitting
preprint to the server and can be one of the following class.

• New results bring a new perspective and advance the field;
• Contradictory results of replication studies either fail

to support or contradict the findings of prior published
research;

• Confirmatory results of replication studies validate and
offer support to the findings in previous publications;

• Neutral results do not fall into any of the aforementioned
categories.

In the final dataset (Fig. 1) of 5302 samples (2613+2689),
a majority (78.5%) of the preprints within the full dataset fall
into the neutral category whereas 21.0% of preprint results are
identified as new. The contradictory and confirmatory results
comprise less than half percent of the preprints.

V. CURATION OF GROUND TRUTH

Ground truth curation involved obtaining corresponding
peer-reviewed publication dates for each preprint. This was
achieved by integrating information from the preprint repos-
itories as well as scholarly databases specifically SS and
CrossRef [39] (CR).

The process had two stages. In the first stage, published
DOIs were collected for the preprints identified as published
by the Rxiv repositories (bioRxiv and medRxiv). The publi-
cation dates for these DOIs were then queried from SS and
CR. In the second stage, preprints for which the repositories
did not explicitly mention a peer-reviewed publication were
searched in the SS and CR databases using their titles as a
queries. The aim of this stage was to overcome the repository
coverage limitation. Matching between preprints and search
results in the scholarly databases was performed based on title,
abstract, and authorship [40]. The relevance was determined



Fig. 1. Flowchart showing different steps involved in feature extraction and
ground truth curation.

using document-level embeddings, from concatenated title
and abstract, by pre-trained SPECTER model [41]. A cosine
similarity threshold of 0.8, and a complete in author lists
to identify positive matches. Positive matches with venues
other than Rxiv, were identified as peer-reviewed publications
and their publication dates were obtained from SS and CR
APIs. Preprint searches resulting in single positive matches
with Rxiv venues were labeled as not published. The second
stage resulted in matching 120 preprints to their peer-reviewed
publications.

The difference between the date of preprint upload and the
corresponding publication date of the match was then used
to determine if a preprint was peer-reviewed and published
within a year of upload. Preprints published in peer-reviewed
venues less than 365 days of upload to the Rxiv servers were
labeled as published within a year. Preprints that took more
than a year to publish were labeled as not published within
a year. Additionally, preprints that resulted in a single Rxiv
match (only the preprint itself) during the second stage of the
matching process were also labeled as not published within
a year. Finally, preprints without a published label from the
repositories which also did not yield any matches from SS and
CR search were discarded as their publication status could not
be established.

This process resulted in a dataset with a total of 5,302
preprints and a well-balanced class distribution having 50.7%
of preprints labeled as published (published within a year),
and the remaining 49.3% with a label not published (within a
year).

Fig. 2. Summary of model performance on held-out data (N=1012) when
features of a particular type are removed.

VI. MACHINE LEARNING-BASED FORECASTING MODEL

A. Pre-processing

We binarized the prediction lable such that 1 represents
published within a year label while 0 represents not published
within a year. To prepare the features for modeling we
employed two widely used preprocessing techniques

a) One hot encoding: We implemented one-hot encoding
technique to non-ordinal categorical variableresult type which
has 4 distinct classes. This resulted in creation of four new
binary features one for each class.

b) Feature scaling: We standardized the numerical fea-
tures to mitigate a potential unequal influence due to feature
magnitudes. Each feature was transformed to have a mean of
zero and a standard deviation of one.

The feature extraction and preprocessing steps resulted in a
total of 30 different features from 6 mutually exclusive groups.
The complete list of extracted features and their short descrip-
tions are provided in the Table I. Among the 5,302 preprints,
242 were in the dataset from the study involving surveys with
human participants asked to predict publication [7]. These 242
were part of the original 400 preprints selected based on their
relatively high Altmetric scores. These specific preprints were
isolated for the purpose of performing a comparative analysis
comparing the performance of machine learning models to
human participants. From the remaining data, we randomly
chose 80% (N = 4048) for training and kept the remaining
20% (N = 1012) as held-out test data.

B. Modeling

We model this problem as a binary classification task
with the class labels published (published within a year), not
published (-within a year). We use two different supervised
machine learning models to predict the publication status of a
preprint using the features discussed in the previous subsec-
tions. Specifically, we trained Random Forest (RF) using Gini
impurity index to measure the quality of a split and Multilayer
Perceptron (MLP) which can model non-linear relationships.

C. Parameter tuning

To prevent model overfitting, we tuned their hyperparam-
eters using Optuna framework [42]. The approach involved



TABLE I
THE PHI K, POINT BISERIAL CORRELATIONS, AND CORRESPONDING SIGNIFICANCE VALUES, BETWEEN THE PREDICTION LABEL AND CONTINUOUS,

CATEGORICAL FEATURES RESPECTIVELY.

Feature Category Brief description Correlation P
influential reference count

Reference

number of references which had a strong impact on the citing paper -0.063 0.000
reference background reference intent classified as background -0.047 0.000

reference methodology reference intent classified as methodology -0.076 0.000
reference result reference intent classified as results -0.089 0.000
references count number of references the target paper cites 0.147 0.000

author count Authorship total number of authors 0.130 0.000
university rank normalized score based on 2020 Times Higher Education rankings -0.054 0.000
reading score

Statistical

Flesch–Kincaid score of the abstract -0.232 0.000
subjectivity Extent of personal opinion rather than factual information of abstract -0.009 0.503

n hypothesis tested number of statistical tests found 0.053 0.000
real p minimum p-value among all the p-values extracted 0.014 0.307

real p sign sign for the p-value (=, <, or >) 0.047∗ 0.000
p value range the difference of the highest and the lowest p-value 0.063 0.000

extended p whether the p-value features are associated with a test 0.017∗ 0.171
sentiment extent of positive vs. negative of the abstract 0.053∗ 0.011

sample size number of observations in the experiment data -0.019 0.148
n significant total number of significant p-values (≤ 0.05) 0.061 0.000

funding status Acknowledgment exists acknowledgement of a funding agency 0.192∗ 0.000
tweets within a month

Popularity

number of tweets referencing the article within first 30 days of upload 0.037 0.006
first month download. PDF downloads within the first calendar month of submission 0.036 0.008

first month abstract views number of abstract views during the first calendar month of submission 0.042 0.002
first month full text views variable corresponding to counts of full-text HTML views 0.018 0.183

abstract views rate change of abstract views from first to second months of submission -0.037 0.007
PDF dwnld. rate rate of change of PDF downloads -0.033 0.016

rate of full text views rate of change in counts of full-text HTML views -0.009 0.477
altmetric score a measure of research impact through online interactions 0.059 0.000

new results

Result type

indicator corresponding to an advance in a field 0.106∗ 0.000
confirmatory results studies with results that replicate/confirm a previously work 0.0∗ 0.658
contradictory results studies that contradict/fail to replicate results from prior work 0.0∗ 1.0

neutral results general category for findings that do not fit any other result types 0.104∗ 0.000
∗Phi k correlation.

Bayesian hyperparameter tuning with the objective of maxi-
mizing 5-fold cross-validation F1 score on training data. Each
tuning experiment consisted of a total of 1500 trials with
hyperparameters with numeric values sampled from a uniform
distribution over their respective minimum and maximum
values. The categorical hyperparameters were sampled using
a multinomial distribution with equal probability for each
category. Table II shows different parameters for each of the
models as well as their value ranges from which they were
sampled. For RF model, we tuned the number of trees, the
maximum tree depth, and the minimum samples per leaf node.
For the MLP model, hidden layer sizes and corresponding
activation functions, learning rate, and weights optimization
solver were tuned.

VII. RESULTS

In this section we summarize the results from our exper-
iments on predicting preprint publication within a year of
appearing on arXiv repository. Both tested models achieved
moderate macro F1 scores on the held-out data (RF: 0.674,
MLP: 0.651).

A. Correlation analysis

We sought to understand the association between the fea-
tures and prediction labels. We used the Point Biserial cor-
relation coefficient [43] to quantify the relationship between

the features with continuous values and the dichotomous
prediction label. To measure the correlation between binary
features and the prediction label, phi k correlation coefficient
was used [44]. The correlation values and corresponding sig-
nificance values are summarized in Table II. Features reference
count, author count representing the number of references
a preprint has and the number of authors respectively, are
weakly but positively correlated with publication labels at high
significance indicating a moderate relationship. Similarly, the
prediction label is weakly correlated to binary features funding
status, new results, neutral results. On the other hand, reading
score showed a weak inverse correlation. Interestingly, the
magnitude of the correlation for other features, none of them
are strongly correlated with the prediction label.

B. Ablation study

To assess the contribution of each feature group to the
prediction, we conducted ablation studies. We systematically
removed each feature group and trained RF, and MLP models
with the rest of the features. Hyperparameter tuning was done
using the approach discussed in Parameter Tuning subsection.
The findings, shown in Fig. 2, highlight the reliance of both
the models on features derived from a preprint’s references.
This may be due to the reference features acting as a proxy
for how well the contents of a preprint are grounded and jus-
tified. Conversely, removing other feature groups had minimal



TABLE II
SEARCH SPACE USED FOR TUNING EACH HYPERPARAMETER.

Model Parameter Range

RF
Number of estimators [3,110]

Maximum depth of trees [3,30]
Minimum samples in leaf [10,100]

MLP

Initial learning rate [0.001,0.1]
Activation function [logistic, tanh, ReLU]
Optimization solver [ADAM, SGD, LBFGS]
Hidden layer 1 size [5,25]
Hidden layer 2 size [5,25]

impact on performance, aligning with the observations from
correlation analysis. However, model performance robustness
suggests that models capture complex relationships between
the features while compensating for the absence of a specific
subset of features. Furthermore, these results show that despite
low correlation values, the ML models have a decent perfor-
mance. This could be due to some complex nonlinear relations
between variables and the prediction label.

C. Feature importance

We used model agnostic permutation feature importance
technique to assess feature relevance in model predictions.
This involved evaluating model performance by randomly
shuffling one feature at a time, while leaving other features
unchanged, breaking its relationship with the prediction label.
This is repeated for a set number of iterations and the
significance of each feature is measured by the degree of
model performance decrease due to shuffling, with a larger
drop indicating greater model dependency on the feature.

Figs 3, 4 show permutation importance for baseline RF
and MLP models respectively. The models were trained using
all the features, and the permutation feature importance was
calculated on the held-out test data by randomly shuffling
each feature. Although the order of importance for both the
models is same, the RF model exhibits a lower magnitude of
performance drop compared to the MLP model. Furthermore,
the spread in drop for most features ranges from negative
to positive values. This inconsistency in performance drop
indicates that the RF model does not heavily rely on specific
individual features but instead leverages a combination of
features for prediction. This aligns with the findings from
the ablation study where the model performance remained
relatively stable even after the removal of features from certain
feature groups. Additionally, features Altmetric score, full text
views in the first month, rate of change in full text views had
a negative impact on prediction performance.

Conversely, the importance plot for the MLP model (Fig. 4)
shows a consistent positive drop in performance for features
University Rank, Number of tweets within first month, Subjec-
tivity, Sentiment, Sample size, and Number of references and a
consistent lack of impact of features created from result type.

D. Comparison with forecasts by human participants

The human participants forecasted publication status of a
total of 400 preprints of which, as mentioned earlier, we were

able to extract features and establish ground truth for 242
preprints. We used this subset as a held-out set and to compare
performance of human forecasters and the trained algorithmic
models. We compared the accuracy scores for the forecasts
made by humans to the machine learning models’ predictions.
Humans predictions have an accuracy score of 57.0% with an
macro F1 score of 0.518 which is better than a random chance.
Both the baseline RF and MLP models, with macro F1 scores
of 0.599 and 0.574 respectively, performed better than hu-
man participants. Further analysis of the overlap between the
predictions and the forecasts among the 242 preprints, human
participants accurately forecasted the publication status for 138
preprints while missing on remaining 104. Among these 104,
the base RF model correctly predicted the publication status
of 89, where as base MLP model predicted 90 correctly. The
base RF model made 79 incorrect predictions of which human
participants correctly predicted 64. Similarly, human partici-
pants correctly predicted the outcomes for 66 of 80 preprints
where MLP were incorrect. These differences become evident
when considering precision and recall. Human participants
demonstrated high precision (0.86) but low recall (0.37) for
identifying the class published (within a year) whereas the
models exhibited moderate precision (RF: 0.68; MLP: 0.67)
and high recall (RF: 0.93; MLP: 0.93). Additionally, human
participants had a lower precision score (0.46) compared to the
models (RF: 0.72, MLP: 0.68) for not published (within a year)
class. Although the sample size is smaller, this highlights that
there are certain groups of preprints where human participants
made better predictions than algorithmic models and vise-
versa.

VIII. DISCUSSION

The task of predicting preprint publication outcomes is
incredibly challenging because it fundamentally assumes there
are reliable patterns in peer review that can be captured
computationally. Yet, calls are emerging from researchers and
journals alike for major overhauls to review and publication
processes, precisely because they are too often incomplete,
inconsistent, and biased [45]. As a community we currently
equate success in peer review with research quality and
reliability, whereas looking ahead we might focus on devel-
oping ML and AI to directly measure research quality, i.e.,
through replication prediction or generalizability assessment.
Until then, arguably the most important contribution of any
success in automated prediction of peer review outcomes is
quantitative insight, and ideally explanation, of the current
publishing processes including its many flaws.

Given the caveats around publication prediction we have
just mentioned, our study also carries some more specific
limitations both conceptual and technical. One conceptual
assumption is that the features we extract from preprints and
metadata contain sufficient signal for the task. Ultimately, our
features are the intersection of the set of features we expect
may have relevance given established literature and the set of
features we are technically able to extract. For example, in
prior work we have surveyed researchers to ask what they



Fig. 3. Permutation feature importance scores on held-out data for RF model
trained with all the features within the dataset.

look for when evaluating of a published finding. Nuances
of study design, basis in theory, and many other factors
were mentioned by researchers but are not easily captured
with current NLP and information extraction technologies. A
second set of limitations centers around the messiness of the
Rxiv records, incompleteness of information available through
APIs, and data preprocessing. For example, our approach
would not capture instances wherein a preprint was uploaded
at or after the date of peer-reviewed publication. In addition,
popularity features are constrained to abstract views as Alt-
metrics provides full text views aggregated monthly.

Finally, we highlight the uniqueness of the COVID-19
context that surrounded these preprints and consequently our
work here. As we noted earlier, COVID-related preprints were
meaningfully different that their non-COVID counterparts.
They were more frequently cited, more widely discussed, and
subsequently published elsewhere with greater probability and
on a shorter timeline. Insights specific to this context are
valuable, as we seek to derive lessons from the COVID-19
pandemic and ready for future crises. However, future work
should test the performance of the features and ML models
we describe here on non-COVID baselines to understand their
generalizability in adjacent literatures.

IX. CONCLUSION

In this work we have explored the use of algorithmic
machine learning models to predict subsequent peer-reviewed
publication of COVID-19 preprints. Using automated meth-
ods, we extract 30 different features from preprint text and

Fig. 4. Plot showing feature importance scores on held-out data and MLP
model.

metadata, reprenting information falling broadly into 6 mutu-
ally exclusive dimensions. Through complimentary analyses,
ablation study and permutation feature importance, we have
observed that while ML models can capture complex non-
linear relationships between the features, they struggle to
achieve high performance in predicting publication outcomes.

Furthermore, we have compared our predictions to forecasts
made by human participants on the same papers. Although ML
models outperform human participants overall, complimentary
capabilities are highlighted. That is, human participant-driven
forecasts performed better where ML models had sub-optimal
performance and vice versa. Our findings suggest an oppor-
tunity for hybrid approaches combining crowd-sourcing and
ML models to achieve a best of both worlds scenario.
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