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ABSTRACT

This paper investigates a new online learning problemwith doubly-
streaming data, where the data streams are described by feature
spaces that constantly evolve, with new features emerging and
old features fading away. A plausible idea to deal with such data
streams is to establish a relationship between the old and new
feature spaces, so that an online learner can leverage the knowl-
edge learned from the old features to better the learning perfor-
mance on the new features. Unfortunately, this idea does not scale
up to high-dimensional multimedia data with complex feature in-
terplay, which suffers a tradeoff between onlineness, which biases
shallow learners, and expressiveness, which requires deep models.
Motivated by this, we propose a novel OLD3S paradigm, where
a shared latent subspace is discovered to summarize information
from the old and new feature spaces, building an intermediate fea-
ture mapping relationship. A key trait of OLD3S is to treat the
model capacity as a learnable semantics, aiming to yield optimal
model depth and parameters jointly in accordance with the com-
plexity and non-linearity of the input data streams in an online
fashion. Empirical studies substantiate the viability and effective-
ness of our proposed approach. The code is available online at
https://github.com/X1aoLian/OLD3S.

CCS CONCEPTS

•Computingmethodologies→Online learning settings;Neu-
ral networks; • Information systems→Online analytical process-
ing engines; • Theory of computation→ Streaming models.
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1 INTRODUCTION

Machine learning has become a fundamental building block inmany
cyber infrastructures, provides an automated hence scalable appa-
ratus to analyze the high-dimensional data streams (e.g., images,
texts, videos) pervading all corners of the Internet [22, 23, 38]. Ex-
amples include multimedia retrieval [63, 64], online speech analyt-
ics [16, 18], recommender systems [11, 13, 66, 68, 69], to just name
a few. Generally speaking, wherever it is infeasible to inspect and
process the data growing in an increasingly unmanageable volume
with manpower, machine learning prevails.

Despite their fashionability, a prominent drawback shared by
most existing machine learning methods is their limited general-

ization capability [50]. As a matter of fact, machine learning mod-
els usually do well in practice only if the data arriving in future
tend to follow a nearly identical distribution as the data they were
trained on [8, 39]. This so-called i.i.d. assumption inevitably limits
the model expressiveness to our society that constantly evolves.

To aid the situation, a new learning paradigm termed online

learning from doubly-streaming data has emerged with both algo-
rithmic designs [4, 25–32, 34, 77] and domain applications [9, 45,
53, 71, 74]. Its key idea is to generalize learning models in two
spaces. First, the sample space, where the data instances are gen-
erated ceaselessly, requiring to train learners on-the-fly, making
real-time predictions as the data arrive. As such, if the patterns un-
derlying data changed, an online learner can be updated instantly
to adapt to the shift, thereby retaining its accuracy performance
over time [21, 47, 73].

Second, the feature space, where sets of features describing the
arriving data samples evolve, with new features emerge and old
features stop to be generated. Towit, a smartmanufacturing pipeline
may employ a set of sensing techniques to detect unqualified prod-
ucts [36], where each sensor coheres to a feature. The feature space
evolves, when the old sensors wear out and a batch of new sen-
sors are deployed [31]. Tangibly, as the new and old sensors (i.e.,
features) often differ in terms of amount, version, metric, and posi-
tions, a new classifier needs to be initialized. Yet, this new classifier

http://arxiv.org/abs/2204.11793v4
https://github.com/X1aoLian/OLD3S
https://doi.org/10.1145/3503161.3548355
https://doi.org/10.1145/3503161.3548355
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may stay weak and error-prone before the training samples carry-
ing these new features grows to a sufficiently large volume. Mean-
while, the old classifier becomes unusable with the unobserved fea-
tures, leading to substantial waste of the data collection and train-
ing effort. A relationship between the pre-and-post evolving fea-
ture spaces must be established, so that the old features can be
reconstructed from the new ones. Online learners can thus harvest
the information embedded in the old classifier to aid the weak new
classifier, enjoying a boosted learning performance [26, 28–30].

Unfortunately, all existing studies suffer from a tradeoff between
onlineness and expressiveness. Specifically, on the one hand, shallow
learners (e.g., generalized linear models [81], Hoeffding trees [59])
possess a faster online convergence rate, thanks to their simple
model structures with a small number of trainable parameters [61].
However, due to their limited learning capacity, they usually end
up with inferior performance when dealing with high-dimensional
media streams, of which the feature interplay is often complex.

On the other hand, deep learners (e.g., neural networks [43, 57],
deep forests [56, 80]) enjoy a low-dimensional hidden representa-
tion to build accurate predictive models on complex raw inputs.
Yet, their large number of parameters residing in the entangled
model structures invites stochastic updates, leading to a very slow
convergence rate. In an online learning context, more error pre-
dictions tend to be made before the learners converge to an equi-
librium. These additional errors are recognized as regrets, where
the slower the convergence rate, the larger the learner regrets in a
hindsight.

Motivated by this tradeoff, this paper mainly explores one ques-
tion: How can we build an online learner that joins the two merits,

namely, 1) converges as fast as shallow models to minimize the on-

line regrets and 2) learns latent representations as expressive as deep

models from high-dimensional inputs with complex feature relation-

ships.

Our affirmative answer provides a novel learning paradigm, termed
Online Learning Deep models from Data of Double Streams (OLD3S).
Our key idea is to train an online learner that automatically adjusts
its learning capacity in accordance with the complexities and tem-
poral variation patterns of input data stream. Specifically, OLD3S
is with an over-complete neural architecture [44, 57, 65] and starts
from using its shallow layers, approximating a simple classifier to
attain fast convergence at initial rounds. Over time, the deeper lay-
ers are gradually mobilized, as more samples streaming in requires
1) a highly capable classifier that can learn expressive latent rep-
resentations and 2) a precise delineation of complex feature inter-
play. Knowledge reuse is enabled in both i) the shallow-to-deep
model switch via representations sharing and ii) the pre-and-post
evolving feature spaces via reconstructive mapping and ensemble
learning [79]. This benefits our approach by expediting the con-
vergence in a temporal continuum, so as to maximize its online
efficiency and efficacy when learning from doubly-streaming data.
Specific contributions of this paper are summarized as follows:

i) This is the first study to explore the doubly-streaming data
mining problem in an online deep learning context, where
the high-dimensional data streams with feature space evolu-
tion tend to incur a tradeoff between convergence rate and
learning capacity. The technical challenges are manifested
from empirical evidence in Section 3.

ii) A novel OLD3S approach is proposed to tackle the problem,
where a modeling architecture with its depth learned from
data is devised to adapt to minimize the online classification
regrets and precisely approximate the feature-wise relation-
ship on-the-fly. Details are in Section 4.

iii) Real-world high-dimensional datasets covering domains of
machine translation and image classification are employed
to benchmark our approach. Results suggest the viability
and effectiveness of our proposal, documented in Section 5.

2 RELATED WORK

Online Learning with Doubly-Streaming Data. Online learn-
ing algorithms were devised for data stream processing [2, 60],
where the reality of learning is in an on-the-fly setting hence lifts
the memory constraint for data analysis at scale. In addition to al-
lowing data to grow in terms of volume, in an orthogonal setting,
hoping the features describing input data to stay strictly unchang-
ing is unrealistic over long time spans. As a response, the pioneer-
ing studies [5, 33, 67, 75, 76] explored a setting of incremental fea-
ture learning, allow the arriving data instances to carry different
sets of features yet later instances are assumed to includemonoton-
ically more features than the earlier ones. Subsequent works that
strive to learn evolving feature spaces [4, 27–32, 34, 77] further re-
laxed the monotonicity constraint on the feature dynamics, enable
effective learning when later instances stop carrying old features
that appeared theretofore. A key technique shared by these meth-
ods is to establish a mapping relationship between the old and new
feature spaces. As such, once the old features fade away, their in-
formation can be reconstructed via the mapping, aiding the weak
learner trained on insufficiently few instances carrying new fea-
tures, join to make highly accurate predictions.

Despite their effectiveness in various settings, these methods all
prescribe a linear model to fit the mapping, which is unfortunately
not capable to deal with complex real data, e.g., images in an evolv-
ing spectrum domain, documents written in different languages.
We are aware of a very recent work [26] that does not use linear but
copula model to fit a non-linear mapping with statistical guaran-
tees. However, this work requires to deem each feature as a copula
component, and hence cannot scale up to a high-dimensional space
(e.g., images or natural languages). Our proposed OLD3S approach
does not suffer this restriction by discovering a latent feature space
in which the original data dimension is largely condensed, thereby
being generalizable to a wider range of real applications.

DeepLearningwith Adaptive Capacity. Neural networks have
emerged for several decades to approximate underlying functions
with arbitrary complexity [12, 48, 49]. However, their universal ap-
proximation capability is grounded on an assumption of an infin-
itely wide hidden layer, which cannot be satisfied in practical mod-
eling. The advent of Deep Neural Networks sidestepped this issue
by imposing a hierarchical representation learning procedure [3,
46, 52], trading in width for depth, so as to fit complex decision
functions underlying data. However, this hierarchical design intro-
duces over-parameterization, where the large number of learnable
parameters requestmassive rounds of training iterations over huge
datasets to converge. Online decision-making using deep learning
thus becomes seemingly impossible.
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A key question to solve the challenge is how to choose the net-
work depth (representing the entire model capacity) in accordance
with the underlying function in an adaptive, automated, and data-
agnostic fashion. Huang et al. [35] firstly theorized and implemented
the concept of stochastic depth, a training procedure that trains
shallow networks and tests with deep networks, randomly drop-
ping a subset of layers to quickly identify key layers. A method of
deducing which layers can be trimmed is therefore needed. Lars-
son et al. [42] later identified a strategy to construct deep net-
works structured as fractals. This confers the ability to regularize
co-adaptation of subpaths, effectively allowing for the isolation of
high performing layers within a larger architecture. We can now
judge values of groups of layers, making a delineation of value
more concrete. Sahoo et al. [57] and He et al. [25] demonstrated a
Hedge Backpropagation mechanism for online/lifelong deep learn-
ing, where the model depth is deemed as a trainable semantic met-
ric, jointly with the layer parameters to decide the function com-
plexity learned from data streams in a dynamic way.

Unfortunately, all these deep methods fail to take the feature
space evolution into account, a factor that can largely affect the
non-linearity of the resultant learning function. As a result, they
cannot be adapted to learn the doubly-streaming data. To fill the
gap, we propose to bring together the two fragmented subfields
of online deep learning and doubly-streaming data mining. In par-
ticular, we respect that the mapping relationship between the pre-
and-post evolving feature spaces can be massively more complex
than the previously explored linear models, andmust be gauged by
a neural approximator that grows its capacity autonomously and
adaptively.

3 PRELIMINARIES

We formulate the problem in Section 3.1, present the challenges in
Section 3.2, and outline the key design ideas in Section 3.3.

3.1 Problem Statement

Let {(xC , ~C ) | C = 1, 2, . . . ,) } denote an input sequence, where xC
is the data instance observed at the C-th round, accompanied with
a ground truth label ~C ∈ {1, 2, . . . , �}. It is worth noting that our
online classification problem is formulated in a multi-class regime
with in total� class options, which excels our competitors [27, 29,
31, 76] that focus on binary classification only.

In the context of doubly-streaming data, we follow the pioneer [31],
consider the set of features describing xC to evolve with the follow-
ing regularity, illustrated in Figure 1. Specifically,

• In the span C1 ∈ T1 := {1, . . . ,)1}, the classifier observes
the instances described by the feature space S1, i.e., xC1 ∈

S1 ⊆ R
31 , each of which is a 31-dimensional vector.

• In the span C1 ∈ T1 := {)1 + 1, . . . ,)1 }, the feature space
evolves, and the classifier observes the two feature spaces
S1 and S2 simultaneously, with each data instance being

xC1 = [xS1C1 , x
S2
C1
]⊤ ∈ S1 × S2 ⊆ R

31+32 .
• In the span C2 ∈ T2 := {)1 +1, . . . ,)2}, the old space S1 opts
out, and the classifier observes the evolved S2 only. Each
data instance is xC2 ∈ S2 ⊆ R

32 , a 32-dimensional vector.

Note, such feature space evolving from S1 to S2 can be easily
generalized to infinitely more spaces (e.g., S2 to S3, then S3 to

Figure 1: Illustration of doubly-streaming data. Only in a

very short timespan |T1 | ≪ |T1 | or |T2 |, the samples are de-

scribed by the two feature spaces concurrently.

S4), wherein all spaces can have disparate properties and semantic
meanings and the mapping relationship between any two spaces
can be arbitrarily complex. Such dynamism in the doubly-streaming
data makes a prefix of learner capacity close to impossible.

At any time instant C = {C1, C1 , C2}, the learner 5C observes xC
and makes a prediction ~̂C = 5C (xC ). The true label ~C is revealed
thereafter, and an instantaneous loss indicating the discrepancy
between ~C and ~̂C is suffered. Based on the loss information, the
learner updates to 5C+1 using first-order [15, 51, 54, 62] or second-
order [1, 24, 58, 72] oracles, getting prepared for the next round.
Our goal is to find a sequence of classifiers {51, . . . , 5) } that mini-
mize the empirical risk [10] over) rounds:min51,...,5)

1

)

∑)
C=1 ℓ

(

~C , 5C (xC )
)

,
where ℓ ( ·, ·) denotes the loss metric and often is prescribed as con-
vex in its argument such as square loss or logistic loss.

3.2 Opportunities and Challenges

Acommon practice to enable online learningwith doubly-streaming
data is to leverage the overlapping timespan T1 to learn a recon-

structive mapping q : S2 ↦→ S1 , such that once the features of S1
are not observed during T2, their information can be reproduced,
allowing the learner to harvest the old information learned during
the T1 time period for better performance [26, 27, 29, 31].

Let 5C = {5 S1C , 5
S2
C } denote the learner with 5

S1
C and 5

S2
C be-

ing the two classifiers corresponding to the S1 and S2 feature
spaces, respectively. During T2, instead of predicting the observed

instance as 5 S2C (xC ), the learner exploits the unobserved informa-

tion from S1 to make prediction as: 5C (xC ) = _1 · 5
S1
C (x̃C ) + _2 ·

5
S2
C (xC ), with x̃C = q (xC ) ∈ S1 being the reconstructed data vector
in the S1 space. With delicately tailored ensemble parameters _1
and _2 , this reconstruction-based learning method enjoys a prov-

ably better prediction performance than using the classifier 5
S2
C

only.
Unfortunately, this method does not scale up to cope with real-

world media data streams because of two challenges as follows.

Challenge I – Train DeepModels On-The-Fly. The real-world
media data carrying non-linear patterns often request deep learn-
ers (e.g., neural network models) for effective processing. However,
the large number of trainable parameters and complex model ar-
chitectures tend to make deep learners data-hungry and converge
slowly. In an online learning context, as each instance requiring im-
mediate prediction is presented only once, the deep learners tend
to regret [10], making substantial errors before converging to equi-
libria. To verify this, a simple example reduced from the CIFAR
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Figure 2: Two challenges underlie the OLD3S problem. Le�:

The deeper the learning model, the slower the convergence

rate.Right: The higher the data dimensionality, themore in-

ferior the feature relationship captured by linearmappings.

experiment is illustrated in the left panel of Figure 2, where neural
networks with various depths are trained in one-pass.

This example suggests that, as the model depth goes deeper, the
learner suffers from a flatter convergence rate. Although such deep
learners can end upwith high online classification accuracy (OCA),
they constantly underperform shallower models before given suffi-
cient instances, thereby regretting largely. Notably, a learner with
an improperly ultra-deep architecture (cf. depth = 10)may even fail
to converge in an online setting. The reason can be possibly attrib-
uted to the diminishing feature reuse [35, 42] where the semantic
meanings of raw inputs tend to bewashed out by the layer-by-layer
feedforward with massive randomly initialized parameters; No ex-
pressive representations can be learned online.

Challenge II – Learn Complex Reconstructive Mapping in

Short OverlappingTimespans. In practice, an overlapping phase
T1 in which the two feature spaces S1 and S2 coexist is very short.
Revisit the smart manufacturing example, where we can construct
T1 by pre-deploying a batch of new sensors before the old sensors
expiring their lifespans – a too long T1 is economically not afford-
able. This constraint blocks several seemingly plausible methods,
e.g., online transfer learning [70, 78], domain adaptation [37, 55], to
work well, as they all require a sufficiently long overlapping phase
to align the features pre and post evolution.

Prior studies [27, 29, 31] have advocated deducing linear func-
tions to approximate the mapping relationship q between the old
and new features in a short T1 , with the objective formulated as:

minq
∑)1
C1=)1+1





q
(

x
S2
C1

)

− xS1C1







2

2

where q
(

·
)

= W⊤ · . Unfortunately,

this linear reconstructive mapping q cannot work for media data
streams with nonlinear feature interplay. An empirical evidence is
presented in the right panel of Figure 2, in which we observe that,
the higher the data dimension, the more complex the mapping re-
lationship between two feature spaces, and hence the larger the
reconstruction loss that a linear mapping suffers.

3.3 Our Thoughts

To overcome the two challenges, our key idea is to discover a set
of shared latent features that summarize information from the pre-
and-post evolving feature spacesS1 and S2. Compared with learn-
ing the mapping q : S2 ↦→ S1 directly in the short T1 , our idea
can exploit the long T1 timespan to learn a latent feature subspace
from S1 independently at first, and then align it with that from S2
to expedite learning efficiency. Specifically, we employ variational

inference [6] to model the underlying distribution of S1 stream as:

&
(

z
S1
C1
| xC1 , C1 = 1, . . . ,)1

)

=

I
∏

8=1

N
(

z
S1
8 | `S18 , (fS18 )

2

)

, (1)

where a variational code zS1 ∈ RI is drawn from a multivariate
Gaussian that surrogates the data instances streaming from the
original feature space S1 [40]. Later in the overlapping T1 phase, a
new variational code zS2 ∈ RI is extracted from the S2 stream,
similar as Eq. (1) and omitted for simplicity. The two surrogate
Gaussians that approximate theS1 andS2 distributions (fromwhich
zS1 and zS2 were drawn) are enforced to be identical, such that
they can be deemed as the shared latent subspace that connects the
old and new feature spaces. As such, we intermediately reconstruct
the S1 data representations from the shared surrogate statistics.

To make this process online, we propose a neural architectural
design which learns the optimal model depth from data streams au-
tonomously, starting from shallow and gradually turning to deep
if more complex variational feature mapping relationships are re-
quired to be approximated. The more accurate this reconstructive
mapping is approximated, the better the learner can leverage the
old classifier trained on theS1 stream, and hence the higher the on-
line classification accuracy can be obtained by ensembling the old
and new classifiers. The details are presented in the next Section 4.

4 OUR APPROACH

Overview. In a nutshell, our proposed OLD3S approach can be
conceptually framed in a learning objective as follows.

min
5C ,q

∑

HBP

[
∑

C1,C1

(

LVI (q) + LREC (q)
)

+
∑

C1 ,C2

LCLF ( 5C , q)
]

.

In this section, we scrutinize this learning objective in sequence.
The variational inference lossLVI and the reconstruction lossLREC
together determine how the shared latent subspace is learned, pre-
sented in Section 4.1. The classification loss LCLF synopsizes how
the old and new classifiers are ensembled to expedite convergence
for better prediction performance in Section 4.2. We end this sec-
tion by elaborating how this minimization problem is realized by
an elasticneural networkmodel that automatically adjusts its depth
in an online, data-driven fashion in Section 4.3.

4.1 Variational Latent Subspace Discovery

To discover the latent subspaceZ, we employ the Variational Auto-
Encoder (VAE) [7, 20, 40] to summarize the observed data instances
into latent variational codes. As illustrated in Figure 3, two inde-
pendent VAEs are established, trained by minimizing the loss term:

L{S1,S2}VI = −E& (zC |xC )
[

logP(xC | zC )
]

+ !
(

& (zC | xC ) ‖ P(zC )
)

, (2)

where C ∈ T1 ∪ T1 and C ∈ T1 for the VAEs on S1 and S2, respec-
tively.

Intuition 1. The physical meanings of minimizing Eq. (2) are
as follows. i) Minimizing the first term equates to maximizing the
data generation quality, namely, the likelihood that the original
data observations can be decoded from the extracted latent codes.
Let the tuple (Enc,Dec) denote the encoder and the decoder net-
works in a VAE, the first term encourages xC ≈ Dec(zC ) where
zC = Enc(xC ). ii) The second term gauges the Kullback-Leibler
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...
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...

Figure 3: An architectural illustration of our OLD3S computational network during the overlapping T1 timespan.

(KL)-divergence [7, 41] between the underlying posterior & (zC |
xC ) and the latent marginal P(zC ) = N(0, I). With the posterior
calculated by Eq. (1), for the extracted latent code zC , we denote
its 8-th entry with I8 and is drawn from a Gaussian with mean `8
and variance f28 . To make the variational inference differentiable,
reparameterization is employed as I8 = `8 +f8 · Z with Z ∼ N(0, 1)
being normal noises.

A reconstruction loss is then imposed to regularize the two inde-
pendently learned latent spaces, fromwhich a shared latent feature
subspace is discovered during the overlapping timespan T1 :

LREC = ℓ
[

x
S1
C1
,Dec2,1 (zS2C1 )

]

+ !
(

& (zS1C1 | x
S1
C1
) ‖ & (zS2C1 | x

S2
C1
)
)

. (3)

Intuition 2. In the first term of Eq. (3), a new decoder network
Dec2,1 ( ·) which takes in the latent code from S2 to reconstruct
the data of S1 approximates our desired reconstructive mapping
q . The second term gauges the KL-divergence between the pos-
teriors that were independently drawn from different variational
distributions. Minimizing this term encourages the different varia-
tional distributions – the surrogate Gaussians to have similar prob-
ability densities, as conceptually illustrated in the middle panel of
Figure 3. We note that this term is asymmetric, where the varia-
tional density of S2 is required to resemble that of S1 but not the
opposite. This makes an intuitive sense as the variational distribu-
tions of S1 have been learned from T1 over a long time horizon,
which is more likely to yield an accurate approximation of the un-
derlying data distribution than that from a much shorter T1 only.

The two losses in Eqs. (2) and (3) together discover the shared
latent feature subspaceZ. In the subsequent T2 timespan in which
only the S2 space can be observed, an arriving instance xC2 is em-
bedded intoZ by its corresponding VAE as zC2 = Enc(xC2 ), from
which a reconstructed data representation of the S1 space is de-

coded, i.e., x̃S1C2 := q (xC2 ) = Dec2,1 (zC2 ). This VAE architecture
lends to learn a complex mapping relationship between S1 and
S2, hence better suits the high-dimensional media streams in the
wild.

4.2 Online Prediction with Ensembled Learners

Once the old features of S1 vanish, the learner 5C is not likely to
make accurate predictions on the arriving instances by relying on

S2 solely. Let 5C = {5
S1
C , 5

S2
C } denote the learner at the beginning

of T1 when S2 just emerges. As T1 is short, the 5
S2
C part of the

learner corresponding to the new features of S2 have been trained
with very few instances hence is not likely to converge. Relying on

5
S2
C to predict the instances in T2 would incur substantial regrets.

To aid, we leverage the old 5
S1
C part that has been trained with

a much larger number of instances during T1 . Thanks to the re-
constructive mapping q approximated by the VAEs in Section 4.1,
we can realize an online ensemble classification to yield accurate

predictions when 5
S2
C is not ready, defined as follows.

LCLF := ℓ (~C , ~̂C ) = −
�
∑

2=1

~C,2 log(~̂C,2 ), ∀C ∈ T1 ∪ T2, (4)

~̂C = ? · 5 S1C (x̃S1C ) + (1 − ?) · 5
S2
C (xC ), xC ∈ S2, (5)

where Eq. (4) employs cross-entropy [22] to gauge the multi-class
learning loss, with ~C,2 and ~̂C,2 being the true and predicted prob-
ability that xC belongs to the 2-th class, respectively.

Intuition 3. The idea behind Eq. (5) is to let the ensemble coeffi-
cient ? ∈ (0, 1) decide the impacts of the observed xC and its recon-

structed version x̃S1C in making predictions. At the beginning of T2

when the feature space just evolved, the old classifier 5 S1C should
be largely helpful with large ? . Over time, the value of ? decays

because of two reasons 1) the new classifier 5 S2C becomes stronger

and 2) the old classifier 5 S1C can be less useful due to the distribu-
tion drift. An updating strategy needs to be designed to echo this
intuitive process, where the new classifier takes over gradually as
the old classifier conveys less discriminative power.

In this work, we update the ensemble coefficient with exponen-
tial experts [10], where the empirical risks of using the old and new
classifiers to make independent predictions are accumulated as:

'
S1
) =

)2
∑

C=)1+1

ℓ
(

~C , 5
S1
C (x̃S1C )

)

, '
S2
) =

)2
∑

C=)1+1

ℓ
(

~C , 5
S2
C (xC )

)

. (6)

The smaller the cumulative empirical risk is suffered, the better the
classifier is, and hence the higher its corresponding coefficient is

uplifted exponentially. The updating rule is defined as? = 4−['
S1
) /(4−['

S1
) +

4−['
S2
) ), where [ is a tuned parameter.

4.3 Adaptive Model Depth Learning with HBP

With the reconstructive mapping and the ensemble prediction, the
information conveyed by the unobserved S1 can be reaped to bet-
ter the learning performance. The remaining problem is how to
realize the mapping and the classifiers with models of appropri-
ate depths that are most likely to produce the optimal solutions.
Unfortunately, fixing such depths beforehand is impossible with-
out prior knowledge of how the data streams evolve in the sample
space (e.g., distribution drift that may require classifiers with vari-
ous discriminant power to avoid overfitting) and the feature space
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(e.g., a diversity of feature mapping relationships requires VAEs
with disparate architectures). As it is unrealistic to rely on human
experts to provide such knowledge constantly over long timespans,
this problem boils down to the desire of a model architecture that
can learn the best depth from data autonomously.

To this end, we leverage the Hedge Backpropagation (HBP) [25,
57] mechanism to incorporate the model depth as a learnable se-
mantic that shall be determined in a data-driven manner through
optimization. Instead of evaluating the loss based on the output
from the last network layer only (as most deep learning models do),
the main idea of HBP is to evaluate the losses on all the intermedi-
ate hidden representations yielded from the network layers from
shallow to deep. Specifically, given an overcomplete network with
! hidden layers in total, the output of the ;-th encoder layer of the

VAE is recursively denoted as z(; )C = Enc(; )
(

z
(;−1)
C

)

, with z
(0)
C =

xC , where C ∈ T1 ∪ T1 and C ∈ T1 ∪ T2 for the VAEs corresponds to
S1 and S2, respectively. The objective of HBP is defined as follows.

min
{U (; ) }!

;=1

!
∑

;=1

U (; )
[

∑

C1,C1

(

L
(; )

VI + L
(; )

REC

)

+
∑

C1 ,C2

L
(; )

CLF

]

, (7)

where the loss terms L (; )VI , L
(; )
REC, and L

(; )
CLF are evaluated on z

(; )
C

at the ;-th layer as shown in Figure 3. In particular, 1) Evaluated by

L
(; )
VI is howwell the latent code z(; )C can summarize the raw inputs

with a surrogate Gaussian via using Eq. (2); For instances of S1, it
is evaluated over T1 and T1 timespans, and for instances of S2, it is

evaluated over T1 only. 2) Evaluated by L (; )REC is how precisely the
reconstructive mapping is learned so that the S1 feature space can
be reconstructed from the data instances of S2 via using Eq. (3); It
is only evaluated during the overlapping phase T1 where S1 and

S2 coexist. 3) Evaluated byL
(; )
CLF is how accurately the ensemble of

both old and new classifiers can make online predictions via using
Eq. (4); It is evaluated during T1 and T2 as the ensemble prediction
is used only if the features of S2 become observed.

Intuition 4. The crux of HBP lies in finding the equilibrium
that minimizes the three loss terms in Eq. (7) into a Pareto opti-
mum. To do this, we update the hedge weight U (; ) that determines

the impact of the ;-th layer in a boosting fashion [19]: U (; )C+1 ←

Norm
(

U
(; )
C VL

(; ) ,C
VI+REC+CLF

)

, where V ∈ (0, 1) is a discounting rate and

L
(; ),C
VI+REC+CLF accumulates the three losses in Eq. (7) suffered at the

C-th round. Denoted by Norm( ·) is a normalization function that
reweighs each U (; ) by the sum of all ! layers, ensuring U (; ) ∈ (0, 1).
The idea is straightforward: the layer of which the output incurs
large losses should be penalized and takes a discounted weight
in the next round. Otherwise, if a layer is in an optimal depth, it
approaches the minimizer of Eq. (7) with the incurred losses very
small, such that the remaining layers (i.e., those deeper than this
hidden layer) cannot identify and learn meaningful gradient direc-
tions. Their hedge weights would stay in small values.

5 EXPERIMENTS

Empirical results are presented to verify the viability and effec-
tiveness of our OLD3S approach. We elaborate the experimental
setups in Section 5.1 and extrapolate the results and findings in
Section 5.2.

Table 1: Statistics of the 10 datasets. |S1 | and |S2 | are the di-

mensions of the old and new feature spaces, respectively.

No. Dataset # Samples |S1 | |S2 | # Classes

1 magic04 36,119 10 30 2

2 adult 61,559 14 30 2

3 EN-FR 34,758 21,531 24,892 6

4 EN-IT 34,758 21,531 15,506 6

5 EN-SP 34,758 21,531 11,547 6

6 FR-IT 49,648 24,893 15,503 6

7 FR-SP 49,648 24,893 11,547 6

8 CIFAR 95,000 3072 3072 10

9 Fashion 114,000 784 784 10

10 SVHN 139,257 3072 3072 10

5.1 Evaluation Setup

5.1.1 DatasetPreparation. Webenchmark ourOLD3S approach
on 10 real-world datasets covering three domains to verify its ver-
satility. Statistics of the studied datasets are summarized in Table 1.
• UCI Data Science (No. 1-2): The two datasets have one fea-

ture space S1 at first, and we artificially create a new feature space
S2 = sigmoid(W⊤S1) with a random Gaussian W and a nonlin-
ear sigmoid function. The two feature spaces are concatenated as
the shape in Figure 1 to simulate the doubly streaming data.
• Multilingual Text Categorization (No. 3-7): A set of doc-

uments are described by four languages including English (EN),
French (FR), Italian (IT), and Spanish (SP). By treating each docu-
ment as a bag of words (features), the vocabulary of each language
can be deemed as a feature space. At each time, a document is pre-
sented and our model aims to classify it into one of the six cate-
gories. To simulate doubly-streaming, the language describing the
documents shifts over time, e.g., EN-FR, where the model learned
to classify English documents is soon presented with French docu-
ments after a short overlapping T1 timespan, requiring to approx-
imate the translation relationship between languages. To exacer-
bate the non-linearity of the mapping between two languages, we
apply the sigmoid function on the S2 feature space.
• Online Image Classification (No. 8-10): Images are typical

media data of high dimensionality and low information density.
To simulate doubly-streaming data, we follow the preprocessing
steps suggested by [17, 25] to create an evolved space by trans-
forming the original images with various spectral-mapping, shear-
ing, rescaling, and rotating. Images are presented one at a step, and
the model needs to learn the complex pixel transformation online.

5.1.2 ComparedMethods. Three state-of-the-art competitors tai-
lored for processing double-streaming data are employed for com-
parative study, with their main ideas presented as follows.
• FOBOS [14] is a canonic online learning baseline that operates

over first-order oracles with a projected subgradient that encour-
ages sparse solutions. To make it work for doubly-streaming data,
zeros are padded to the new features and vanished old features.
• OLSF [75] is the first study to tackle an incremental feature

space, where new features constantly emerging are carried in all
subsequent data instances. OLSF updates the online learners in a
passive-aggressive fashion, where the learning coefficients of old
features are re-weighed to new features only if these new features
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convey significant information that changes the decision bound-
ary.
• FESL [31] is the pioneer work to deal with doubly-streaming

data, which nevertheless employed linear functions to learn classi-
fiers and to approximate a mapping relationship between feature
spaces. A comparison with FESL rationalizes our design of adap-
tive deep learner and variational feature mapping approximator.

5.1.3 Ablation Variants. For the ablation study, two variants of
our OLD3S approach are proposed, named OLD-Linear and OLD-
FD. They differ from our original OLD3S design by: 1)OLD-Linear
employed linear mapping to approximate the feature mapping re-
lationship and 2) OLD-FD trains a deep neural network with a
fixed depth. We craft the two variants to necessitate the designs of
a non-linear, VI-based feature mapping approximator and the HBP
that allows model depth to be learned from data autonomously.

5.1.4 Evaluation Metric. As the traditional classification accu-
racy is ill-conditioned in online learning, we employ the Online
Classification Accuracy (OCA) and Averaged Cumulative Regret
(ACR) to measure the performance. Specifically, they are defined:

OCA(5C ) = 1 −
1

�

C
∑

8=C−�

È~8 ≠ 5C (x8 )É, ) = |T1 ∪ T1 ∪ T2 |

ACR =
1

)

)
∑

C=1

[

max
5 ∗

OCA(5 ∗) − OCA(5C )
]

.

Intuitively, OCA dynamically measures the accuracy of a classi-
fier 5C the C-th round, evaluated at themost recent � instances. ACR
evaluates how large the online learner regrets comparing to a hind-
sight optimum 5 ∗ by accumulating the OCA differences between
5C and 5 ∗ over ) rounds. The smaller the value of ACR, and the
better the online classification was performed.

5.2 Results and Findings

We present the experimental results in Table 2 and Figure 4, aiming
to answer three research questions (Q1 – Q3) as follows.

Q1. How does our OLD3S approach compare to the state-of-the-arts?

From the comparative results presented in Table 2, we make
three observations as follows. First, our OLD3S achieves the best
ACR performance. This result rationalizes our proposal of learn-
ing deep learners with complex feature relationships, as the com-
petitors mainly relying on linear models manifest inferior perfor-
mances. Second, our OLD3S outperforms FOBOS by 69% on aver-
age. In addition, FOBOS suffers the largest performance drop in
terms of OCAwhen the old features become unobserved, as shown
in Figures 4a, 4b,and 4c. This is because that FOBOS does not corre-
late the old and new feature spaces thus can be equated to initializ-
ing a new learner for the newly emerged features. Our approach ex-
cels as we learned the feature correlation to boost the learning per-
formance on the new features, and then enjoys a much smoother
learning curve as soon as the feature space evolves.

Third, compared to OLSF, our approach wins by 77% on average.
The reason can be attributed to that OLSF is tailored for dealing
with an incrementally increasing feature space only, and does not
possess the mechanism to handle the fading away features. The
learned knowledge of the old feature space is hence wasted. Our
approach aids the situation by learning a reconstructive mapping

between the two feature spaces, letting the learner enjoy the in-
formation conveyed by the old and unobservable features, thereby
attaining better ACR and sharper OCA curves along the time hori-
zon.

Q2. How helpful is the deep learner enabled by the VI mapping?

The comparison among FOBOS, FESL, our OLD3S approach and
its OLD-Linear variant amounts to the answer. First, our OLD3S
outperforms FESL and OLD-Linear by ratios of 69% and 44% on av-
erage, respectively. This performance gap indicates the non-linear
mapping relationship between feature spaces must be respected, as
FESL and OLD-Linear both employed linear functions to approx-
imate the reconstructive mapping. Second, more significant OCA
drops are observed from OLD-Linear in Figures 4b, 4c,and 4e. This
result suggests that the low-dimensional latent space resulted from
the variational encoding does not suffice to simplify the complex
feature reconstruction relationships to an extent that they can be
approximated by linear functions.

Third, we observe that FESL may even underperformed FOBOS
in terms of ACR, despite that FESL suffers a smaller performance
drop ofOCAovertime. This observation advocates that FESL learned
the feature relationship at a certain level, but the linearity of the
mapping function does suffice to fully capture the complex feature
interactions, such that the linear reconstruction of old features is
helpful at the beginning of T2 (smaller OCA drop) but soon be-
comes less useful overtime (slower learning rate), and eventually
becomes noises which negatively affect the prediction accuracy,
ending up with inferiority to FOBOS. In other words, it is better
to initialize a new learner than trying to reconstruct old features
inaccurately with an insufficiently capable linear mapping.

Q3. In which cases does an adaptive learning capacity excel?

A comparison between our OLD3S with the OLD-FD variant
answers this question. We observe that 1) OLD3S excels and signif-
icantly outperforms OLD-FD in six settings 2) OLD3S converges
faster with steeper OCA curves in all settings. These two observa-
tions validate the tightness of HBP in the sense that, although OLD-
FD may end up with higher OCA with increasingly more arriving
data instances (e.g., Figures 4a and 4d), its slower convergence rate
incurs larger online prediction errors before the network parame-
ters are readily trained. This necessitates the usage of HBP to ex-
pedite the online learning efficiency.

In addition, from Figures 4d and 4e, we observe that OLD-FD
learns slower as the learning task becomes more difficult. (The
objects in CIFAR impose more complex visual concepts than the
street-view numbers in SVHN, where the hindsight optimal OCAs
in CIFAR and SVHN are 72.7% and 93.3%, respectively). Our OLD3S
is invariant to the inherent complexity of the datasets and mani-
fests a fast online learning rate. This finding advocates the adap-
tive model capacity of our OLD3S is generalizable tomore learning
tasks, without requiring prior knowledge of the underlying distri-
bution or learning complexity of the doubly-streaming data of in-
terest.

6 CONCLUSION

This paper proposed a new online learning paradigm, namedOLD3S,
which enables a deep learner to make on-the-fly decisions on data
streams with a constantly evolving feature space. The key idea
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Table 2: Comparative results of averaged cumulative regret (ACR ± mean variance) benchmarked on 10 datasets, where the

lower the value, the better the method performs. The best results are bold. The bullet • indicates that our OLD3S approach

outperforms the competitors with a statistical significance supported by the paired t-tests at 95% confidence level.

Dataset FOBOS OLSF FESL OLD-Linear OLD-FD OLD3S

magic04 .119 ± .022• .335 ± .021• .110 ± .016• .075 ± .018• .076 ± .021• .052 ± .017
adult .076 ± .064• .225 ± .019• .067 ± .044• .055 ± .017• .068 ± .018• .049 ± .019

EN-FR .326 ± .064• .324 ± .018• .345 ± .044• .168 ± .030• .137 ± .030• .068 ± .025
EN-IT .318 ± .060• .314 ± .019• .337 ± .040• .197 ± .028• .143 ± .033• .083 ± .024
EN-SP .302 ± .060• .322 ± .021• .335 ± .037• .197 ± .036• .136 ± .027• .077 ± .024
FR-IT .278 ± .047• .301 ± .013• .314 ± .037• .195 ± .031• .147 ± .030• .084 ± .026
FR-SP .272 ± .046• .310 ± .014• .336 ± .040• .201 ± .029• .155 ± .026• .102 ± .027

CIFAR .468 ± .017• .504 ± .014• .463 ± .013• .166 ± .032• .232 ± .038• .150 ± .030
Fashion .305 ± .033• .294 ± .016• .247 ± .023• .160 ± .033• .123 ± .019• .056 ± .015
SVHN .808 ± .011• .604 ± .014• .806 ± .011• .144 ± .038• .120 ± .025• .089 ± .018

w/t/l 9/1/0 10/0/0 9/1/0 7/3/0 6/4/0 —

(a) magic04 (b) Reuter-EN-FR (c) Reuter-EN-IT (d) CIFAR (e) SVHN

FOBOS OLSF FESL OLD-Linear OLD-FD OLD
3
S

Figure 4: The trends of OCA of sixmethods on five datasets in the doubly-streaming setting. The blue-shadowed areas indicate

the overlapping T1 timespans. Due to the space limitation, complete results are deferred to the supplementary file.

is to establish a mapping relationship between the old and new
features, such that once the old features vanish, they are recon-
structed from the new features, allowing the learner to harvest
both old and new feature information to make accurate online pre-
dictions via ensembling. To realize this idea, the crux lies in the
harmonization of model onlineness and expressiveness. To respect
the high dimensionality and complex feature interplay in the real-
world data streams, our OLD3S approach discovered a shared la-
tent subspace using variational approximation, which can encode
arbitrarily expressive mapping functions for feature reconstruc-
tion. Meanwhile, as the real-time nature of data streams biases shal-
low models, our approach enjoyed an optimal depth learned from
data, starting from shallow and gradually becoming deep if more
complex patterns are required to be captured in an online fashion.
Comparative studies evidenced the viability of our approach and
its superiority over the state-of-the-art competitors.
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