
ChartReader: Automatic Parsing of Bar-Plots
Chinmayee Rane

Computer Science and Engineering
University at Buffalo
Buffalo, New York
cvrane@buffalo.edu

Seshasayee Mahadevan Subramanya
Chemical Engineering Department

Pennsylvania State University
University Park, Pennsylvania

sesha@psu.edu

Devi Sandeep Endluri
Computer Science and Engineering

Texas A&M University
College Station, Texas
dsandeep97@tamu.edu

Jian Wu
Department of Computer Science

Old Dominion University
Norfolk, Virginia
jwu@cs.odu.edu

C. Lee Giles
College of Information Sciences and Technology

Pennsylvania State University
University Park, Pennsylvania

clg20@psu.edu

Abstract—Scientific figures such as bar graphs are a critical
part of scientific research and a predominant method used to
represent trends and relationships in data. However, manually
interpreting and extracting information from graphs is often
tedious. Since data consumption has exponentially evolved over
the past few decades, there is a need for automated data inference
from these bar graphs. ChartReader presents a fully automated
end-to-end framework that extracts data from bar graphs in
scientific research papers focusing on process engineering and en-
vironmental science journals. ChartReader uses a deep learning-
based classifier to determine the chart type of a given chart image.
We then develop novel heuristic methods for analyzing scientific
figures (text detection, pixel grouping, object detection) and
address prime challenges like axis detection, legend parsing, and
label detection. Our framework achieves 98% and 68% accuracy
in parsing x-axis and y-axis ticks, respectively. It achieves 83%
accuracy in parsing legends and 42% accuracy in parsing data
values in the testing corpus. We compare the proposed method
with state-of-the-art methods and address its limitations.

Index Terms—Data Extraction, Chart Classification, Text De-
tection, Computer Vision

I. INTRODUCTION

Bar-plots are prevalent in papers written in almost all
scientific domains [6]. Authors use bar-plots for all kinds of
purposes, such as illustrating trends, correlations, distributions,
contrastive characteristics, and abnormalities. Bar-plots are
widely used because they provide a straightforward visual-
ization of data. However, the data used to make the plots
are not always available. Such data points can be valuable
for many general purposes, such as result verification and
baseline comparison. In certain domains such as Chemical
Engineering, automatically and precisely reading data from
bar-plots and associating them with corresponding semantic
information (e.g., x-axis labels and legends) would enable
the opportunity to develop kinetic and statistical models to
predict product formations. Manually reading exact values
from bar-plots is tedious and usually inaccurate. There is thus,
an increasing interest in automating image mining and parsing
[1], [10] to develop algorithms that can extract numeric and
text information from bar-plots with the purpose of parsing

Fig. 1: A typical vertically oriented bar-plot with horizontally
oriented legends. Features in this plot are labelled and high-
lighted (green: graph region, orange: y-axis semantic informa-
tion region, purple: x-axis semantic information region).

values of data points and associating them with corresponding
labels and legends. Furthermore, existing academic search
engines such as Google Scholar or CiteSeerX focus on text-
based mining and retrieval and do not provide interfaces yet
to search figures in scientific papers. Such functionality can be
developed based on extracting and parsing bar-plots and other
types of figures.

Most bar-plots have common structures, which we can
utilize for classification and parsing of numeric and text
information. Fig. 1 gives a sample of a typical bar-plot that
follows specific rules. For example, legends are colored boxes
with text on the right side. These colors are also present in
boxes and “bars” that make up the plot. The length of these
bars signifies the values while their positions and colors give
semantic information.

A typical bar-plot (Fig. 1) can be segmented into 3 regions:
a graph region, an x-axis semantic information region, and
a y-axis semantic information region. The axes are vertically
or horizontally aligned straight lines that bifurcate the graph
space from the semantic information regions. Each x- or y-axis
semantic information region contains respective labels and tick

1



values. The graph region contains bars and legends.
As for now, the common practice to parse such plots is

manual tools such as webplotdigitizer [11]. When using this
tool, a user uploads an image file of the plot, labels the x- and
y-axis positions and the bars to obtain value for each bar. This
method is slow and thus does not scale to millions of bar-plots
extracted from a large volume of journal articles. Another key
shortcoming is that it does not parse semantic information and
associate it to specific values of bars. Our approach overcomes
these shortcomings by automatically extracting bar-plots with
captions from the journal article, parsing the values of bars and
associated semantic information. Therefore, it can be used for
processing bar-plots in scientific articles on a large scale.

The novel contributions of our algorithm are as follows. The
software is open source available on GitHub1.

1) A novel double-pass algorithm integrated with an op-
tical character recognition (OCR) engine improves text
detection by noise reduction.

2) An algorithm to parse legends arranged horizontally,
vertically, or in a matrix with different colors, pixel
values, and positions in the plot.

3) A sweeping-line based algorithm for axis detection.
4) Associating bars with semantic information based on

color (legends) and positioning (x-axis value).

II. RELATED WORKS

One of the challenges in accurately parsing bar-plots is
to handle various types of bar-plots in scientific literature.
Previous works focused on building heuristic models that
identify key features, such as bars, x-axis semantics, and y-
axis semantics, e.g., [17], [18].

For example, Zhou et al. (2001) [16] used ergodic hidden
Markov models to identify bar-plots. They used feature ex-
traction to estimate parameters for the hidden Markov model.
Davila et al. (2019) [5] used PixelLink text detection and SVM
training to match feature labels with their respective feature
components. However, both the studies did not extract data
values from bar-plots.

Savva et al. (2011) [13] and Al-Zaidy et al. (2015) [2] used
a bilateral filter to smoothen small color variations in bar-
plots and connected components labelling with lab color space
to distinguish components. The bounding-boxes with different
RGB values were detected and labelled as unique vectors. The
accuracy of detecting bar values was improved from 67% [13]
to 80% [2] using the technique above. Arouja et al. (2020) [3]
recently developed a model that detects bar-plots from scanned
books. However, they focused on improving the classification
algorithm but not on parsing numerical information from bar-
plots.

Seigel et al (2016) [15] used a convolutional neural network
(CNN) to parse legends and detect labels and ticks for all types
of graphs (line, bar, scatter etc.). The overall accuracy was low
(17.6%), but axes (positions and scales) and legends (labels

1https://github.com/Cvrane/ChartReader.git

and symbols) were detected with relatively high accuracies
(> 90% for axis and > 70% for legends).

Ying et al. (2017) [7] developed a model that parses legends
in bar-plots. They related legends and sub-bars (clustered
bars with the same x-value) based on positions. The bars
and legends were assumed to follow the same order from
left to right. The figures were collected from PubMed papers
and converted to grayscale. The algorithm detected 32.8% of
values from bar-plots. The proposed algorithm failed to work
on figures with low resolution or small bars. Legends that were
aligned vertically or in a matrix were not detected.

Abhijit et al. (2018) [14] developed a model to improve the
accuracy to parse bar values using synthetic data generated
from the matplotlib library. The plots were first converted
to grayscale, the pixel values of bars were matched with
corresponding legends. However, all legends in the synthetic
data were below the x-axis and away from the bars, which was
incongruous in general because the legend boxes could appear
in other places. The model achieved an accuracy ranging from
70% for stacked plots to 76% for simple bar-plots (without
legends).

Most of the previous methods do not parse legends. Some
made assumptions that legends were always below the plots
[14], or ordered horizontally along the same line [7]. This
limits on the applicability of these models. Legends contain
important semantic information because they enable 2D bar-
plots to act as 3D plots with an additional varying parameter.
We take this as one of our cornerstone challenges. The
previous algorithms were mostly developed for grayscale plots.
They did not utilize the color information to parse legends.
Also there has been less focus on measuring the accuracy of
detecting the axes or label values. Quantifying the accuracy
of obtaining these semantic information is important for un-
derstanding where the capping limits are in this evaluation
process.

III. METHODS

A. Overview
Our parsing approach (see Figure 2) starts with axis and

label detection. We use the maximum threshold method to
distinguish the x- and y-axis from the horizontal and vertical
lines within the images. The OCR Engine AWS Rekognition2

is applied on the images to detect the text and its locations.
The location information is used to compute bounding-boxes
of the detected text. A bounding-box (or a contour) is a simple
rectangle surrounding the text detected by the OCR. The axes
detected are used to filter x-labels, y-labels, and legends from
all of the text detected. Finally, we obtain the y-values by
converting pixel values of y-labels and their corresponding
ticks.

B. Figure Extraction
We used PDFFigures2 [4] to extract figures from research

papers. PDFFigures2 resolves peculiar challenges like han-
dling documents with widely differing spacing conventions,

2https://aws.amazon.com/rekognition/

2



Fig. 2: An overview of ChartReader model.

avoiding false positives while maintaining the ability to extract
a broad range of possible captions, and extracting a highly var-
ied selection of figures and tables. We also extracted captions
that provided brief descriptions of figures. All metadata and
captions were saved into a database for convenient access.

C. Figure Classification

1) Chart Image Dataset Construction: To identify bar-plots
from a large collection of figures, we trained a model to clas-
sify figures extracted above. We followed a similar approach as
ChartSense [8] to prepare the training dataset. We developed a
script using the python module google images download3 to
download chart images (in a similar way as ReVision [13]).
Then, we manually identified and removed all the incorrect
samples from the downloaded figures. We obtained a total of
4320 figures in 13 categories, including 528 bar-plots

2) Training: We trained a multiclass classification model
using the chart image dataset and evaluated it with a five-fold
cross-validation.

We used Keras4 to implement the transfer learning model.
These models were pre-trained on the ImageNet dataset [12].
We loaded these pre-trained models and fine-tuned them on
the chart classification dataset. We froze all the layers except
the last convolutional layer. The fully-connected layer used a
softmax function to classify figures into 13 chart categories.
The convolutional layer and the added fully-connected layer
were retrained for 30 epochs using Adadelta as an optimizer.

A dropout layer with a rate 0.3 is included before the final
fully-connected layer to prevent overfitting. All figures were
rescaled to a fixed size of 224×224×3 to meet the input image

3https://pypi.org/project/google images download/
4https://github.com/fchollet/keras

TABLE I: Validation accuracy (averaged over 5 folds) of CNN
models for classifying bar-plots from the Chart Image Dataset.

Model Training parameters Accuracy (%)

VGG-19 47M 82.11 (± 1.37)
EfficientNetB3 107M 84.53 (± 0.92)
Inception-V3 91M 84.53 (± 1.61)

ResNet-152V2 143M 83.54 (± 1.19)

dimension requirement of VGG-19. Figure 3 shows the model
architecture. In this model, only the fully connected layers and
the last convolutional layer block (conv5) are trained.

3) Results: We compared four CNN-based neural networks
(CNNs), namely VGG-19, ResNet-152V2, Inception-V3 and
EfficientNetB3. The results are shown in Table I. VGG-19
has an average validation accuracy of 82.11%. The other
three baselines achieved a similar accuracy, but the number of
parameters of VGG-19 model was significantly smaller than
that of the other three models we have experimented with.
One phenomenon we observed in error analysis was that these
CNN based models tend to produce the same false positives,
indicating that alternative types of neural networks may be
needed to achieve a better performance.

D. Axes Detection

The first step of the axis detection algorithm is to con-
vert input figure into binary figure, by converting into gray-
scale image, then replacing all pixels in the resulting figure
with luminance greater than 200 with the value 1 (white)
and replacing all other pixels with the value 0 (black). We
experimented with different values for binary thresholding and
observed that a threshold of 200 gave the best results. After
this, we scanned the matrix vertically and traced the continuity
of black pixels within adjacent columns. To identify the true
y-axis from these candidates, we used a threshold value of 10

3



Fig. 3: Model architecture used for figure classification. We use conv to denote convolutional layer, fc to denote fully connected
layer, bn to denote batch normalization Layer.

for continuity of black pixels. Finally, the first column that has
the highest number of continuous black pixels was identified
as the y-axis.

Similarly, we detected the x-axis by horizontally tracing the
number of continuous black pixels in each row of the matrix
converted from the original figure. The x-axis was identified
as the last row containing the maximum number of continuous
black pixels above a threshold of 10.

E. Text detection
The AWS-Rekognition DetectText API was used to detect

text in a figure. DetectText also provided rectangular bounding
boxes of the detected text. We employed a double-pass algo-
rithm, illustrated in Fig. 4, to improve the text detection results.
The pseudo-code is shown in Algorithm 1. AWS Rekognition
outputs a confidence score for the detected text indicating
the probability that the prediction is correct. Our algorithm
was motivated by the intuition that whitening out detected
text with high confidence scores may reduce their interference
and thus improve the quality and confidence scores of the
other text that had relatively lower confidence scores in the
first pass. We examined the text detection results on a set of
randomly selected figures and found that most of the correctly
recognized text yielded confidence scores ranging from 85%
to 90%. Therefore, we empirically set the threshold of the
confidence score to be 80%.

Algorithm 1 Double-pass Algorithm

1: Run AWS Rekognition on the figure to detect text and
obtain corresponding locations of the text

2: Select the detected text with Confidence >= 80
3: Compute the bounding-boxes using location output for the

text obtained after Step 02
4: Fill the bounding-boxes corresponding to the selected text

with white color
5: Repeat Steps 01, 02 and 03 (2nd pass)

F. Label Identification
A figure may contain different types of labels, so we

develop an algorithm to first classify all detected labels into

the following categories (see Fig. 1 for an illustration):
• x-labels: the text enclosed by the bounding-boxes below

the x-axis.
• x-text: the text enclosed by the bounding-boxes below the

x-labels.
• y-labels: the numerical values enclosed by the bounding-

boxes detected to the left of the y-axis.
• y-text: the text enclosed by bounding-boxes detected to

the left of the y-labels.
• legend labels: the text enclosed by the bounding-boxes

detected to the right of the colored boxes in the legends.
We apply a sweeping-line based method to classify labels

obtained from text detection approach described in section

Fig. 4: Double Pass Algorithm output on a sample figure: The
first iteration detects the text. Bounding-boxes corresponding
to the text with confidence ≥ 80% are selected. The second
iteration whitens the selected bounding-boxes and re-runs the
text detection algorithm.

4



III-E. In this method, a horizontal line sweeps from the top
to the bottom. This line will intersect bounding boxes of
labels. The x-labels can be determined using the number of
intersections with the bounding boxes along the line. A similar
algorithm can be used for detecting y-labels and y-text using
a vertical sweeping line.

G. Legend detection

The legend detection is based on results of label detection.
A legend typically includes a set of label-color pairs. In most
bar-plots, the legends appear above the x-axis and to the
right of the y-axis. We first remove two types of text boxes
from this region. The first type of text boxes are results of
AWS Rekognition, which usually interprets error bars as the
letters “I”(s), so we remove bounding boxes containing only a
single “I” character. The second type is text boxes containing
numerical values above bars. The remaining text boxes contain
legend color boxes and legend names. Because the legend
names may contain multiple words, we merge the bounding
boxes with distances less than 10 into a single legend name.
The distance between the bounding boxes is measured as the
difference between the leftmost x-value of the first bounding
box and the rightmost x-value of the second bounding box.
These bounding boxes were grouped in such a way that each
member of the group is either horizontally or vertically aligned
to at least one other member in the group. The largest group
gave us the legends. The method is described in Algorithm 2.

Algorithm 2 Legend Detection Algorithm

1: legend groups ← empty list
2: for each bounding-box in the figure do
3: for each group in legend groups do
4: if bounding-box is either horizontally or vertically

aligned to any member in the group then
5: Add bounding-box to the group
6: end if
7: end for
8: if bounding-box couldn’t become member of any of the

group then
9: Create a new group with this bounding-box

10: Add this new group to legend groups
11: end if
12: Calculate the maximum length group of bounding-

boxes to determine the legends
13: end for

H. Color Estimation

The color estimation module combines the double-pass and
label detection methods. Before we match colors in the legend
to the colors in the bars, we associate the text description
of each bounding box to its corresponding legend. The text
bounding-box of a particular legend is determined to be the
nearest bounding-box with a similar height on its left.

We use the original figures to identify the color correspond-
ing to a legend text label. Here, we assume the color boxes are

located on the left side of legend labels. Ideally, pixels within
a box should have exactly the same pixel values. However,
due to many reasons (e.g., image compression, scanning, etc.)
the pixel values may vary. Similar to Algorithm 2, we start
with a new group with a random pixel and incrementally add
pixels whose R, G, and B values are no more than 5 compared
with the average of all pixels in the group. The average of all
pixels in R, G, and B channels in the largest group is used
as the color of a legend label. These colors are later used for
identifying bars matching a particular legend.

I. Data extraction

Using the color estimation method, we obtain a simplified
bar-plot for each legend that can be used to detect the bars
corresponding to a particular legend. To estimate each bar’s
height, we need a mapping function that converts pixel values
to actual values using a factor called the value-tick ratio (α).

As the method to detect numeric values is not 100%
accurate, the pixel values that deviate significantly from a
normal distribution of the ticks or the labels are removed
assuming that data points with random errors should follow a
normal distribution. After removing the outliers, we calculate
the average distance between ticks (∆d) in pixels and the
average of the actual y-label ticks (N tick). The value-tick ratio
is calculated by:

α =
N tick

∆d

Y-value estimation: Using color groups, and the value-tick
ratio, the y-values in a bar-plot can be extracted. The y-values
for each bounding-box of the bar-plot using Equation III-I as
y value = α×H , where H is the height of a bar.

IV. EVALUATION AND RESULTS

We compiled our dataset in the following way. We searched
the keyword “hydrothermal liquefaction” on the Web of Sci-
ence search interface to obtain a list of DOIs. Using the DOIs,
we downloaded 1857 PDF papers. The papers downloaded
were published from 1990 to 2020 to cover hand-drawn and
machine-drawn figures. We used PDFFigures2 [4] to extract
figures and corresponding captions and classified them to
obtain bar-plots. We further selected 1240 bar-plots from 654
PDFs that contain keywords “oil yield” and “GC-MS” in figure
captions. These bar-plots contain data of interest for the users.
The ground truth was obtained in a semi-automatic manner
by visually inspecting figures with the aid of webplotdigitizer
[11]. We call the 1240 bar-plots the full dataset. Out of the
full dataset, we excluded bar-plots containing grayscale or
patterned bars and horizontal bar-plots and constructed another
dataset called the constrained dataset containing 516 bar-plots.

A. Evaluating Bar Value Extraction

Table II summarizes the accuracies for entire dataset and
constrained dataset for each of the parameters evaluated. We
define accuracy as the percentage of data points from the
dataset of interest that are correctly detected. In the next

5



TABLE II: Metrics evaluating successful determination of data
values and semantic features for the entire and constrained in-
house dataset.

Accuracy(%)
Parameter Full dataset Constrained dataset

Legends 83.28 -
X-axis ticks 97.97 -
Y-axis ticks 68.78 -
Height/value ratio 88.63 -
Y-axis label 77.58 -
X-axis label 71.29 -
Data association 65.42 75.37
Data values 22.98 42.10

section, we discuss the reason behind these limitations and
the algorithms needed to overcome them.

There are no constraints for evaluating the legend, label, y-
values and tick determinations. Therefore, we do not calculate
the accuracies for the constrained dataset for these parameters.
The limitations mentioned above are typical to the bar detec-
tion and do not impact parsing semantic information. Also,
note that all the values are determined on an absolute basis.
For example, for legends, it would be the number of correct
legends detected divided by the total number of legends in all
plots. This allows us to estimate the number of data points
that can be parsed from a given dataset.

TABLE III: The criteria to determine if various parameters are
correctly extracted.

Parameter Detection protocol

Legends Colour of legend and corresponding
text are correctly matched

Text in axis Axis values for X (all x-axis text) and
Y (at least 5 numeric values) axis
are correctly evaluated

Y-axis value Height to value ratio is
accurately evaluated

Labels in axis x- and y-axis labels are detected
Data association x-axis and legend values are

matched with corresponding bars
Data values Value of the bar point is accurately

determined within ±5 % deviation

B. Legend detection

Our algorithm achieves an accuracy of 83.28% with 3615
out of 4341 detected correctly. This caps the maximum accu-
racy that the whole pipeline can achieve. Because the legends
are parsed by scanning the graph space (see Fig. 1), the
algorithm does not work well in cases where legends appear
below the x-axis. There were 39 out of 1240 such plots. In
other failed cases, the legend color boxes were not recognized
because their sizes were too small and were treated as the
background noise.

C. Axis tick and label detection

The x-axis tick detection achieves an accuracy of 97.97%
(7879 out of 8042). This is attributed to the robust axis
determination algorithm. However, the y-axis tick detection
has a lower accuracy (68.78%). Y-axis ticks are numerical
values in most cases. However, a fraction of plots have a “%”
symbol accompanying an alphanumeric value (see Fig. 6(b)).
The OCR engine used does not distinguish the numeric value
and symbols well, which results in a lower accuracy. However,
the accuracy for height/value ratio determination is relatively
high (88.63%). This is because as long as two y-axis tick
values are correctly detected in a given plot, the above ratio
can be correctly determined. To improve the accuracy of the
ratio, we calculate multiple ratio values and take the average
when more than two data points are available. The x-axis and
y-axis labels are determined with accuracies of 71.29% and
77.58%, respectively. Note that a small fraction of plots did
not have an x- or y-axis, and are taken as false positives.

D. Data evaluation and association

To build the ground truth, we manually extracted 18,830
data points from 1,240 bar-plot figures in the full dataset. Here
a data point is defined as an individual bar in a bar-plot. Each
data point has a legend and x-axis tick associated and a y-
value that is to be determined. As seen in Table III, there are
two parameters we need to evaluate. The “data association”
parameter measures whether a data point correctly matches its
corresponding legend and its x-axis value. The “data value”
parameter measures whether the bar value is calculated within

Fig. 5: Data values extracted from a figure. The x-text, x-labels, y-text and y-labels inferred are also shown in the right table.
The example here does not have an x-text.

6



an offset of ±5% with respect to the true value. Data parsed
from a bar-plot are stored in a spreadsheet. An example is
shown in Fig. 5.

Fig. 2 shows that successfully detecting bar values and
finding their corresponding semantic information relies on
the detection of legends, x-axis ticks, and height/value ratio.
Therefore, the best accuracy we can achieve for the bar value
detection is the multiplication of the accuracies of these three
tasks, which is about 72.3%. Improving legend and axis tick
detection will push this limit higher.

The data association accuracy reported in Table II is 65.4%,
which is close to the upper bound accuracy estimated above
(72.3%), indicating that the proposed algorithm for associating
data worked well. On the other hand, the accuracy of reading
data values is relatively low (22.98%).

We performed an error analysis to find that certain types
of bar-plots are not correctly parsed. These include gray-scale
figures (see Fig. 6(a)), figures with line grids, figures with
horizontal bars, figures with legends below x-axis, figures with
legends outside the plot region, or figures with colored patterns
in the bars. Excluding these cases increases the accuracy to
42.10%.

E. Testing with open-source dataset

We test the accuracy of this framework to open-source and
generic datasets. This helps in reducing the biases that may
have incurred during the model evaluation with the in-house
dataset. It also explores the validity of this framework to charts
from generic fields. We chose 2 datasets - IEEE Luo 2021
[9] and ICDAR 2019 [5]. We processed all 386,966, 198,010
charts in each of these datasets and randomly chose 100 for
evaluation (same methodology as Section IV). The results are
summarized in table IV.

The accuracies for ICDAR and in-house datasets are simil-
iar. The framework has lower accuracies for the IEEE dataset.
Most of the charts in the IEEE dataset were of the same
template with changes in bar values. Legend parsing failed on
62 charts because legends are below the axis. Despite 88 of the
100 plots in the ICDAR dataset containing patterned legends,
the accuracies are still relatively high. This indicates the
robustness of the model to work for colored patterned legends.
Note that none of these datasets contain grayscale charts.
Hence for chart-parsing frameworks, extracting information
from varied sources is required to minimize evaluation biases.

F. Comparison with Al-Zaidy et al. [2]

We compared ChartReader with the method proposed by
Al-Zaidy et al. (2015) on the same dataset. The figure dataset
used by [2] contains 2257 bar-plots. We ran the ChartReader
on all bar-plots and randomly selected 100 for evaluation
(same methodology as Section IV). The comparison results
are shown in Table IV.

The results for parameters such as legends, axis ticks,
height/value ratio, and data association are similar to
ChartReader (Table II). However, the metrics for successful
determination of data values and axis labels are higher than

ChartReader. The increase of accuracy for axis label detection
is due to the presence of a larger number of special characters
such as “%” and “◦” in our dataset. Furthermore, the figure
dataset used for Table IV includes a larger fraction of ATLAS
charts that resembles bar-plots shown in Fig. 1. This increases
the accuracies for data value detection. The dataset used by
[2] also contains gray-scale figures, figures with patterns,
and horizontal bars and they were extracted from multiple
domains, so the consistency of results in Table IV to Table II
indicates the robustness of our model on processing bar-plots
extracted from journals beyond chemical engineering.

The model proposed by [2] did not parse legends and ob-
tained bar values for approximately 67% of all bar-plots (Col-
umn 3 in Fig. IV). Our bar value detection accuracy is lower
(49%) due to addition of legend parsing. Overall, compared
with [2], ChartReader achieved a comparable performance in
most parameters measured. It added the functionality to parse
legends and significantly improved y-axis label detection.

V. LIMITATIONS AND SCOPE FOR IMPROVEMENT

As shown in Section IV, although ChartReader achieved a
relatively high performance in the constrained dataset, it still
does not work well on certain types of bar-plots. The limitation
of the framework and the future works for improvement are
proposed here.

Axes Detection. Our algorithm failed to detect axes when
there were no solid lines representing the y-axis. In this case,
the y-axis can be detected by identify bounding boxes along a
vertical line in the bar-plot. However, if there are symbols
accompanying the numeric values, a module is needed to
correctly interpret these symbols (Fig. 6(b)). Another case
when axis detection may fail is when the x-axis is at the top
of the plot. This case can be handled by using a bidirectional
sweeping line with heuristic rules.

Detecting legends and parsing data values. We showed
that ChartReader achieved reasonable performance for colored
bar-plots. ChartReader failed to parse most gray-scale bar-plots
because gray-scale plots predominantly have patterns based
legends. Integration of pattern recognition techniques with our
innate color segmentation methods is a promising approach to
detect patterned legends. Grouping pixels in squares using a
neural network model and analyzing patterns is a promising
first step. Fig. 6(a) show an example of a gray-scale pattern
bar-plot which failed to be parsed by ChartReader.

VI. CONCLUSION

We developed a framework implementing a set of algo-
rithms that automatically parse numeric values and associated
semantic information from bar-plots in journal papers and
generate reconstructive datasheets using neural network (clas-
sification) and heuristic (bar-plot parsing) methods. The overall
performance for parsing data from a general bar-plot has
been improved compared with the state-of-the-art with real-
world datasets. We addressed the limitations of the proposed
algorithms and proposed possible solutions to overcome these
challenges.

7



(a) The input image is a gray-scale bar-plot. (b) The image where the “%” symbol accompanies the y-labels.

Fig. 6: Data extraction results that failed the ChartReader model.

TABLE IV: Accuracies (%) for successful determination of data values and semantic features for entire and constrained datasets
from IEEE Luo 2021, ICDAR 2019 [5], Al-Zaidy et al. [2].

Accuracy(%)
Parameter Entire Constrained Entire Constrained Entire Constrained Al-Zaidy

ICDAR ICDAR IEEE IEEE Al-Zaidy Al-Zaidy evaluation on
dataset dataset dataset dataset dataset dataset Al-Zaidy dataset

Legends 52.07 52.07 70.00 70.00 82.91 82.91 -
x-axis ticks 97.92 97.92 72.59 72.59 92.53 92.53 -
y-axis ticks 99.06 99.06 89.87 89.87 89.77 89.77 -
height/value ratio 99 99 98 98 89 89 -
y-axis label 98 98 97 97 98 98 20
x-axis label 96 96 94 94 98 98 -
Data association 58.27 45.45 42.68 44.87 61.95 77.93 -
Data values 27.19 45.45 16.67 18.44 49.31 76.55 67.00

ChartReader provides a stronger baseline for automatically
reading data from scientific bar-plots at scale. Bar-plots are
extracted and parsed on average in 8.3 secs on a personal
computer. This aids in expediting mining of information from a
large corpus of research articles to develop data-driven models.

REFERENCES

[1] Ahmed, Z., Saman, Z. and Thomas, D, “Mining biomedical images
towards valuable information retrieval in biomedical and life sciences.”
Database (2016)

[2] Al-Zaidy, R.A., Giles, C.L.: Automatic extraction of data from bar
charts. In: Barker, K., G oomez-Perez, J.M. (eds.) Proceedings of the
8th International Conference on Knowledge Capture, K-CAP 2015,
Palisades, NY, USA, October 7-10, 2015. pp. 30:1–30:4. ACM (2015).

[3] Araujo, T., Chagas, P, A.J., Santos, C., Sousa Santos, B., Serique
Meiguins, B.: A real-world approach on the problem of chart recognition
using classification, detection and perspective correction 20, 4370.

[4] Clark, C., Divvala, S.: Pdffigures 2.0: Mining figures from research pa-
pers. In: 2016 IEEE/ACM JointConference on Digital Libraries (JCDL).
pp. 143–152 (June 2016)

[5] Davila, K., Kota, B.U., Setlur, S., Govindaraju, V., Tensmeyer, C.,
Shekhar, S., Chaudhry, R.: Icdar 2019 competition on harvesting raw
tables from infographics (chart-infographics). International Conference
on Document Analysis and Recognition. pp. 1594–1599 (2019).

[6] Davila, K., Setlur, S., Doermann, D., Bhargava, U.K., Govindaraju, V.:
Chart mining: A survey of methods for automated chart analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2020)

[7] He, Y., Yu, X., Gan, Y., Zhu, T., Xiong, S., Peng, J., Hu, L., Xu,
G., Yuan, X.: Bar charts detection and analysis in biomedical literature
of PubMed Central. AMIA ... Annual Symposium proceedings. AMIA
Symposium2017, 859–865 (2017)

[8] Jung, D., Kim, W., Song, H., Hwang, J.i., Lee, B., Kim, B., Seo, J.:
Chartsense: Interactive data extraction from chart images. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing

Systems. p. 6706–6717. CHI ’17, Association for Computing Machinery,
New York, NY, USA (2017).

[9] Luo, Junyu, Zekun Li, Jinpeng Wang, and Chin-Yew Lin. ”ChartOCR:
Data Extraction From Charts Images via a Deep Hybrid Framework.”
In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 1917-1925. 2021.

[10] Nagthane, Deepika, K.: Image mining techniques and applications.
International Journal Of Engineering Sciences Research Technology
(2013)

[11] Rohatgi, A.: Webplotdigitizer: Version 4.4 (2020)
[12] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A., Fei-
Fei, L.: Imagenet large scale visual recognition challenge. International
Journal of Computer Vision115, 211–252 (2015)

[13] Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M., Heer,
J.: ReVision: automated classification, analysis and redesign of chart
images. In: Proceedings of the 24th annual ACM symposium on User
interface software and technology - UIST ’11. p. 393. ACM Press, Santa
Barbara, California, USA (2011).

[14] Balaji, Abhijit, Thuvaarakkesh Ramanathan, and Venkateshwarlu
Sonathi. ”Chart-text: A fully automated chart image descriptor.” arXiv
preprint arXiv:1812.10636 (2018).

[15] Siegel, N., Lourie, N., Power, R., Ammar, W.: Extracting scientific
figures with distantly supervised neural networks. In: Proceedings of
the 18th ACM/IEEE on Joint Conference on Digital Libraries, JCDL
2018, Fort Worth, TX, USA, June 03-07, 2018. pp. 223–232. ACM
(2018).https://doi.org/10.1145/3197026.3197040

[16] Yanping Zhou, Chew Lim Tan: Chart analysis and recognition in
document images. In: Proceedings of Sixth International Conference on
Document Analysis and Recognition. pp. 1055–1058 (Sep 2001)

[17] Yokokura, N., Watanabe, T.: Layout-based approach for extracting
constructive elements of bar-charts.International Workshop on Graphics
Recognition pp. 163–174 (1997)

[18] Zhou, Yan, P., Chew, L.T.: Hough technique for bar charts detection
and recognition in document images. International Conference on Image
Processing (Cat. No. 00CH37101)2, 605–608 (2000)

8


