
Extractive Research Slide Generation Using Windowed Labeling Ranking

Athar Sefid
Penn State University

atharsefid@gmail.com

Jian Wu
Old Dominion University

j1wu@odu.edu

Prasenjit Mitra
Penn State University
pum10@psu.edu

Lee Giles
Penn State University
clg20@psu.edu

Abstract
Presentation slides generated from original re-
search papers provide an efficient form to
present research innovations. Manually gen-
erating presentation slides is labor intensive.
We propose a method to automatically gen-
erates slides for scientific articles based on
a corpus of 5000 paper-slide pairs compiled
from conference proceedings websites. The
sentence labeling module of our method is
based on SummaRuNNer, a neural sequence
model for extractive summarization. Instead
of ranking sentences based on semantic simi-
larities in the whole document, our algorithm
measures importance and novelty of sentences
by combining semantic and lexical features
within a sentence window. Our method out-
performs several baseline methods including
SummaRuNNer by a significant margin in
terms of ROUGE score.

1 Introduction

Nowadays it is a common practice for researchers
to use slides as a visual aid to present research find-
ings and innovations. Slides usually contain bullet
points that the researchers believe to be important
to show. Manually creating a set of high-quality
slides from an academic paper is time-consuming.
We propose a method that automatically selects
salient sentences that could be included into the
slides, with the purpose of reducing the time and
effort for slide generation. The main challenge to-
wards solving this problem is accurately extracting
the main points from an academic paper. In this
paper, we propose an extractive summarizer that
identifies the best sentence in a set of consecutive
sentence windows. The selection process depends
on importance and novelty of the sentence mod-
eled by neural networks. The selected sentences
and their frequent noun phrases are structured in
a layered format to make the bullet points of the
slides.

Our contribution is threefold.

• We proposed a system that utilizes sentences
with high ranks for generating presentation
slides for research papers, which can be used
as a starting point in the slide generation pro-
cess.

• We provide PS5K, a corpus of 5000 paper-
slide pairs in the field of computer and infor-
mation science. To our best knowledge, this
is the largest paper-slide dataset that could be
used for training and evaluating slide genera-
tion models.

• We proposed a novel method to rank sentences
within a sentence window, which improved an
existing state-of-the-art text-summarization
method by a significant margin.

2 Related Work

Summarizing scholarly articles in presentation
slides is different from standard text summariza-
tion (Xiao and Carenini, 2019), which focuses on
generating a paragraph of free text summary out of
a long document. Automatic slide generation can
be achieved by first extracting salient sentences in
a hierarchical order and grouping them into slides
that are sequentially aligned with the original pa-
per.

PPSGen was a framework that automatically gen-
erates presentation slides from scientific papers (Hu
and Wan, 2014). They applied Support Vector Re-
gressor and Integer Linear Programming (ILP) to
rank and select important sentences. Wang et al.
(2017) generate slides by extracting phrases from
papers and learning the hierarchical relationship
between pairs of phrases to build the structure of
bullet points. Their model is trained on a small set
of 175 paper-slide pairs. The slideSeer (Kan, 2007)
project crawled more than 10,000 paper-slide pairs
using the Google APIs to search for the slide of
papers using their title as a search query. The full
set of data is not publicly available (only 20 pairs
are available). Compared with previous works, our



model is trained and tested on a relatively large set
of 5000 paper-slide pairs and the dataset will be
publicly available for future works.

SummaRuNNer (Nallapati et al., 2017) is a neu-
ral extractive summarizer that treats the summa-
rization task as a sequence labeling problem. Sum-
maRuNNer was evaluated on CNN/Daily Mail cor-
pus, which contains news articles that are shorter
than research papers. We improve the SummaRuN-
Ner model to suit for summarization of scientific
papers.

3 Data

Producing a large dataset for summarization of sci-
entific documents is challenging and it requires
domain experts to make the summary. The latest
CL-Scisumm 2018 summarization task contains
only 40 NLP papers with human-annotated refer-
ence summaries. Recently, ScisummNet (Yasunaga
et al., 2019) expanded the CL-Scisumm to 1000
scientific articles. Using presentation slides made
by the authors is promising for the training of deep
neural summarization models as more conferences
are providing slides with papers.

We crawled more than 5,000 paper-slide pairs
from a manually curated list of websites, e.g.,
usenix.org and aclweb.org. GROBID (Lopez,
2009) is used to get metadata and the body of the
text from scientific papers in PDF format. Presen-
tations are transformed form PDF or PPT format
to XML by Apache Tika1. The Tika XML files are
divided into pages and the text is extracted using
Optical Character Recognition (OCR) tools. Most
venues of papers in our dataset are in computa-
tional linguistics, system, and system security. In
our dataset, there are on average 35 pages of slide
per presentation and 8 lines of text per slide page.
The majority (75%) of papers are published be-
tween 2013 and 2019. We used this dataset (called
PS5K) to train summarization models to identify
important parts of the input document at the sen-
tence level. The dataset is available here.

4 Method

Generating slides requires identifying important
sentences. It starts with the labeling and ranking
of salient sentences and ends with extraction of
frequent noun phrases as bullet points. The archi-
tecture of our model is shown in Figure 1

1https://tika.apache.org/

Figure 1: The main components of the model for sum-
marizing the paper and building the slides.

4.1 Sentence Labeling
The text in human generated slides may not be di-
rectly extracted from the original paper. Instead,
text can be truncated, summarized, or rephrased.
Therefore, we treat each slide as an abstractive
summary of a paper. The sentence labeling pro-
cess attempts to identify salient sentences that are
semantically similar to the corresponding slides.
This generates an extractive summary, which will
be used as the ground truth for training and evalua-
tion. The problem is formalized below.

A research paper can be represented as a se-
quence of n sentences D = {s1, s2, ...sn}, each
having a label yi ∈ {0, 1}, the system predicts
p(yi = 1), probability of including sentence i to
the summary.

SummaRuNNer treats the summarization task
as a sequence labeling problem, if adding the sen-
tence to the summary improves the ROUGE score,
the sentence is labeled with 1, otherwise it is la-
beled with 0. This method is suitable for news
articles such as CNN/DailyMail (Nallapati et al.,
2016) where the first couple of sentences in ar-
ticles usually cover the main content. Scholarly
papers usually contain a hierarchical structure of
sections. Each section should have its own sum-
mary as a part of the summary of the entire paper.
Therefore, the labeling process should be adapted
to distribute positive labels across all sections of
the paper. However, accurately parsing sections of
open domain scholarly papers is non-trivial. There-
fore, we propose a windowed labeling approach,
in which ranking is performed only within a series
of non-overlapping text windows, each of which
contains w consecutive sentences. A sentence is

https://drive.google.com/file/d/1xYHXYoQBa7DJVrq0ePly58ioq2EmmVG8/view?usp=sharing


labeled as 1 if adding the current sentence increases
the ROUGE-1 index. The best window size is deter-
mined empirically by trying different widow sizes
and calculating the ROUGE score between selected
sentences and the presentation slides. Section 5
elaborates on the experiments performed to select
the best window size.

4.2 Sentence and Document Embedding
The ranking of sentences depends on their salience,
novelty, and content similarity to the ground truth.
To quantify these characteristics, a document is
represented into a vector. We explore two methods
to build the embedding for the whole document.

Simple Document Embedding A simple docu-
ment embedding can be obtained by calculating
the average of sentence encodings generated by
a Bi-directional Long Short-Term Memory (BiL-
STM) (Hochreiter and Schmidhuber, 1997). A sen-
tence si can be encoded as Esi = [~hi, ~hi] in which
Esi is a concatenation of forward (~hi) and back-
ward ( ~hi) hidden states of the last token in sentence
si. The embedding for document D with n sen-
tences is the average of all sentence embeddings:
ED = ReLU(W × 1

n

∑n
i=1Esi + b). in which

ReLU is the activation function, W and b are pa-
rameters to be learned.

Hierarchical Self Attention Document Embed-
ding This model embeds a document by applying
the attention mechanism at both word and sentence
levels (Al-Sabahi et al., 2018; Yang et al., 2016).

Sentence embeddings are obtained by encoding
word-level tokens of a sentence using BiLSTM and
then aggregating hidden layers using an attention
mechanism. Formally, considering a sentence si
with m words, the sentence encoding hsi is ob-
tained as a concatenation of all m hidden states of
word-level tokens (hsi = [h1, h2, ..., hm]) where
hsi ∈ Rm×2d and d is the embedding dimension
for each word. The attention weights are:

aword = softmax
(
Wattn × hT

si

)
(1)

where Wattn ∈ Rk×2d is the model matrix to be
learned. Then aword ∈ Rk×m and the embedding
for sentence si is: Esi = averagek (aword ∗ hsi)
where Esi ∈ R1×2d and k is the attention dimen-
sion which is set to 100 in our experiments.

Document embeddings (ED) are generated us-
ing sentence embeddings (Esi) built in the previous
step. A similar attention layer is applied on top of

sentence embeddings to build the document em-
bedding. The sentence level attention works as
the weights to emphasize important sentences in
document embedding.

4.3 Sentence Ranking
The rank of a sentence depends on its position in
the paper, salience, and novelty with respect to the
previously selected sentences, calculated below:

pos = position×Wpos

content = Esi ×Wcontent

salience = ED ×Wsalience × ET
si

novelty = summaryi ×Wnovelty × ET
si

p(yi = 1) = σ(pos+ content+ novelty + salience)
(2)

where Wpos ∈ R2d∗1,where Wcontent ∈ R2d∗1

Wsalience ∈ R2d∗2d, and Wnovelty ∈ R2d∗2d are
parameters to be learned. The position is the po-
sition of the sentence in the document specified
by a Embedding lookup function, σ is the sigmoid
activation function, and pos is its positional em-
bedding. The salience estimates the importance
of a sentence. The novelty represents the novelty
of a sentence with respect to the current summery.
The summary embedding is the weighted sum of
the previous sentences added to summary until sen-
tence i: summaryi =

∑i−1
j=0 p(yi = 1)× Esi .

With windowed labeling, the positive labels are
sparse. To deal with the imbalanced positive la-
bels, the following weighted cross-entropy loss is
adopted. The setting of w1 = −85 and w2 = −2
results in the highest ROUGE score.

−
n∑

i=0

w1yi × log (p(yi = 1))

+w2(1− yi)× log (1− p(yi = 1))

(3)

4.4 Sentence Selection
To select the sentences for the slide we tried 1) the
greedy approach that sequentially adds sentences
with highest scores until the maximum limit is hit
and 2) the ILP method that selects the sentences
by optimizing the following function using IBM
CPLEX Optimizer.

max
∑
i∈Ns

lixi × p(yi = 1)

∑
i

lixi < maxLen, ∀i, xi ∈ {0, 1}
(4)

where p(yi = 1) is the score of the sentence pre-
dicted by the model, xi is a binary variable showing
whether sentence i is selected for the summary or



Table 1: Bullet points statistics.

Bullet-Point Fraction Avg Word Count

Title - 3.7
Level 1 56.5% 7.38
Level 2 35.5% 7.22
Level 3 7.9% 6.7

not, li is the length of sentence i and penalizes short
sentences, and maxLen is the maximum length of
the summary.

4.5 Slide Generation

A typical presentation slide includes a limited num-
ber of bullet points as the first-level, which are usu-
ally phrases or shortened sentences. Some slides
may contain second-level bullet points for further
breakdowns. Table 1 shows that less than 8% of
the content of the presentations in the ground truth
corpus is covered in third-level bullets. We gener-
ate slides containing up to 2 bullet levels. Table 1
also shows that a slide title on average contains 4
words and either Level 1 or Level 2 bullets contains
on average 8 words. Each slide consists of on av-
erage 36 words in 5 bullets and each level-1 bullet
includes 2 second-level bullets.

Sentences selected are treated as the second-level
bullets. The first-level bullets are the noun phrases
extracted from the sentences. Noun phrases are
removed if they contain more than 10 words or just
1 word. Noun phrases with a document frequency
greater than 10 are excluded (e.g. “the model”).
The section, which the first sentence of a slide is
in, is found and its heading is used as the slide
title. The heading is truncated to the first 5 tokens.
We limit a maximum of 4 sentences per slide. If a
topic has more than 4 related sentences, the slide
is split into two distinct ones. A presentation slide
generated by our model is available here.

5 Experiments and Results

We estimated the parameters of our model on PS5K.
We split the dataset into training, validation, and
testing set, each consisting of 4500, 250, and 250
pairs, respectively. We experimented with different
window sizes and found that a window size of w =
10 gives the best ROUGE-1 recall (Table 2) and is
adapted for our model.

The Stanford CoreNLP (Manning et al., 2014)
is used to tokenize and lemmatize sentences to
the constituent tokens and to extract noun phrases.
GloVe (Pennington et al., 2014) 50-dimensional

Table 2: ROUGE scores for oracle summaries gener-
ated with different window sizes.

Window Size ROUGE-1 ROUGE-2 ROUGE-L

3 42.95 11.13 21.59
5 44.34 11.43 22.35
7 44.88 11.64 22.47
10 45.93 12.00 22.75
15 45.52 11.84 22.68

Table 3: ROUGE scores for different models. Oracle
and TextRank are unsupervised and do not need train-
ing. Ttr standards for training time in hours based
on Nvidia GTX 2080 Ti GPU. SRNN stands for Sum-
maRuNNer.

Models R-1 R-2 R-L Ttr

Oracle (window=10) 57.12 16.53 27.62 -
Sefid et al. (Sefid et al., 2019) 36.33 8.73 17.02 -
TextRank (Barrios et al., 2016) 38.87 9.28 19.75 -
SRNN+ILP 45.12 11.65 22.96 18
SRNN+greedy 45.04 11.67 23.03 18
Attn+windowed SRNN+ILP 47.49 11.67 22.89 38
Attn+windowed SRNN+greedy 47.56 11.68 23.30 38
windowed SRNN+ILP 48.29 12.00 23.80 18
windowed SRNN+greedy 48.28 12.02 22.14 18

vectors are used to initialize the word embeddings.
With the AdaDelta optimizer and a learning rate of
0.1, we trained for 50 epochs. The sentences are
truncated or padded to have 50 tokens (only 8% sen-
tences consist of more than 50 tokens). Similarly,
we adopt a fixed document size of 500 sentences
(only 3.5% of documents in our dataset have more
than 500 sentences). We used the standard ROUGE
score (Lin, 2004) to evaluate the summaries. The
ROUGE scores for summaries are tabulated in Ta-
ble 3. The summary size can not exceed 20% of
the size of the input document in words. TextRank
(Mihalcea and Tarau, 2004) is a graph based sum-
marizer that applies the Google PageRank (Page
et al., 1999) algorithm to rank the sentences. Sefid
et al. (Sefid et al., 2019) rank the sentences by com-
bining surface features, semantic and contextual
embeddings. The windowed SummaRuNNer+ILP
model outperforms the base SummaRuNNer by at
least 3 points in ROUGE-1 recall. Adding attention
layer to the model does not improve the ROUGE
score while it increases the training time consider-
ably as there are more parameters to be trained.

Conclusion We provide PS5K, which is by far
the largest dataset we know, consisting of 5,000 sci-
entific articles and corresponding manually made
slides. This dataset could be used for scientific doc-
ument summarization and slide generation. The
code and data will be publicly available.

https://drive.google.com/file/d/1i37Ux_nTZ1W6WSCTFNHZF02VEAPaFnsp/view?usp=sharing
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