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ABSTRACT
Technical drawings used for illustrating designs are ubiquitous in

patent documents, especially design patents. Different from natural

images, these drawings are usually made using black strokes with

little color information, making it challenging for models trained

on natural images to recognize objects. To facilitate indexing and

searching, we propose an effective and efficient visual descriptor

model that extracts object names and aspects from patent captions

to annotate benchmark patent figure datasets. We compared two

state-of-the-art named entity recognition (NER) models and found

that with a limited number of annotated samples, the BiLSTM-CRF

model outperforms the Transformer model by a significant margin,

achieving an overall F1=96.60%. We further conducted a data effi-

ciency study by varying the number of training samples and found

that BiLSTM consistently beats the transformer model on our task.

The proposed model is used to annotate a benchmark patent figure

dataset.
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1 INTRODUCTION
The number of patents in the United States has been steadily increas-

ing since 2004
1
. Nowadays, there are about 7000 patents approved

every week in the United States. This poses great labor and infras-

tructure challenges to searching and comparing figures in new and

existing patents. Patent figures contain many different types, such

as technical drawings, block diagrams, flow charts, plots, and grey

scale natural images. In this paper, we focus on extracting textual

descriptors for technical drawings in design patents. These drawings

are of special interest because of two reasons. First, a survey paper

[1] indicates drawings are an important component of patents and

our study on a small set of figures randomly selected from US patents

indicates that they represent approximately 95% in the design patents.

Second, these descriptors can be especially useful to build search

1
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FIG. 1 is a front perspective 
view of a first embodiment of 
a jacket with scalloped 
shoulder regions of the present 
design;

Object: jacket with scalloped
 shoulder regions

Aspect: front perspective view

Figure name: FIG. 1
Figure Caption

Annotation Information

Figure 1: A technical drawing in US patent USD0836887-
20190101 is annotated. Patent name can be parsed directly
due to XML structure. Object and aspect can be obtained by
our model.

systems [2–4] that aid patent examiners to search for similar designs,

which will speed up the patent examination and approval processes.

Automatic extraction of textual descriptors can also help us to

build a large-scale dataset for training image captioning models. [4].

Most content-based approaches based on computer vision meth-

ods rely on models trained on a large number of annotated natural

images such as ImageNet [5]. However, such methods may not per-

form well on technical drawings [4] because unlike natural images,

technical drawings are usually formed by straight lines, curves, and

dots. Most technical drawings are black and white. The lack of rich

color information makes it more challenging to identify objects and

their aspects solely based on visual information. To develop learning-

based computer vision methods for such drawings, a large set of

annotated images of technical drawings is needed. As shown in Fig-

ure 2, the benchmark dataset ImageNet [5] is annotated manually,

while we use a NLP (Natural Language Processing)-based method

for the annotation of patent drawings, which can automate this

process. In addition, extracted patent descriptors can also be used

for patent image retrieval, patent figure classification, and building

patent knowledge graphs.

With the advance of natural language processing models, it is

possible to mine the text to extract visual descriptors of objects in

patent figures. In this work, we focus on extracting object names

and aspects from figure captions. Figure 1 shows one example of

technical drawings and captions, with objects and aspects.

https://www.statista.com/statistics/256738/number-of-patents-in-force-in-the-us/
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Human 
annotation Object: cat

NLP-based 
annotation

Object: jacket with scalloped 
shoulder regions

Aspect: front perspective view

Imagenet

Technical 
drawing

Figure 2: Existing benchmark dataset such as Imagenet uses
human annotation while we use NLP-based annotation for
patent figures.

Named Entity Recognition (NER) aims at recognizing mentions of

rigid designators from text belonging to predefined semantic types

such as person, location, and organization [6]. In general, the en-

tities appearing in natural language can be beyond the scope of

these named entities, such as domain knowledge entities [7], biomed-

ical entities, and materials compositions [8]. A simple rule-based

extractor such as a grammar-based noun phrase chunker does not

generalize well because the text span of an object name or an aspect

can be a subphrase or a superphrase of another phrase. An accurate

extraction model should incorporate the grammatical and semantic

information in the context. Recently, large-scale pre-trained models

have shown advantages on representing text in NER tasks. However,

we cannot directly apply pre-trained NER models because the tag

types of pre-trained NER models do not match the tag types of our

task. Therefore, we build a ground truth corpus by manually anno-

tating a set of figure captions which are selected from US patents

and then use it to train deep learning-based NER models.

The contributions of the paper are as follows:

(1) We propose a BiLSTM-CRF (Bidirectional Long Short-Term

Memory Conditional Random Field) model to extract visual

descriptions of technical drawings in US design patents. Our

model outperforms the transformer model by a significant

margin, using a training set consisting of 2700 annotated

captions.

(2) We compiled a dataset containing 3300 captions with human-

annotated visual descriptors, which is publicly available for

future training and evaluation of NLP models. This will be

provided in Github.

(3) We performed a data efficiency study and found that trans-

former exhibits a much steeper data efficiency curve than

BiLSTM-CRF, while the performance is worse than BiLSTM-

CRF in all the scenarios we examined.

(4) We automatically extracted object and aspect descriptors of

68094 patent figures, using the trained BiLSTM-CRF model.

This dataset is released in Github and can be used for technical

drawing object recognition and patent image captioning tasks.

2 RELATEDWORK
Many previously published papers applied the BiLSTM-CRF archi-

tecture for NER tasks. One of the early works [9] introduced this

architecture in NER. Then a series of papers used the BiLSTM ar-

chitecture and achieved outstanding performance (with F1>0.91)

ASPECT

FIG. 1 shows a front perspective view of a collapsible pallet 

consolidator having full height walls;

ASPECT OBJECT

FIG. 13 is a right side elevation view of the lock ring as 

shown in FIG. 9 showing my new design;

OBJECT

Figure 3: Examples of annotated captions for patent figures.

[10][11]. In addition to classic named entities explored in the papers

above, this model was also used for extracting domain knowledge

entities for scientific paper recommendation [12]. More works based

on this architecture can be found in the review paper [6].

Transformer is a powerful model for many tasks such as machine

translation and language model pre-training, but is less used for

NER tasks. As mentioned in [6], transformer models will fail if they

are not pre-trained on a huge corpus and when the training data is

limited. [13] and [14] are two of the few papers that achieved SOTA

performance with transformer models in NER tasks. They modified

the original transformer model in different ways in order to improve

performance.

A recent work [15] compared LSTM (long short-term memory

networks) and BERT (a transformer-based architecture) for a small

corpus for intent classification and found LSTMmodels could achieve

significantly better results than a BERT model. Another work [16]

compared the transformer models with LSTM models in the task of

speech recognition in terms of training time and found transformer

takes less time.

3 DATA
3.1 USPTO Patent Database
The dataset used in our experiments is from the United States Patent

and Trademark Office (USPTO) patent database, which consists of

the full-text (in XML format) and figures (in TIFF format) of patents

ranging from 1976 to the present with new patent files released on a

weekly basis. We parse the XML documents to obtain figure captions

associated with figures. The figure captions are enclosed in special

XML tags, which enables them to be accurately extracted.

3.2 Annotation of Ground-truth Data
To build the ground truth corpus, we randomly selected 3300 figure

captions from 3300 patent figures in the 2020 dataset. Each caption is

manually annotated by researchers in our lab using brat, a web-based
annotation tool

2
. Two examples of annotated captions are shown

in Figure 3. The annotation follows the BIO schema with five tags

[‘B-ASPECT’, ‘I-ASPECT’, ‘B-OBJECT’, ‘I-OBJECT’, ‘O’], in which

“I” indicates a tag inside an entity, “O” indicates a token belonging to

no entity, and “B” indicates the tag being the beginning of an entity.

During the annotation, we tend to annotate superphrase that provide

more specific descriptions of an object. For example, “cooker with

lid” and “men’s shirt” will be annotated as object instead of “cooker”

and “shirt”.

2
https://brat.nlplab.org/
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Figure 4: Architectures of BiLSTM-CRF and Transformer mod-
els.

The annotation results include a total of 2464 objects and 2958

aspects. Then the ground truth corpus is split into training, vali-

dation, and testing datasets, each consisting of 2700, 300, and 300

captions respectively.

4 MODELS
As summarized by [6], deep-learning-based NER models are usually

composed of 3 parts: distributed representations for input, a context

encoder, and a tag decoder. The context encoder processes a sequence

of tokens and outputs a vector of scores for all possible tags for each

token. The tag decoder converts the scores into probabilities and

then chooses the tags with the highest probability. We focus on two

architectures: BiLSTM-CRF and the transformer.

4.1 Distributed Representations
We use pre-trained distributed language models for the input word

embeddings:

• GloVe: GloVe [17] is a context-free embedding. We use the

version pre-trained on 2B tweets with 27B tokens
3
.

• ELMo: ELMo [18] is a context-dependent word embedding

model. We use the implementation of AllenNLP
4
trained on

WMT 2011 News Crawl data with 13.6M parameters.

• BERT: BERT [19] is a language mode trained under the trans-

former architecture.We use the basic version “bert-base-uncased”

with 110M parameters.

• RoBERTa: RoBERTa [20] modifies the BERT pretraining pro-

cedure with parameters slightly increased. We use “roberta-

base” with 125M parameters.

3
https://nlp.stanford.edu/projects/glove/

4
https://allennlp.org/elmo

NER Models Embedding Models Precision Recall F1

BiLSTM-CRF

RoBERTa&OpenAI 95.87 96.50 96.18

RoBERTa 95.63 95.84 95.74

BERT 96.27 96.06 96.17

ALBERT 94.42 96.28 95.34

DistilBERT 96.92 96.28 96.60

Transformer

RoBERTa&OpenAI 86.68 92.56 89.52

RoBERTa 90.33 94.09 92.17

BERT 93.98 95.62 94.79

ALBERT 93.42 96.28 94.83

DistilBERT 90.02 94.75 92.32

Table 1: Compare the performance of BiLSTM-CRF and trans-
former architectures. The biggest value in each column is
marked in bold.

• ALBERT: ALBERT [19] has significantly fewer parameters

than a traditional BERT architecture. We use “albert-base-v1”

with 11M parameters.

• RoBERTa&OpenAI: This is RoBERTa fine-tuned by OpenAI

on the outputs of the 1.5B-parameter GPT-2 model
5
. We use

“roberta-base-openai-detector” with 125M parameters.

• DistilBERT:DistilBERT [21] leverages knowledge distillation

during the pre-training phase while retaining the understand-

ing capability of BERT.We use “’distilbert-base-uncased”’ with

66M parameters.

4.2 BiLSTM-CRF Model
The BiLSTM-CRF architecture is based on Recurrent Networks. It’s

organized as shown in Figure 4 with a pre-trained embedding input,

a bi-directional LSTM model as context encoder, and a CRF layer as

tag decoder.

The BiLSTM layer captures contextual dependency for each token

in both forward direction and backward direction, and then outputs

the scores of possible tags for each token. The CRF layer learns the

joint relationship between tags, excludes unreliable tag combinations,

and further refines the probability scores for each token.

4.3 Transformer Model
The transformer model is based on the multi-head attention mech-

anism with a encoder-decoder structure. Similar to BiLSTM, the

transformer model encodes the contextual information. However,

the attention mechanism is able to select important relevant words

in the sentence based on semantic information when processing each

input token, which brings more powerful understanding capability.

Transformer uses softmax as the last layer by default.

5 EVALUATION
The models are evaluated using standard metrics: precisions, recalls,

and F1 scores. For a certain entity (such as object), the precision is

defined as the number of correctly extracted entities divided by the
total number of entities extracted as object. The recall is defined as

the number of correctly extracted entities divided by the total number
of entities labeled as object in ground truth. We use the strict string

matching as the criteria. Either the extracted entity is a subphrase or

a superphrase of the labeled entity was counted as a false sample.

5
https://github.com/openai/gpt-2-output-dataset/tree/master/detector
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NER Embedding All Entities Aspect Object

Model Models P R F1 P R F1 P R F1

BiLSTM-CRF

RoBERTa&OpenAI 95.87 96.50 96.18 99.20 99.20 99.20 91.87 93.20 92.53

RoBERTa 95.63 95.84 95.74 98.81 99.20 99.01 91.75 91.75 91.75

BERT 96.27 96.06 96.17 98.41 98.80 98.61 93.63 92.72 93.17

AlBERT 94.42 96.28 95.34 97.64 98.80 98.22 90.57 93.20 91.87

DistilBERT 96.92 96.28 96.60 99.20 99.20 99.20 94.09 92.72 93.40
ELMo 95.06 95.06 95.06 98.34 98.34 98.34 91.41 91.41 91.41

Glove 96.33 91.57 93.89 99.45 99.45 99.45 92.47 82.82 87.38

Table 2: BiLSTM-CRF-based NER models with different embeddings. P: precision. R: recall. Highest F1 scores are marked in bold.

As shown in Table 1, the BiLSTM-CRF architecture outperforms

the transformer architecture in all embedding scenarios. The highest

difference is generated when using roBERTaOpenAI as the input

word embedding, with 96.18% for BiLSTM-CRF and 89.52% for Trans-

former.

As shown in Table 2, the BiLSTM-CRF architecture has precision,

recall, and F1 scores higher than 90% in almost all scenarios. The

transformer-based embeddings have better performance than other

embeddings such as ELMo and GloVe. The model with DistilBERT

embedding achieved F1 scores of 93.40% and 99.20% for object and

aspect names, respectively, and a micro-average F1 score of 96.60% on

the overall level. This is consistent with [22] which used DistilBERT

to generate better sentence embeddings compared with BERT and

RoBERTa.

6 ERROR ANALYSIS
One limitation of the BiLSTM-CRF model is that it may omit the

object names randomly. The second limitation is that the extracted

text span may be shorter than the annotated text span. For example,

in “FIG. 11 is a top view of the winged sofa with curved legs in

first position;” the object extracted by our best model is “winged

sofa” while the annotated text is “winged sofa with curved legs”.

However, in a different example, “FIG. 1 is a top front perspective

view of a table with bench seating depicting the new design;”

the model extracts the complete and correct object name “table with

bench seating”, although the structure of this example is similar to

the first one.

7 DATA EFFICIENCY ANALYSIS
In this paper [23], data efficiency is characterized as the performance

of models given various amounts of training data. To compare the

data efficiency between these two models, we varied the training

data size from 500 to 2700.

As shown in Figure 5, the data efficiency of the transformer model

depends on the input word embedding. In addition, the f1-score of the

transformer model increases as the training data size increases from

500 to 2700, but it still consistently underperforms the BiLSTM-CRF

model. A ground truth dataset with about 500 samples can be used

to train a decent biLSTM-CRF model with F1= 95.15%, but is far from

enough to train a transformer model. This is likely to be attributed

to a much higher number of free parameters in the transformer than

a BiLSTM-CRF. The data efficiency problem makes the transformer

model a suboptimal option for NER tasks with a relatively small

amount of samples.
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Figure 5: How performance grows with the increase in the
amount of training data. T: Transformer, B: BiLSTM-CRF.

8 APPLICATION
In this section, we apply the DistilBERT-BiLSTM-CRF model on a

corpus of unlabeled data, consisting of 68094 figures from 8032 design

patents in 2019. we extracted 4832 distinct object names and 1811

distinct aspect names (67679 object names and 67105 aspect names

in total, taking duplicates into account). Some most frequent types

such as “display screen”, “container” and “shoe” appear 577, 377 and

311 times, respectively. In the training data, there are 557 distinct

object names and 346 distinct aspect names. Out of the extraction

results, only 120 objects and 127 aspects appear in the training data,

which are 0.24% and 7% of the total number. The majority of objects

(>99%) and aspects (93%) is new, indicating the generalization power

of the BiLSTM-CRF model.

9 CONCLUSION
In this paper, we proposed an effective and data-efficient visual de-

scription extractor using the BiLSTM-CRF sequence tagging model.

The model achieves F1=99.20% for aspect and F1=93.40% for object

extraction, evaluated using 300 figure captions from US patents in

2020. The object names and aspects extracted can be used for au-

tomatically labeling a large number of technical drawings, which

can further be used for training computer vision based models and

patent figure retrieval. We found that the BiLSTM-CRF model is

more data-efficient than the transformer model for this task. A more

systematic study about this will be our future work.
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