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ABSTRACT
The growth of scientific papers in the past decades calls for effective
claim extraction tools to automatically and accurately locate key
claims from unstructured text. Such claims will benefit content-
wise aggregated exploration of scientific knowledge beyond the
metadata level. One challenge of building such a model is how
to effectively use limited labeled training data. In this paper, we
compared transfer learning and contrastive learning frameworks
in terms of performance, time and training data size. We found
contrastive learning has better performance at a lower cost of data
across all models. Our contrastive-learning-based model ClaimDis-
tiller has the highest performance, boosting the F1 score of the base
models by 3–4%, and achieved an F1=87.45%, improving the state-
of-the-art by more than 7% on the same benchmark data previously
used for this task. The same phenomenon is observed on another
benchmark dataset, and ClaimDistiller consistently has the best
performance. Qualitative assessment on a small sample of out-of-
domain data indicates that the model generalizes well. Our source
codes and datasets can be found here: https://github.com/lamps-
lab/sci-claim-distiller.
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1 INTRODUCTION
Because of the rapid increase of scientific papers indexed by dig-
ital libraries [1] [2], there is an emergent need to help readers to
efficiently grasp the main ideas of research papers. This can be
achieved by development of algorithms to extract and aggregate
key information from unstructured scholarly text. Existing machine
learning methods have been developed to extract metadata, such
as title, authors, year, venue, e.g., [3], non-textual content such as
figures and tables, e.g., [4], and high-level semantic information
such as keywords, e.g., [5]. However, scientific claims, conveying
key findings and contributions from unstructured text remains
challenging because scientific ideas could be conveyed in a more
complicated way than general text as used in news papers and
Wikipedia articles. Although deep learning has shown promising
results for open domain extractive summarization and key sen-
tences identification, e.g., [6, 7], it is still challenging to train robust
deep learning models on scientific papers [8] because of the lack
of large-scale training data. Obtaining such training data usually
requires domain knowledge, which regular crowdsourcing workers
may not possess. Identifying key claims from scientific papers can
also be time-consuming for domain experts. In addition, mining
claims from scientific papers has shown to be an important step
to automatically assessing reproducibility in social and behavioral
sciences and other domains, e.g., [9, 10], which is investigated in
DARPA’s Systematizing Confidence in Open Research and Evidence
(SCORE) program [11].

We define a scientific claim as a sentence that provides the core
findings of a scientific paper. One example is given in Figure 1. Ex-
isting datasets with annotated claims are scarce and not available in
all domains. Current datasets on claim extraction include CoreSC
dataset [12] with 265 articles in physical chemistry and biochem-
istry. The Dr. Inventor dataset [13] contains claims extracted from
40 computer graphics articles. Another dataset used in a recent
paper [14] contains claims extracted from 1,500 scientific abstracts
in the biomedical domain. Due to data scarcity, it is important to
develop models that efficiently use existing data. In a recent paper
[14] the authors introduced transfer learning to perform scientific
claim extraction. In this paper, we explore alternative ways for this
task.

Transfer learning uses the knowledge extracted from one or
more source tasks, which usually have a high amount of resources,
to accomplish a target task, which usually has a lower amount of
resources. Transfer learning works by pretraining a neural model
using data for the source tasks. The model is retrained by freez-
ing the weights of a portion of a neural network and learning the
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weights of the other portion of the same neural network [15]. Trans-
fer learning has been adopted in computer vision (CV) and natural
language processing (NLP) tasks, e.g., [16] [17].

Transfer learning relaxes the i.i.d. (independent and identically
distributed) requirement for training and testing datasets. To be
specific, the classes in source data does not necessarily need to be
the same with target data. This is usually fullfilled by the extremely
large sizes of source datasets, such as ImageNet-21k dataset with
14.2million images [18]. Source data used in NLP (Natural Language
Processing) is usually in the magnitude of tens of Mega bites and
even more. Data size is a limit for claim extraction and as a result
transfer learning does not delivery enough power. In this paper, we
introduce contrastive learning framework which uses significantly
less training data and achieves comparable or better performance.

Self-supervised contrastive learning, a type of self-supervised
representation learning, efficiently leverages limited training data
and has demonstrated promising results in multiple CV and NLP
tasks, e.g., [19, 20]. This method puts similar samples close to each
other while pushing ‘negative’ samples far apart in the feature space
[21]. For example, in image classification, data can be augmented
by cutting and rotation. We can adjust the loss function and make
the augmented samples from the same image close to each other
and augmented samples from different images far away. In this
way, the model can learn the features without looking at labels.
The drawback of self-supervised contrastive learning is that the
correlation of features between images belonging to the same class
is ignored. This could be mitigated by leveraging label information,
which is the supervised contrastive learning [22].

In this paper, we compared transfer learning and supervised
contrastive learning frameworks in terms of performance, time and
training data size. We found contrastive learning has better perfor-
mance at a lower cost of data across all models on both datasets.
We propose a contrastive-learning-based model ClaimDistiller,
the backbone of which is a recurrent neural model with super-
vised contrastive learning. We demonstrate that the supervised
contrastive learning mechanism improves the model performance
by a significant margin with less training samples and training
time.

Our best model achieves F1=87.45% when trained and tested on
SciCE. We further trained the model on another benchmark dataset
SciARK, and contrastive learning methods obtained better perfor-
mance across all models than transfer learning. ClaimDistiller
consistently outperforms all other models.

The contributions of the paper are as follows:

(1) We proposed using supervised contrastive learning for sci-
entific claim extraction. The results show that SCL achieves
a comparable or better performance than transfer learning
with significantly less training data and training time. The
best model achieves an F1=87.45% on the SciCE dataset.

(2) We compared 10 commonly used methods of text augmen-
tation for training SCL in the context of scientific claim ex-
traction. All methods exhibit a marginal effect on the model
performance.

(3) Our best model was trained and evaluated on a standard
benchmark in the biomedical domain. The model exhibited

Title:  Calpain-mediated ABCA1 degradation: post-
translational regulation of ABCA1 for HDL biogenesis

Claim sentence:  Pharmacological inhibition of the 
calpain-mediated ABCA1 degradation results in the 
increase of the ABCA1 activity and HDL biogenesis in vitro 
and in vivo, and potentially suppresses atherogenesis.

Non-claim sentence:  This article is part of a Special 
Issue entitled Advances in High Density Lipoprotein 
Formation and Metabolism: A Tribute to John F. Oram 
(1945-2010).

Figure 1: An example of claim extraction dataset.

reasonably well generalizability when it is tested in the com-
puter science domain.

2 RELATEDWORK
Scientific claim extraction is closely related to extractive docu-
ment summarization and argumentation mining, which are more
explored in literature. The goal of extractive document summa-
rization is to extract text that is much shorter than the original
documents and deliver the main idea of the given documents [23].
A survey on extractive document summarization for scientific pa-
pers can be found in [24]. The text output by extractive document
summarization may contain several key sentences that provide a
high-level description of the original text. These sentences may
not necessarily describe the core findings. Therefore, the methods
cannot directly be used for extracting scientific claims.

Argument mining automatically extract the structure of infer-
ence and reasoning presented in natural language text [25]. In
argument mining, premises were extracted from news [26], social
media [27], scientific article [28], and Wikipedia [29]. Existing ar-
gument mining methods include heuristic methods [30, 31] and
classical machine learning methods [32]. Recently, deep learning
methods, including weak supervision and transfer learning mecha-
nisms, have been proposed [33].

There are limited publications on scientific claim extraction.
Dernoncourt et al. [34] developed a scientific discourse dataset
PubMed-RCT, in which sentences were labeled into five classes,
namely, background, introduction, method, result, and conclusion.
However, claims were not explicitly labeled in this dataset. Recently,
a human-annotated scientific claim extraction dataset in biomedical
domains was published [14]. Existing methods used for scientific
claim extraction include rule-based and deep learning methods.
Rule-based methods were used to extract claims from scientific
papers in Jansen et al. [30]. Achakulvisut et al. [14] proposed a
model consisting of a bidirectional long short-term memory (BiL-
STM) network stacked with a conditional random field (CRF) model
trained in a transfer learning framework. They trained their model
on the PubMed-RCT dataset and then fine-tuned the model on
their in-house SciCE dataset.
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Table 1: A comparison of performances with different data augmentation methods.

Dataset Labels Size * Domain Utility ***

SciCE Claim, Non-claim 11702 Biomedical C-pre, C-tune, T-tune
SciARK Claim, Evidence, Non-claim 9055 SDG ** C-pre, C-tune, T-tune
Pubmed Objective, Introduction, Method, Result, Conclusion 2.3 million Biomedical T-pre
* Measured in number of sentences.
** Six SDG (Sustainable Development Goals) domains set by the United Nations (UN).
*** "C" means contrastive learning, "T" means transfer learning, "pre" means pre-training, "tune" means fine-tuning.

3 DATA
The claims to be extracted should be absolute, independent, core
findings of the paper. A conclusion may not necessarily be a claim,
but a claim is highly likely to be a conclusion. Claims may appear in
the abstracts and the body text, but in our research task, we focus
on extracting claims from abstracts, assuming that authors should
put the core findings of the paper in the abstracts.

The data used in this paper includes three corpora. The first
corpus was built by Achakulvisut et al. [14], which is the largest
dataset so far for scientific claim extraction. For convenience, we
call it the scientific claim extraction (SciCE) dataset.

Specifically, the dataset labels three types of claims:

Type 1: A statement that declares something is better;
Type 2: A statement that proposes something new;
Type 3: A statement that describes a new finding or a new cause-

effect relationship.

The corpus contains 1,500 scientific abstracts in the biomedical do-
main. Each sentence in the abstracts was labeled by domain experts
into two categories, namely, claim and non-claim. An example of a
claim sentence and a non-claim sentence, in an abstract, is shown
in Figure 1. Each abstract contains 5 to 10 sentences (Figure 2). One
abstract may contain more than one claim (Figure 3). The majority
of the abstracts contain 1–2 claims and about half of the dataset
contains only 1 claim in an abstract. The dataset contains in total
2276 claims and 9426 non-claims. For an even comparison, we adopt
the split of the original dataset in which the numbers in training,
test, and validation samples are 750, 375, and 375, respectively.

The second corpus is the Pubmed-RCT dataset [34], designed
for the discourse prediction task, which was to predict the discourse
types for a sequence of sentences in one abstract. In our paper, it is
used as the source dataset for transfer learning. Pubmed-RCT is a
larger dataset consisting of 20,000 abstracts, including 2.3 million
sentences selected from the MEDLINE/PubMed Baseline Database
published in 2016. The abstracts are in biomedical and life sciences
domains, and particularly in randomized controlled trials (RCTs).
The discourse type for each sentence is one of the five classes, Ob-
jective, Introduction, Method, Result, and Conclusion. The Method
and Result classes contain one-third of all labeled sentences, re-
spectively. The remaining one-third contains sentences labeled as
the other three classes. The number of sentences in an abstract is
between 3 and 51, with an average of 11.6. This dataset will be used
for pre-training in transfer learning.

Figure 2: Distribution of the number of sentences in an ab-
stract in the claim extraction dataset (SciCE). An abstract has
at least 5 sentences, and at most 10 sentences.

Figure 3: Distribution of the number of claims in an abstract
in the claim extraction dataset (SciCE). One abstract can have
multiple claims and the maximum number of claims is 6.
Most frequently there are 2 claims in one abstract.

A third dataset SciARK was introduced in a recent work [35].
It is a relatively small dataset composed of abstracts from 689 aca-
demic papers with 9055 sentences. The number of abstracts in
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training, testing, and validation samples are 350, 269, and 70, respec-
tively, as split by the authors. Each sentence is annotated as Claim,
Evidence, or Nonetype. Unlike SciCE and Pubmed, this dataset is
multidisciplinary with abstracts of scientific publications related to
a broad spectrum of Sustainable Development Goals (SDG) domains.
When using the dataset, we merge the "Evidence" and "Nonetype"
as "non-claim" and treat it as a binary-class dataset (claim vs. non-
claim).

4 PROPOSED FRAMEWORK:
CLAIMDISTILLER

We formulate the claim extraction task as a classification problem
on a sequence of sentences, where the model predicts a class label
claim or non-claim for each sentence. In regular classification mod-
els, text is represented in the form of vectors and training a good
representation is essential for classification. We improve the mod-
els by adopting supervised contrastive learning to generate better
representations. We propose a framework called ClaimDistiller for
extracting scientific claims from abstracts.

4.1 Supervised Contrastive Learning
Self-supervised contrastive learning [20] methods can be used to
generate representations for non-labeled data. It treats each sample
in the dataset as a class and compares them pairwise after data aug-
mentation to obtain “apparent similarities”, and further generates
representations for each sample. Supervised contrastive learning
[22] methods introduce this framework for labeled data. The key
idea is to train a representation that pulls together the same class
while simultaneously pushing apart different classes in the embed-
ding space. This step helps to create more accurate embeddings
and thus subsequent classification based on it can achieve better
performance than regular supervised learning.

In self-supervised contrastive learning each sample is considered
a class, while in supervised contrastive learning each label is consid-
ered a class. As a result, in self-supervised contrastive learning the
training process requires 2𝑁 augmented samples for the 𝑁 samples
in training data, but in supervised contrastive learning, the model
could be trained by either 𝑁 or 2𝑁 augmented samples. In our task
we use supervised contrastive learning to train the model. We tried
both 𝑁 and 2𝑁 augmented samples. The Supervised Contrastive
Loss function is defined as:

𝑆𝐶𝐿 =
∑︁
𝑖∈𝐼

−1
|𝐶 (𝑖) |

∑︁
𝑐∈𝐶 (𝑖 )

log
exp(𝑧𝑖 ∗ 𝑧𝑐/𝜏)∑

𝑎∈𝐴(𝑖 ) exp(𝑧𝑖 ∗ 𝑧𝑎/𝜏)
(1)

Here 𝑖 is the index of an arbitrary sample in the augmented
dataset 𝐼 . 𝐶 (𝑖) is the set of samples in the same class with 𝑖 except
sample 𝑖 .𝐴(𝑖) is the set of samples in the augmented dataset except
sample 𝑖 . 𝑧𝑖 , 𝑧𝑐 and 𝑧𝑎 stand for the representations of the anchor,
positive, and negative samples respectively. 𝜏 is the temperature
parameter, which adjusts the distance of different classes in the
embedding space.

4.2 Framework Architecture
Our proposed framework is based on supervised contrastive learn-
ing. The architecture of the framework is shown in Figure 4. The

SCL can be implemented in two stages. In the first stage, we aug-
ment each labeled sentence into two sentences with similar seman-
tics. This augmented dataset is fed into the encoder and supports
the Stage 1 training. The encoder along with the projection head,
which is composed of several dense layers, minimizes the super-
vised contrastive loss to obtain the optimal embeddings in order
to group positive samples together and push negative samples far
away. In Stage 2, we keep the encoder and freeze the weights in its
dense layers, and add two more dense layers for classification. The
classifier is trained to minimize the cross-entropy loss function.

4.3 Data Augmentation
Data augmentation is an essential part in contrastive learning meth-
ods, which creates the dataset used for pre-training by sentences
with similar semantics. We investigate five types of methods and
their variants to augment text given a labeled sentence.
(1) Round Trip Translation (RTT) [36]. This method first trans-

lates the sentence from English to French and then translates
it back to English. Translation is based on Google translation
services as well as Amazon translate [36].

(2) Wordnet Synonym Replacement [36]. This method replaces
words with their synonyms in the sentence. Replaceable words
such as verbs, nouns are selected from a sentence using a part-
of-speech tagger. Then a number of words are selected out of
them following a Geometric distribution and replaced by their
synonyms, which are given by a synonym library provided by
WordNet.

(3) EDA (Easy Data Augmentation) Synonym Replacement
[37]. Randomly pick a word (not stop words) from the sentence
and then replace the word with one of its synonyms chosen at
random.

(4) EDA Random Deletion [37]. Randomly remove any word
in the sentence with a probability you can specify. We use the
default probability value 0.2.

(5) EDA Random Insertion [37]. Find a random synonym of a
random word (not a stop word) in the sentence and then insert
the synonym into any position in the sentence randomly.
We further generate augmented data by two data augmentation

methods to obtain a bigger dataset for pre-training. A comparison
of the results will be given in Section 7.

5 EXPERIMENT SETUPS
5.1 Base Models
As mentioned above, the first stage is to encode the input sentence
into a vector. We experiment three types of encoders each having
three settings of the original encoder, the encoder trained with
transfer learning and the encoder trained on SCL.
(1) CNN-1D. Similar to regular CNNused in feature extraction from

2-dimensional images, 1-dimensional CNN has been used for
extracting features from word sequences, e.g., [38]. This method
works by sliding a window with a fix-width over a sequence
and convolving features of tokens covered by the window [39].
An average pooling was used to aggregate features from indi-
vidual tokens. Similar to a 2D-CNN, the 1D CNN can be used for
extracting patterns from local 1D patches (aka sub-sequences)
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Encoder

Dense
Relu

Projection Head

Classifier

WC-BiLSTM
Dense
Dense

Classification
Results

Original Sentence

Data Augmentation

DenseJohn is going to town
Joe is walking to town

Mary is running to town

Supervised Contrastive Loss

CrossEntropyLoss

Freezing 
Encoder 
Layers

WC-BiLSTM

   First
   Stage
Learning

Second
Stage
Learning

Figure 4: Architecture of our proposed framework: ClaimDistiller. The encoder can be customized.

from sequences. After each word-level token is converted to
initial vectors, 1D convolutional layers with the convolutional
kernels of size 𝑤 were used to extract the patterns (Figure 6).
These layers can recognize patterns in an input sequence. We
used a 2-layer 1D CNN, which is flattened at the end before the
presentation is fed to a dense fully-connected layer for classifi-
cation.

(2) USE-dense.We adopted the pre-trained Universal Sentence En-
coder (USE) [40] to encode claim text into dense 512-dimensional
vectors. The initial embeddings produced by USE were fine-
tuned on the SciCE corpus, after which the sentences were
encoded to dense feature vectors used by the fully-connected
layer for classification.

(3) WC-BiLSTM (Word and Character embedding Bidirec-
tional Long Short-TermMemory).One drawback of applying
pre-trained word embedding is that unseen words have to be
encoded as a default vector in the prediction time. The repre-
sentations of these words could only be inferred by surround-
ing words. Word prefixes and suffixes often contain semantic
information. Therefore, we combine pre-trained Word2Vec em-
bedding [41] with character embedding [42] to encode unseen
words. The combined embedding is fed to bidirectional long
short-term memory (BiLSTM) layers to extract patterns from
claim sentences (Figure 7). Finally, the representations were
passed to a fully-connected layer for classification.

5.2 Experiments
To evaluate the robustness of the proposed framework, we inves-
tigate the base models in different training frameworks: only the
base model, transfer learning, and supervised contrastive learning.

Figure 5 shows a comparison of the three different training frame-
works. ‘Network’ in this figure can be any of the base models. The
training frameworks are as follows:

(1) Trained from Scratch. In this setting, the neural classifier is
trained directly using the SciCE corpus with only the base mod-
els, namely CNN-1D, USE-Dense, and WC-BiLSTM, described
in the previous subsection.

(2) Transfer Learning. In this setting, the neural classifier is firstly
pre-trained using the PubMed-RCT corpus and then fine-tuned
on the SciCE corpus. During the fine-tuning stage, we freeze the
weights of all layers except the fully-connected classification
layer. Then we replaced that fully-connected layer with a new
layer with classes in the target dataset.

(3) Supervised Contrastive Learning. As discussed in Section 4,
in supervised contrastive learning the neural network is firstly
pre-trained with augmented training data from the SciCE corpus
and then fine-tuned on the original SciCE data. Note that in this
setting, only SciCE is used, which is a dataset much smaller than
the PubMed-RCT dataset.

As a result, we have in total 9 experiment specifications: 3 dif-
ferent frameworks for each base model. In addition, we include
the following two experiments from previous academic papers as
baselines:

(1) Heuristic Method. This baseline is adopted from Sateli &Witte
[31]. This method used gazetteering, deictic phrases and hand-
crafted rules to match against the text. The sentence containing
the deictic phrase must be a statement in form of a factual
implication, and have a comparative voice or asserts a property
of the author’s contribution, such as novelty or performance.

(2) CRF-based Transfer Learning. This baseline is adopted from
Achakulvisut et al. [14], in which transfer learning was applied
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Figure 5: Comparing training from scratch, transfer learning
and supervised contrastive learning .

Window Size = 5
Average Polling

Output Features

Initial sequence

Figure 6: CNN-1D Working flows.

on a conditional random field (CRF) model. This is the state-
of-the-art to our best knowledge. This method treats claim ex-
traction as a sequence tagging task and uses CRF to capture the
dependencies of the label of the current sentence to the features
and labels of neighbor sentences.

Word

Embedding

Sentences

Character

Embedding

Concatenate

Bi-LSTM

Classification Layer

Claims

or

Non-claims

Figure 7: The architecture of the WC-BiLSTM base model.

6 EVALUATION
6.1 Evaluation Metrics
The proposed methods and baselines are evaluated using the stan-
dard precision, recall, and F1 scores, defined below.

𝑃 =
𝑁TP

𝑁TP + 𝑁FP
, 𝑅 =

𝑁TP
𝑁TP + 𝑁FN

, 𝐹1 =
2𝑃𝑅
𝑃 + 𝑅

(2)

In Eq.( 2), 𝑃 and 𝑅 stand for precision and recall, respectively. 𝑁TP
is the number of predicted claims that are true. 𝑁FP is the number
of predicted claims that are false. 𝑁FN is the number of predicted
non-claims that are false. 𝐹1 is the harmonic mean of 𝑃 and 𝑅.

In addition, we also compare the training time. The training
time was measured as the time elapsed between when the program
started taking inputs (including pre-training) and when the model
stopped training after certain numbers of epochs.

6.2 Experiment Details
All the experiments were performed on a single computer with a 4
physical core CPU, 16GB RAM, and Solid State Disks and an Nvidia
V100 GPU.

When working on the CNN-1D model, the window size 𝑤 =

5. Because the convolution is performed on the word level, we
truncated sentences longer than 120 words and padded sentences
shorter than 120 words.

When training the WC-BiLSTM model, the learning rate was set
to 0.001, the batch size was set to 256, and the dropout rate was
0.5. Each encoder model and its variants were trained for a maxi-
mum of 50 epochs before which the loss function of the validation
data reached the minimum. Early stopping was applied to avoid
overfitting. We found that at this stage, the loss functions have
asymptotically converged to the minimum.

6.3 Results
The results of the experiments are shown in Table 2. The first
column shows the evaluation results of models trained on SciCE.
The second column shows the training time. The third column
shows the evaluation results of models trained on SciARK. The
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Table 2: A comparison of models on the scientific claim extraction task. Base models are trained from scratch. The model with
the best performance is highlighted in bold.

Model Names SciCE (2933) 2 Time 3 SciARK (3558) 2 Time 3 Data Size 4

P % R % F1 % (sec) P % R % F1 % (sec) (training)

Baseline Models
Rule-based [31]1 31.50 32.20 31.90 – – – – – –
Transfer CRF [14]1 86.60 72.70 79.00 – – – – – –

Base Models
CNN-1D 83.43 83.73 83.57 12 75.42 86.84 80.72 9 SciCE: 5823
USE-Dense 82.42 83.73 83.06 15 85.74 87.99 86.85 11 SciARK: 4768
WC-BiLSTM 83.35 84.65 83.99 150 86.66 87.83 87.24 38

Transfer Learning
CNN-1D-transfer 84.45 85.74 85.09 4502 85.57 86.38 85.97 1388 pre: 2 million
USE-Dense-transfer 85.81 86.71 86.24 12735 87.05 88.32 87.68 2878 tune: 5823 (SciCE)
WC-BiLSTM-transfer 84.87 84.59 84.73 49324 87.61 88.70 88.15 16245 tune: 4768 (SciARK)

Contrastive Learning
CNN-1D-contrastive 85.80 86.49 86.14 108 84.86 86.05 85.45 48 SciCE: 5823
USE-Dense-contrastive 86.84 87.28 87.06 11823 89.06 89.74 89.40 3489 SciARK: 4768
ClaimDistiller 5 87.08 87.83 87.45 15001 88.93 90.02 89.47 7201

1 Quoted from reference because they used the same test data.
2 Testing data size is in the parentheses. Measured by number of sentences.
3 Training time including both pre-training and fine-tuning.
4 Measured by number of sentences in training dataset.
5 WC-BiLSTM-contrastive.

training time on SciARK is shown in column 4. In column 5 we
compared the training data size for all scenarios.

As seen in Table 2, Deep learning based models achieving much
better performance than rule-based models suggests that the se-
mantic features of scientific claims are complicated and are better
represented by neural models.

In general, transfer learning based models achieve better perfor-
mance than the corresponding original encoders by Δ F1=0.74–3.18.
The efficacy of transfer learning comes from source data used for
pre-training. The discourse information in the PubMed-RCT cor-
pus used here is relevant and helps improve the performance.

The comparison of transfer learning and contrastive learning is
performed on two datasets: SciCE and SciARK. Contrastive learn-
ing achieves better performance than transfer learning consistently
across all models. With SciCE, SCL beats transfer learning by Δ
F1=0.82 – 2.72% for the SciCE dataset and Δ F1=1.32–1.72% for the
SciARK dataset. The only exception is that CNN-1D-contrastive
underperformed CNN-1D-transfer by 0.52%. Therefore, SCL in gen-
eral achieves a comparable or better performance than transfer
learning.

Contrastive-learning-based model ClaimDistiller has the best
performance across all metrics compared with other models, achiev-
ing F1=87.45%, precision=87.08%, and recall=87.83%. With SciARK,
ClaimDistiller has the best performance with F1=88.93%, preci-
sion=90.02%, and recall=89.47%.

The training time needed for each model varies. In general, trans-
fer learning needs significantly more time for training than super-
vised contrastive learning. In the last column, we see a clear com-
parison of training data size for contrastive learning and transfer
learning. Comparing the training data size, contrastive learning
uses less than 6000 sentences while transfer learning uses 2 mil-
lion sentences for pre-training in order to achieve the performance
reported in Table 1.

7 DISCUSSION
7.1 Data Augmentation Analysis
As discussed in Section 4, we tried several methods of text aug-
mentation. Here we show the experimental results obtained with
the best model WC-BiLSTM-contrastive model in Table 3. The re-
sults show that various types of text augmentation methods have
marginal effect on the classification performance of the SCL base
model, with the range of F1 going from 86.11% to 87.45%. Wordnet
synonym replacement achieves the best performance while ran-
dom deletion is the worst. We choose to use the best one "Wordnet
synonym Replacement" as the data augmentation method.

7.2 Error Analysis
In this section, we perform error analysis focusing on the best
model: WC-BiLSTM-contrastive. Out of the 375 abstracts in testing
set of SciCE, this model correctly predicts all the claims and non-
claims in 125 abstracts. As shown in Figure 8, in the remaining
250 abstracts, the majority of them have 1–2 wrongly predicted
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Table 3: A comparison of performances with different data
augmentation methods.

DA Methods P % R % F1 %

EDA Random Deletion 85.67 86.56 86.11
EDA Replacement 86.08 86.94 86.50
RTT 86.28 86.90 86.59
Original Data 86.59 87.38 86.98
EDA Random Insertion 86.85 87.62 87.23
WordNet 87.08 87.83 87.45
WordNet + RTT 86.42 87.11 86.76
WordNet + Insertion 86.88 87.55 87.21
WordNet + Deletion 86.25 86.36 86.30
WordNet + Replacement 86.51 87.35 86.92

sentences, with the maximum prediction errors of 4 in a single
abstract. As shown in Figure 9, the error rates are all below 0.5 and
with an average of 0.13.

We demonstrate two examples containing typical errors in the
prediction results for case studies (Figure 10). The ground truth
claims are highlighted in blue. Green labels mean the sentences are
non-claims and red labels mean sentences are claims. Labels with
red frames indicate wrong predictions. In the first example, the
model is able to identify all the claims, but it mistakenly recognizes
two sentences as claims. In the second example, there should be
two claims but the model only identified one of them.

Example 1 is challenging because the two false positives look
like claims but when they are read together with the first sentence,
it is clear that the second sentence (starting with “The discussion
emphasizes”) describes what the authors have done in the paper and
the third sentence (starting with “A fundamental need”) describes
a background, which is the motivation of the research. Example 2
contains a false negative. It is not straightforward to determine why
the sentence starting with “Results indicated that” was misclassified
to a non-claim because the leading pattern clearly indicates the
sentence conveys key findings. The error analyses indicate that
although the recurrent model attempted to incorporate context
information, it may still miss the nuances of semantics. Fine-tuning
the hyperparameters may help, but a more sophisticated and robust
model is needed to capture the nuances. One method is to combine
latent and rule-based features. Another possible method is to lever-
age the "knowledge" encoded in large language models (LLMs), e.g.,
GPT 3, or using the LLM-adapter method to train an adapter for
this task.

7.3 Domain Adaptability
The SciCE corpus is in the biomedical domain. To test whether the
model performs well in a different domain, we applied the best
model (WC-BiLSTM-contrastive) to classify sentences in a random
selection of 30 abstracts in computer science papers. Out of the 195
sentences in this dataset, 60 sentences were predicted as claims. By
visually examining these predicted claims, 50 of them are consistent
with the definition of claims [14]. Examples of the successfully
predicted claims are given in Figure 11. This post-hoc evaluation
result indicates that the model’s precision for computer science

Figure 8: The distribution of the number ofwrong predictions
per abstract in the testing dataset of SciCE. In the abstracts
where there are wrong predictions, themajority of themhave
1 or 2 wrongly predicted sentences.

Figure 9: Distribution of error rate in the testing dataset of
SciCE. The error rate is defined as wrongly-predicted sen-
tences divided by the total number of sentences in an abstract.
In most cases, the error rate is below 0.2.

abstracts is roughly consistent with biomedical domains with (P ≈
83.3%), implying that claims in these two different domains are
usually written with similar language patterns. We also observed
that the model tends to omit claims, indicating that a more robust
domain adaptation may be needed to improve the recall.

7.4 Visualization on SciCE Data
To further qualitatively demonstrate the effect of supervised con-
trastive learning, we project the 128-dimensional vectors output
by the WC-BiLSTM base model into a 2-dimensional feature space
using tSNE [43], and then compare it with results in supervised con-
trastive learning. Figure 12 shows that the model with supervised
contrastive learning grouped the same class altogether, making
them more separated in the feature space.
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Prediction results on abstract 1:

Grounded in a socio-ecological framework, we describe salient health care system and policy factors 
that influence engagement in human immunodeficiency virus (HIV) clinical care.     Non-claim

The discussion emphasizes successful programs and models of service delivery and highlights the 
limitations of current, fragmented health care system components in supporting effective, efficient, and 
sustained patient engagement across a continuum of care.        Claim

A fundamental need exists for improved synergies between funding and service agencies that provide 
HIV testing, prevention, treatment, and supportive services.        Claim

We propose a feedback loop whereby actionable, patient-level surveillance of HIV testing and 
engagement in care activities inform educational outreach and resource allocation to support integrated 
\"testing and linkage to care plus\" service delivery.           Claim

Ongoing surveillance of programmatic performance in achieving defined benchmarks for linkage of 
patients who have newly diagnosed HIV infection and retention of those patients in care is imperative 
to iteratively inform further educational efforts, resource allocation, and refinement of service delivery.
                                                                                                                                      Claim

Prediction results on abstract 2:

"Bovine viral diarrhea virus (BVDV) is an emerging pathogen in alpacas and many questions still 
persist regarding disease mechanisms and control strategies."      Non-claim

"The purpose of this study was to evaluate a commercial BVDV vaccine for safety and efficacy in 
alpacas."      Non-claim

"Five nonpregnant alpacas were vaccinated with a modified-live BVDV vaccine and challenged 25 
days post-immunization by nasal and ocular inoculation with a BVDV Type 1b strain isolated from a 
confirmed BVDV persistently infected alpaca."      Non-claim

"Two nonpregnant alpacas served as non-vaccinated controls and were similarly challenged."
                                                                                                                                Non-claim

"Results indicated that BVDV virus could not be detected from the vaccinated alpacas but was 
detected in the unvaccinated alpacas."      Non-claim

"Results suggest that administration of modified-live BVDV vaccine protected the alpacas in this 
study from experimental challenge and no adverse effects from the vaccine were observed."
                                                                                                                           Claim

Figure 10: Two examples of errors in the prediction results in
the test set of SciCE. The ground truth claims are highlighted
in blue. Green labels mean the sentences are non-claims and
red labels mean sentences are claims. Labels with red frames
indicate wrong predictions.

We demonstrate that scaling up language models greatly improves task-
agnostic, few-shot performance, sometimes even becoming competitive 
with prior state-of-the-art fine-tuning approaches. 

These results highlight the importance of previously overlooked design 
choices, and raise questions about the source of recently reported 
improvements. 

Moreover, DETR can be easily generalized to produce panoptic 
segmentation in a unified manner. 

We show that it significantly outperforms competitive baselines.

Figure 11: Successful prediction results from papers in Com-
puter Science domain.

8 CONCLUSION
To automatically obtain scientific findings from the ever increas-
ing volume of scientific papers, an effective and efficient claim-
extracting tool is becoming increasingly important for information
aggregation, summarization, and retrieval of scientific papers. One
bottleneck of this task is the limitation of annotated training data.
The challenge is how to efficiently use existing limited data. We

Figure 12: The 𝑡-SNR plots showing the effects of supervised
contrastive learning. The upper panel shows the two classes
without supervised contrastive learning. The lower panel
shows the two classes with supervised contrastive learning.
Orange dots represent claims and blue dots represent non-
claims.

propose the ClaimDistiller framework, which uses supervised
contrastive learning on top of existing text encoders to boost the
performance of classification. We showcased the efficacy of this
mechanism on two benchmark datasets. Our result establish a new
state-of-the-art on the SciCE dataset, outperforming the existing
method by 7%, which used transfer learning on a BiLSTM-CRF ar-
chitecture. We demonstrated that the SCL achieved comparable or
higher F1 scores compared with transfer learning methods with sig-
nificantly less training data and time. Future research will explore
hybrid methods and LLMs to capture nuances of context. .
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