
A Web Service for Scholarly Big Data Information Extraction

Kyle Williams†, Lichi Li†, Madian Khabsa‡, Jian Wu†, Patrick C. Shih† and C. Lee Giles†‡
†Information Sciences and Technology, ‡Computer Science and Engineering

The Pennsylvania State University, University Park, PA 16802, USA
kwilliams@psu.edu, lzl5092@psu.edu, madian@psu.edu, jxw394@ist.psu.edu, patshih@ist.psu.edu, giles@ist.psu.edu

Abstract—The automatic extraction of metadata and other
information from scholarly documents is a common task in aca-
demic digital libraries, search engines, and document manage-
ment systems to allow for the management and categorization
of documents and for search to take place. A Web-accessible
API can simplify this extraction by providing a single point of
operation for extraction that can be incorporated into multiple
document workflows without the need for each workflow to
implement and support its own extraction functionality. In
this paper, we describe CiteSeerExtractor, a RESTful API for
scholarly information extraction that exploits the fact that
there is duplication in scholarly big data and makes use
of a near duplicate matching backend. The backend stores
previously extracted metadata and avoids extracting metadata
from a document if it has already been extracted before.
We describe the design, implementation, and functionality
of CiteSeerExtractor and show how the duplicate document
matching results in a difference of 8.46% in the time required
to extract header and citation information from approximately
3.5 million documents compared to a baseline.

Keywords-Web service, information extraction, scholarly big
data, CiteSeerExtractor

I. INTRODUCTION

Scholarly big data refers to the vast amount of data

produced as the result of scholarly undertaking and includes

journals, conference proceedings, theses, books, patents and

experimental data. This data is not only of use to scientists

and researchers, but also to decision making bodies in

government and education as well as the general public.

Originally, three V’s were used to describe big data. These

V’s were volume, velocity and variety [9]. Recently however,

additional concepts have been added, such as value, veracity,

viscosity and vulnerability. As evidence of the volume of

big data, it is estimated that Microsoft Academic contains

over 50 million records for academic documents and that

about 43% of the articles published between the years 2008

and 2011 are freely available online [1]. As evidence of the

velocity of scholarly data, it was estimated in 2010 that the

annual growth rates of several popular academic databases

between 1997 and 2006 ranged from 2.7 to 13.5% [10]. The

variety of scholarly big data is evident from the the different

types of scholarly output that is produced.

As a result of the prevalence of scholarly big data, a

number of services for managing and providing access

to it have emerged, such as Google Scholar1, Microsoft

Academic2, CiteSeerχ3 and the ArXiv4. All of these tools

make use of the metadata from scholarly documents for

managing and categorizing documents as well as for search.

Furthermore, the metadata can enable higher level services

such as those based on named entity recognition and citation

matching.
Some of the services for scholarly documents, such as

the ArXiv, allow users to submit scholarly documents and

provide metadata while others, such as CiteSeerχ, collect

documents by crawling the Web and perform automatic

information extraction. Automatic information extraction,

while less accurate than manually supplied information, is

beneficial since it is a more scalable method for collecting

metadata and can be applied to big data. It is possible for

each service that performs automatic metadata extraction

to implement its own extraction module; however, a Web-

accessible API can simplify this extraction by providing

a single point of operation that can be incorporated into

multiple document and scientific workflows [13] so as to

allow for easier processing of data. Furthermore, a single

point of operation with a standard interface allows for

improvements in the extraction algorithms to be used by all

without the need to distribute the improvements or rewrite

code in order for it to be compatible with new changes.
An important characteristic of scholarly publications is

that it is common for duplication to occur. For instance,

when crawling papers from the Web it is possible that co-

authors might each have a version of a paper on their web-

sites and that there may be minor differences between these

versions. Similarly, differences exist between the versions

of papers at publisher sites and those that authors host

on their websites, such as omitted copyright notices and

page numbers. Furthermore, for a Web service that performs

automatic metadata extraction it is possible that different

users might submit the same paper at different times. At

small scale it is sufficient to perform extraction each time a

paper is submitted to the Web service; however, at big data

scale that may result in inefficiencies. Thus, methods for

avoiding redundant information extraction are useful since

1http://scholar.google.com/
2http://academic.research.microsoft.com/
3http://citeseerx.ist.psu.edu/
4http://arxiv.org/

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.27

105

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.27

105

they can improve extractor performance.

In this paper we describe CiteSeerExtractor5, a Web

service for scholar information extraction that deals with

the issue of big data by storing metadata after it is ex-

tracted. Whenever a new paper is submitted that matches

a previously submitted document, this stored information is

retrieved and thus unnecessary extraction is avoided. The

document matching algorithm is able to deal with matches

that are not bitwise identical and that might have minor

differences. In describing this service, the rest of this paper

is structured as follows. Section II presents related work

followed by Section III, which describes the design and

functionality of the RESTful API. Section IV describes the

architecture of the service and Section V then presents how

the duplicate document matching is performed in order to

avoid redundant information extraction. Section VI presents

a set of experiments that evaluate the service and, lastly,

conclusions are discussed in Section VII.

II. RELATED WORK

A few services currently exist for metadata extraction

from scholarly documents. One such service is the API

that runs on top of ParsCit [5]. This service allows users

to submit the plain text of papers and then returns the

parsed citations. GROBID [12] is a library for extracting

metadata form scholarly documents. It is able to extract

header metadata, citation metadata and parse the metadata.

GROBID includes a RESTful API that can be used to access

the service from other programs. GROBID also attempts

to match extracted metadata with Crossref6 and if core

metadata, such as the title or first author, is matched, then

the system attempts to retrieve the full publisher metadata.

FreeCite7 is another citation parsing Web service hosted at

Brown University that is based on ParsCit. FreeCite allows

users to submit a single citation string or list of citation

strings and they are parsed and tagged.

Generally, existing services for metadata extraction have

been designed to run on top of specific extraction tools.

CiteSeerExtractor on the other hand provides a generic

framework that can easily be extended to allow for additional

extractors to be incorporated. This is discussed in more detail

in Section IV. Furthermore, to our knowledge, none of these

services specifically try to address the challenges of big data

by making use of near duplicate matching.

Some tools make use of Web services to perform or

improve metadata extraction showing how Web services

can be incorporated into metadata extraction workflows.

For instance, PDFMeat [2] converts PDF documents to text

and then generates queries from the text that are submitted

to Google Scholar. The search results are matched against

the query document and the Bibtex entry for the best

5http://citesseerextractor.ist.psu.edu/
6http://www.crossref.org/
7http://freecite.library.brown.edu/

match is then retrieved. The Mendeley8 tool for reference

management supports a similar function whereby users can

query Google Scholar to improve the metadata that is auto-

matically extracted from documents when they are added to

a collection. Gao et al [6] describe a similar system for using

Web services to improve extracted citations. Their tool first

parses citations by selecting an appropriate citation metadata

extractor and, once the citation is extracted, Web services are

queried to improve the quality of the extracted citations.

III. API DESIGN

A. Resource Oriented Architecture

CiteSeerExtractor is a RESTful Web service based on

the Resource Oriented Architecture (ROA) [17]. RESTful

Web services have a number of benefits, such as being

lightweight, scalable and easily accessible [20]. ROA is

defined by four main concepts: resources, identifiers, rep-

resentations of resources, and the links between resources.

Furthermore, ROA has four main properties: addressability,

statelessness, connectedness, and a uniform interface [17].

A resource in ROA is something that is important enough

that it is worth being referenced. Each resource is identified
by a URI that is unique for the resource and that allows for

one of the representations of the resource to be accessed,

where a representation of a resource is some view of that

resources. An ROA application is addressable if information

is exposed through URIs; it is stateless when HTTP requests

are independent of each other and can happen in isolation;

it is connected when when there are links between content;

and HTTP provides a uniform interface [17].

1) Resources: Documents (PDF, PS, TXT) are resources

in CiteSeerExtractor since they are worth being directly

referenced in order to extract information from them. Re-

sources are created by submitting a POST request to the

extractor URL. This has the effect of creating a new

document resource in CiteSeerExtractor. Once a document

resource has been created, the text from the document is

automatically extracted. PDFBox9 is used to extract text

from PDF documents and the ps2txt tool is used to ex-

tract text from PS documents. Text can also be extracted

from additional file formats by incorporating the appropriate

text extraction tools into CiteSeerExtractor. The successful

creation of a new resource through the submission of a

document and the extraction of the text is identified by

a HTTP 201 CREATED status code, whereas if an error

occurs a HTTP 503 INTERNAL ERROR status code is

returned. Furthermore, CiteSeerExtractor can be configured

to limit the submitted document size and return an appro-

priate message if the document size exceeds the limit. In

addition to the HTTP status code, the successful creation of

a resource also returns an XML or JSON document with

8http://www.mendeley.com/
9http://pdfbox.apache.org/

106106

<?xml version=“1.0” encoding=“UTF-8”?>
<CSXAPIMetadata>
<file>base url/extractor/token/file</file>
<header>base url/extractor/token/header</header>
<citations>base url/extractor/token/citations</citations>
<body>base url/extractor/token/body</body>
<text>base url/extractor/token/text</text>
</CSXAPIMetadata>

Figure 1. XML returned after the creation of a resource

links to different representations of the document (shown in

Figure 1 and discussed below).

2) Identifiers: Once a resource has successfully been

created, it is assigned a unique and random identifier.

This approach violates the ROA practice of having well-

named resources; however, it simplifies the resource naming

procedure and, since the resources are for the most part

temporary, was considered a reasonable approach. Figure 1

shows an example of the identifier for a new resource (the

string of characters trailing extractor/ in the URL). This

identifier uniquely identifies the new resource for as long as

it exists and allows for representations to be extracted.

3) Representations: Representations of a resource are

different views of a resource and in CiteSeerExtractor rep-

resent different types of information extracted from the

original document as well as the document itself. To access a

resource in CiteSeerExtractor, an HTTP GET request is made

to http://$url/extractor/resource id/representation, where the

representations currently supported are:

• file: The original document that was submitted.

• header: The header of the document, including the

title, authors, abstract, venue and any other information

that may be extracted.

• citations: The citations extracted from the document.

• body: The main body text of the document, excluding

the citations.

• text: The full text of the document as extracted by an

appropriate text extraction tool.

A successful GET request for the representation of a

resource returns an HTTP 200 OK status code, while an

error is returned if the request fails.

4) Addressability, Statelessness, Connectedness, and Uni-
formity: Representations of resources in CiteSeerExtractor

are addressable through their URIs based on the identifiers

assigned to each resource. Resources remain addressable for

as long as the system retains the stored document and ex-

tracted text file. CiteSeerExtractor is stateless as each HTTP

request happens independently and is not dependent on

any preceding requests. Connectedness is provided through

links to representations of resources when a new resource

is created and all access is provided through the uniform

HTTP interface.

API

Python Web Server

Text
Extractor

Body
Extractor

Header
Extractor

Citation
Extractor

File Store Duplicate Matching Backend

Figure 2. CiteSeerExtractor architecture

B. HTTP Methods
Table I summarizes the HTTP methods supported by Cite-

SeerExtractor. As can be seen from the table, the first method

involves using a HTTP POST to create a resource. Different

representations of a resource can then be retrieved with a

HTTP GET on the representation URI. Lastly, resources can

be deleted with a HTTP DELETE on the representation URI.

These methods capture most of the functionality that one

would expect when extracting information from scholarly

documents. Furthermore, the API also supports different

output formats, i.e., XML and JSON, for the returned data

which may be useful from a processing perspective.

IV. ARCHITECTURE

The overall architecture of CiteSeerExtractor was de-

signed so as to be stand-alone, able to run in isolation,

and able to be integrated with a number of services. Figure

2 shows the overarching architecture of CiteSeerExtractor.

As can be seen from the figure, the RESTful API is the

entry point and communicates directly with the Python Web

Server, which is responsible for handling the creation of

resources and for serving various representations of those

resources. Security and permissions can also be controlled

and implemented at the Python Web Server level. In the

rest of this section, we briefly describe the technology and

implementation details for each level of the architecture.

A. RESTful API

The RESTful API provides the functionality as described

in Section III.

B. Python Web Server

CiteSeerExtractor is run as a stand-alone Web server

and is implemented using the web.py framework10. The

10http://webpy.org/

107107

Table I
HTTP METHODS SUPPORTED BY CITESEEREXTRACTOR

Method URL Description Returns Options

POST /
Uploads a new PDF document ei-
ther via a form or via bytestream

XML document with URIs to re-
source, resource id

myfile=@filename (required for
form POST)

GET /resource id/file
Used to download original docu-
ment for resource

Document for resource N/A

GET /resource id/header
Extracts the header information
(authors, title, etc) from the re-
source

Representation of header informa-
tion

output=xml (default) | json

GET /resource id/citations
Extracts the citations from the re-
source

Representation of the citations output=xml (default) | json

GET /resource id/body
Extracts the body (text excluding
header and citations) from the re-
source

Representation of the body output=xml (default) | json

GET /resource id/text
Extracts the full text from the re-
source

Full text of resource N/A

DELETE /resource id Deletes the resource Confirmation N/A

Web server is responsible for the creation and removal of

resources and handling all HTTP requests. The actual ex-

traction functionality is provided by a series of independent

tools that are executed by the Web server. This design

approach makes it trivial to add additional representations

of resources since all that is required is that the URL for

the new representation is handled and the appropriate system

call is made.

C. Extractors

1) Text Extractor: When a document is uploaded, a new

resource is securely created on the Web server using the

Python mkstemp command, which creates a temporary file

in the most secure manner possible. Once the document

resource has been created, an appropriate tool is used to

automatically extract the text from the document and store

the extracted text alongside the original document. We chose

to use PDFBox for PDF files and ps2txt for PS files;

however, it is possible to integrate any text extraction tool

by modifying the appropriate system call in the Web server

method that handles the text extraction.

2) Citation Extractor: ParsCit [5] is used for citation

extraction. To extract citations, the section of text in a docu-

ment containing the citations is first identified using a regular

expression. Once the citation text has been identified, the

citations are segmented and various aspects of each citation

are tagged, such as title, authors, venue, etc. Furthermore,

the context of a citation in the text is also identified. For full

details of the citation fields that are classified by ParsCit and

returned by CiteSeerExtractor see [5].

3) Header Extractor: The header extraction in Cite-

SeerExtractor is based on a tool that classifies various

aspects of a header using a support vector machine [7].

As with citation extraction, the section of text containing

the header is identified using a regular expression and then

each line of the header is classified and various aspect of the

header, such as authors, title, etc., are classified and returned.

For full details on the header fields that are classified and

returned by CiteSeerExtractor see [7].

4) Body Extractor: The body extraction code extracts the

body of text, excluding the citations. This representation is

particularly useful for text analysis where users may not be

interested in the citations. The body is extracted by removing

the citations from the full text.

D. File Store

Documents and their associated text representations are

stored in the file store. Access to the file store is provided

via the Web server and the permissions for files are con-

figurable and set by the Web server when files are created.

Resources are generally removed from the file store via an

HTTP DELETE request on the resource ID; however, it is

also possible to make use of a cron job that is run at a

regular interval and removes files for which the access time

exceeds some threshold. In doing this, it is possible to limit

the number of resources stored on the server.

E. Duplicate Matching Backend

A NoSQL backend exists for matching near duplicates in

order to avoid repetitive extraction. Since this is a major

component of CiteSeerExtractor, it is discussed in detail in

the next section.

V. DUPLICATE MATCHING BACKEND

As previously mentioned, it is common for multiple

versions of papers to exist of the Web and possible that

different users will submit the same document to the API

for metadata extraction. In these cases, it is not desirable

to extract information that has already been extracted and

thus CiteSeerExtractor includes a near duplicate matching

backend. The purpose of this backend is to store metadata

that has already been extracted and retrieve the metadata

108108

if a document submitted is a near duplicate of a document

that has previously been submitted. In order for this to be

successful, it is important that the overhead of performing

duplicate matching does not have a detrimental effect on the

performance of the system. Thus, we make use of a fast near

duplicate detection algorithm for matching documents and

store extracted data in an in-memory NoSQL database. The

remainder of this section describes this process.

A. Near Duplicate Matching Algorithm

The simhash algorithm [3] is a state of the art algorithm

for duplicate detection that maps a high dimensional feature

space to a fixed-size fingerprint [14]. Our implementation

of the simhash algorithm is based on that used by Manku

et al [14]. The process involves calculating a hash that

represents each document and then detecting near duplicates

by identifying documents that have similar hashes.

For each document submitted to CiteSeerExtractor, a hash

is calculated as follows. Each document is represented by a

fixed fingerprint V of size f . For each token (word) t that

appears in a document, an f bit hash Ft is calculated. If

the i-th bit of Ft is 1, then the i-th bit of V is increased

by the weight of that token. Conversely, if the i-th bit of Ft

is 0, then the i-th bit of V is decreased by the weight of

that token. In this study, all tokens are assigned a weight

of 1. Once all tokens have been processed, V contains

both positive and negative numbers that are the result of

the sums of the weights of all of the tokens. V is then

thresholded to create the final bit-hash and the distance

between document bit-hashes can then be calculated using

the Hamming distance [14].

Two documents are considered as being near duplicates

if the Hamming distance between their two hashes is less

than or equal to k [14]. The set of documents in a collection

whose Hamming distance differs from a query document by

at most k-bits can then be efficiently found as follows. For

a collection for which the hash of each document has been

computed, each hash is partitioned into k+1 sub-hashes and

these sub-hashes are stored in k + 1 tables that maintain a

list of each sub-hash and the ids of documents that have that

sub-hash. At query time, the hash for the query document

can be partitioned into k+1 sub-hashes, which can be looked

up in the hash tables and the matching hashes returned. This

method guarantees that all hashes that differ from the query

hash by k bits will be found since, in the worst case, the

differing bits can only occur in k of the sub-hashes and thus

one of the k + 1 sub-hashes is guaranteed to match.

B. Implementation in CiteSeerExtractor

The algorithm described above is implemented in Cite-

SeerExtractor as follows. Redis11 is used as the database

that stores the generated hashes and sub-hashes as well

11http://redis.io/

as already extracted metadata. Redis is a key-value store

NoSQL database that operates in memory and thus allows

for fast access to data. For each document submitted to Cite-

SeerExtractor, the text is extracted and then stop words are

removed and the text is stemmed using Porter’s stemming

algorithm [16]. Algorithm 1 shows the implementation of

the algorithm for matching near duplicates.

Algorithm 1 Duplicate matching algorithm

1: procedure MATCHDUPLICATES(doc, metadata)

2: simhash← CALCULATESIMHASH(doc)
3: data← LOOKUP(simhash, metadata)

4: if data �= NULL then
5: return data
6: end if
7: subhashes← GETSUBHASHES(subhashes)

8: dupes← GETMATCHES(simhash, subhashes, k)

9: if dupes �= NULL then
10: data← LOOKUP(dupe[0], metadata)

11: if data �= NULL then
12: return data
13: end if
14: else
15: ADDSUBHASHES(subhashes, simhash)

16: data← EXTRACT(metadata)

17: SAVEMETADATA(simhash, metadata)

18: return data
19: end if
20: end procedure

First, the simhash of the document is calculated (line 2)

and the Redis database is immediately queried to check

if the requested metadata exists for that simhash (line 3).

This would occur if, for instance, a document with the same

simhash already had metadata extracted from it. If a match

is found, the metadata is returned and no further processing

or extraction need take place. If no exact match is found then

the simhash is split into sub-hashes (line 7) and the Redis

database is queried with the sub-hashes (line 8) to check if

any full hashes exist in the database that have a Hamming

distance H of at most k using the process described in

Section V-A. k is set to 3 since this has previously been

found to work well for academic documents [19], though

when we split a simhash into sub-hashes, we split it into 3

sub-hashes (rather than k+1 = 4) so as to reduce the number

of unnecessary comparisons. This results in faster processing

at the cost of fewer matches. If matches are found, then

the simhash of the most similar match (as measured by the

Hamming distance) is used to query the Redis database for

the requested metadata (line 10). If the metadata is found

then it is returned and no further processing or extraction

need take place. No match will be found either because (a)
no near duplicates as measured by the Hamming distance

109109

exist, or (b) a duplicate does exist but the requested metadata

does not, i.e., the header metadata may exist for the duplicate

document but not the citation metadata. In both of these

cases, the sub-hashes are then added to the Redis database

(so that sub-hash matching can be performed later with this

hash) and the data is then extracted (lines 15 & 16). Lastly,

the metadata is saved to the Redis database (lines 17) and

the data is returned.

VI. EXPERIMENTS

Experiments were conducted to evaluate the effect that

the duplicate matching backend has on the performance of

the Web service and the quality of the duplicate matching.

A. Experiment Setup

The following experimental setup was used. All experi-

ments were run on a machine with the following hardware

and software specifications: CPU: 24 x Intel(R) Xeon(R)

CPU X5650 @ 2.67GHz; RAM: 48GB; OS: Red Hat

Enterprise Linux (RHEL) Server 5.9; Python: 2.7; Redis:
2.4.10 with a 44GB memory limit. A snapshot of the

CiteSeerχ collection from November 2013 was taken, which

included a total of 3,577,543 million documents all of which

were used for experimentation. For all documents, the text

had previously been extracted using PDFLib TET12 meaning

that the Web service did not need to re-extract the text,

which has the benefit of reducing the time taken to run

the experiments. Documents were submitted to the API in

parallel using the GNU Parallel tool [18] with 24 threads,

which essentially resulted in the Web server processing 24

requests in parallel. For each document, both the header and

citation metadata were extracted meaning that two calls were

made per submitted document. Lastly, a filter was used that

excluded documents with fewer than 100 words.

B. Duplicate Matching Overhead

The duplicate matching backend should not have a detri-

mental effect on the service and thus an experiment was

conducted to evaluate how it affects the performance. One

hundred documents were submitted to the service and the

time taken to process each of the 100 documents was

measured. Furthermore, when duplicate matches were found

they were ignored and the metadata was still extracted so

as to allow for a fair comparison. The mean time taken

to extract the headers and citations from 100 files was

4.26 seconds (standard deviation=1.24) and 4.35 (standard

deviation=1.25) for the baseline method with no duplicate

matching and the method with duplicate matching, respec-

tively. As can be seen from these numbers, the average time

difference is about 0.1 seconds per file, which shows that

the use of the duplicate matching backend does not result

in a large overhead.

Figure 3. Time taken for extraction as the number of files increases. Times
are shown for the baseline, Redis backend and Redis backend with specified
TTL

C. API Extraction Performance

Figure 3 shows the incremental extraction time for the

Web service as files are submitted. The baseline method

refers to extracting all of the files without making use

of the duplicate matching backend. As can be seen from

the figure, the baseline method appears to scale linearly.

The Redis method makes use of the duplicate matching

backend as described in Section V. For this method, both

the extracted citations and header metadata are stored for

all submitted documents. As can be seen from the figure,

for the first approximately 750,000 documents, the per-

formance of the baseline and the method that makes use

of the duplicate matching backend are approximately the

same; however, beyond this, the addition of the duplicate

matching backend leads to an improvement in performance

that can be attributed to the fact that matching metadata has

been found and thus extraction need not take place. The

difference in performance between the baseline method and

the duplicate matching backend continues to increase until

about 1.5 million files at which point the difference begins

to decrease with the baseline method performing better

than the duplicate matching method at about 2.25 million

files. This change in performance when using the duplicate

matching backend can be attributed to the memory allocated

to Redis becoming full. Redis was initially configured to use

a maximum of 44GB, which appears to become full at about

1.5 million files. At this point, the Redis database begins

to randomly select keys and delete those keys and their

corresponding data using an approximate LRU algorithm.

However, as this continues to happen there is an exponential

decrease in performance as Redis has to continue moving

data in and out of memory.

12http://www.pdflib.com/products/tet

110110

Table II
EXTRACTION TIMES AND DATA SIZE FOR CITATIONS AND HEADERS

EXTRACTED FROM 100 DOCUMENTS

Citations Header
Mean Time (std. dev.) 01.11 (0.29) seconds 2.86 (1.18) seconds
Total time 111.31 seconds 286.40 seconds
Size 1.4 MB 152 KB

To improve the performance of the service, the extraction

process was analyzed. The time taken to extract headers and

citations from 100 was measured. The documents had their

metadata extracted using the standalone extraction scripts

that are called by the Web service. Table II shows the mean

time and standard deviation when extracting headers and

citations from the 100 documents, the total extraction time

for all 100 documents as well as a measure of disk usage.

Two differences between header and citation extraction

can be observed from Table II. The first is that citation

extraction is relatively fast compared to header extraction

and the second is that the amount of memory required to

store citations in the Redis database greatly exceeds the

amount of memory required to store header metadata. This

second observation is intuitive since an academic document

only has one header whereas it usually has multiple citations.

Based on these observations, the decision was made to

limit the number of citations stored in the Redis database

since this should result in less memory consumption while

not increasing processing time as much as if header meta-

data was not stored. Limiting the number of citations was

implemented by setting a TTL (time to live) of 6 hours

on all citation metadata. When setting the TTL there is

a tradeoff between performance and memory consumption

since higher TTLs result in higher memory consumption but

better performance due to citation metadata being retained

for longer by Redis. A TTL of 6 hours was chosen in this

study since it resulted in good utilization of the memory

allocated to Redis; however, different values would need to

be investigated for different configurations. Compression can

also be used to reduce the size of the data when it is stored

in the Redis database and thus the data was compressed for

this experiment using the zlib compression library13 with

a compression level of 3. Figure 3 shows the performance

of the extractor with a TTL set on citations. The standard

Redis storage performs better initially since it benefits from

both citations and headers being stored; however, beyond 1.5

million files the Redis+TTL storage begins to outperform

the standard Redis storage. Furthermore, as the number of

documents continues to increase the difference between the

performance of the Redis+TTL duplicate matching backend

and the baseline continues to increase with the percentage

difference between the two methods being 8.46% after

3,577,000 files were processed. This translates into about

13http://www.zlib.net/

21.36 hours saved with the total running time being 10.08

days.

D. Verifying Results

1) Number of Documents Processed: We verify that

the number of documents processed by each method is

approximately the same to show that the use of the duplicate

matching backend does not lead to additional failures. Possi-

ble reasons for a document not being successfully processed

are: the document is too short (fewer than 100 words); the

document mimetype is not text, application/pdf or appli-
cation/postscript; the document does not pass the academic

document filter; or the citation or header extraction fails. The

number of documents processed for the baseline method,

standard duplicate matching method and duplicate matching

method with TTL for citations were 3,490,791, 3,484,213

and 3,490,799 respectively. The number of documents suc-

cessfully processed with the standard duplicate matching

method was about 6,000 fewer than the other methods,

which can most likely be attributed to the fact that the

Redis database became full leading to service failures. On

the other hand, the difference between the baseline method

and duplicate matching method with TTL for citations was 9

documents, with the duplicate matching method successfully

processing more documents. This demonstrates that the use

of the duplicate matching backend with TTL did not lead to

more failures than the baseline.

2) Near Duplicates: To evaluate the extent to which

near duplicate matches really are near duplicates, documents

were submitted to the service for header extraction and the

first 100 matches identified by the near duplicate matching

backend were inspected. Of these 100 matches, 37 were ex-

act simhash matches, i.e., no Hamming distance calculation

needed to be done, and 63 matches had Hamming distances

between their simhashes of at most 3. Inspecting the first

10 lines of these 100 files and comparing the titles (with

minor differences allowed), it was found that 92 were true

positives. Of the 8 that were false positives, it was found that

in 7 of the 8 cases at least one of the documents had either

large amounts of mathematical notation or large tables of

numbers with the same document being falsely identified as

a near duplicate 4 of the 8 times. If this is in fact the reason,

then this is a weakness in the algorithm that can easily be

corrected by filtering numbers from the text when calculating

the simhash. The last false positive appears to have been an

extended version of an existing paper. Lastly, each pair of

near duplicates was found to have different SHA1 hash [15]

values demonstrating that standard hashing functions are not

appropriate for detecting near duplicates.

VII. CONCLUSIONS

We described a RESTful Web service for scholarly infor-

mation extraction. To deal with big data, the service exploits

the fact that near duplicates are a common occurrence in

111111

academic documents on the Web and thus incorporates a

duplicate matching backend, which is shown to reduce the

processing time for a large collection of documents.

A possible improvement to the service would be to allow

clients to set their own thresholds for the Hamming distance

for two documents to be considered near duplicates. This

would allow for better control of matches on the client side.

The Hamming distance could also be returned in the HTTP

response, which would allow a client to decide whether or

not they want to keep the matched metadata or request that

it is re-extracted.
It should be noted that the metadata of near duplicates

identified by the near duplicate matching backend may not

be exactly the same. For instance, a preprint and published

version of a paper may have slightly different titles or cita-

tions. Thus, when returning extracted metadata it is possible

that incorrect or partially correct metadata is returned. This is

a big data tradeoff that allows for possible errors in metadata

so as to achieve better performance. Once again, the extent

to which this happens can possibly be controlled by allowing

the client to control the Hamming distance threshold.

The design of CiteSeerExtractor is modular and easily ex-

tendable. Thus it would be trivial to extend the Web service

by adding additional types of information extractors. For

instance, recent work has developed methods for extracting

images [4], acknowledgments [8] and tables [11] from schol-

arly documents and integrating this into CiteSeerExtractor

could enhance the ways in which it could be used.

Acknowledgments

We gratefully acknowledge partial support by the National

Science Foundation.

REFERENCES

[1] E. Archambault, D. Amyot, P. Deschamps, A. Nicol, L. Re-
bout, and G. Roberge. Proportion of Open Access Peer-
Reviewed Papers at the European and World Levels - 2004-
2011. Technical Report August, European Commission DG
Research & Innovation, 2013.

[2] D. Aumüller and E. Rahm. PDFMeat: managing publications
on the semantic desktop. International Conference on Infor-
mation and knowledge management, pages 10–13, 2011.

[3] M. Charikar. Similarity estimation techniques from rounding
algorithms. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 380–388, 2002.

[4] S. R. Choudhury, P. Mitra, A. Kirk, S. Szep, D. Pellegrino,
S. Jones, and C. L. Giles. Figure Metadata Extraction from
Digital Documents. 2013 12th International Conference on
Document Analysis and Recognition, pages 135–139, Aug.
2013.

[5] I. Councill, C. Giles, and M. Kan. ParsCit: an Open-source
CRF Reference String Parsing Package. In Proceedings of
the Language Resources and Evaluation Conference, 2008.

[6] L. Gao, X. Qi, Z. Tang, X. Lin, and Y. Liu. Web-based citation
parsing, correction and augmentation. In Proceedings of the
12th ACM/IEEE-CS joint conference on Digital Libraries -
JCDL ’12, page 295, June 2012.

[7] H. Han, C. Giles, E. Manavoglu, H. Zha, Z. Zhang, and
E. Fox. Automatic document metadata extraction using sup-
port vector machines. In Proceedings of the 3rd ACM/IEEE-
CS joint conference on Digital libraries, pages 37–48, 2003.

[8] M. Khabsa, P. Treeratpituk, and C. L. Giles. AckSeer. In
Proceedings of the 12th ACM/IEEE-CS joint conference on
Digital Libraries - JCDL ’12, page 185, New York, New
York, USA, June 2012. ACM Press.

[9] D. Laney. 3D Data management: Controlling data volume,
velocity and variety. Meta Group. Application Delivery
Strategies, (February 2001), 2013.

[10] P. O. Larsen and M. von Ins. The rate of growth in scientific
publication and the decline in coverage provided by Science
Citation Index. Scientometrics, 84(3):575–603, Sept. 2010.

[11] Y. Liu, K. Bai, P. Mitra, and C. Giles. Tableseer: automatic
table metadata extraction and searching in digital libraries.
Proceeding of the 7thth annual international ACM/IEEE joint
conference on Digital libraries - JCDL ’07, pages 91–10,
2007.

[12] P. Lopez. GROBID: Combining automatic bibliographic data
recognition and term extraction for scholarship publications.
Research and Advanced Technology for Digital Libraries,
pages 473–474, 2009.

[13] S. Lu and J. Zhang. Collaborative Scientific Workflows. In
2009 IEEE International Conference on Web Services, pages
527–534. Ieee, July 2009.

[14] G. Manku, A. Jain, and A. D. Sarma. Detecting near-
duplicates for web crawling. Proceedings of the 16th in-
ternational conference on World Wide Web, pages 141–149,
2007.

[15] National Institute of Standards and Technology. FIPS 180-1
Secure Hash Standard. 1995.

[16] M. F. Porter. An algorithm for suffix stripping. In Readings
in information retrieval, pages 313–316. Morgan Kaufmann
Publishers Inc., Dec. 1997.

[17] L. Richardson and S. Ruby. Restful Web Services. O’Reilly
Media, 2007.

[18] O. Tange. GNU parallel-the command-line power tool. login:
The USENIX Magazine, 3(1):42–47, 2011.

[19] K. Williams and C. L. Giles. Near duplicate detection in
an academic digital library. Proceedings of the 2013 ACM
symposium on Document engineering - DocEng ’13, pages
91–94, 2013.

[20] H. Zhao and P. Doshi. Towards Automated RESTful Web
Service Composition. 2009 IEEE International Conference
on Web Services, pages 189–196, July 2009.

112112

