SimSeerX: A Similar Document Search Engine

Kyle Williams*, Jian Wut, C. Lee Gilest'!
HInformation Sciences and Technology, fComputer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA
kwilliams@psu.edu, jxw394@ist.psu.edu, giles@ist.psu.edu

ABSTRACT

The need to find similar documents occurs in many settings,
such as in plagiarism detection or research paper recommen-
dation. Manually constructing queries to find similar doc-
uments may be overly complex, thus motivating the use of
whole documents as queries. This paper introduces Sim-
SeerX, a search engine for similar document retrieval that
receives whole documents as queries and returns a ranked
list of similar documents. Key to the design of SimSeerX is
that is able to work with multiple similarity functions and
document collections. We present the architecture and in-
terface of SimSeerX, show its applicability with 3 different
similarity functions and demonstrate its scalability on a col-
lection of 3.5 million academic documents.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval; 1.7.5 [Document and Text
Processing]: Document Capture—Document Analysis

General Terms

Design, Experimentation

Keywords

Similarity search; document similarity; query by document

1. INTRODUCTION

Search engines have simplified the way in which informa-
tion is discovered. By submitting queries that capture an in-
formation need, relevant information can efficiently be found
on the Web and in document collections. In the majority
of cases, these queries are constructed based on keywords
that are related to a topic of interest; however, a difficulty
often arises in constructing queries for complex information
needs. To address this problem, search methodologies such
as content-based information retrieval have been developed
where the queries are based on the content of digital objects.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DocEng’14, September 16-19, 2014, Fort Collins, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2949-1/14/09 ...$15.00.
http://dx.doi.org/10.1145/2644866.2644895.

Similar document search is a type of content-based infor-
mation retrieval where the goal is to find documents that
are similar to a query document. The definition of doc-
ument similarity depends on the application. For instance,
document similarity might be defined as documents that are
about related topics or have overlapping text.

Traditionally, to find similar files, users construct queries
that are submitted to an information retrieval system; how-
ever, as already mentioned, in many cases it may not be
obvious to the user how they should construct queries from
a document in order to retrieve the type of similar docu-
ments that they are looking for or, when the user does know
how to construct the query, the complexity of actually con-
structing the query may be a limiting factor. A content-
based search method known as Query by Document (QBD)
attempts to overcome these problems by allowing users to
submit whole documents as queries to an information re-
trieval system which then returns a ranked list of similar
documents based on a pre-defined similarity function [12].

In this paper, we present SimSeerX', a similar document
search engine framework. SimSeerX can be used to find sim-
ilar files in a collection of documents and can support many
different types of similarity scoring functions and document
collections. SimSeerX incorporates a pseudo relevance feed-
back mechanism in the form of recursive search whereby the
results of a search are used to formulate queries for addi-
tional searches. The recursive search may return additional
results that were not retrieved by the original query and all
results can be combined and ranked. SimSeerX has applica-
tions in a number of domains, such as plagiarism detection
[4], near duplicate detection [13] and research paper recom-
mendation. It can also be used to compare and evaluate new
similarity functions that can be plugged into the system.

2. RELATED WORK

There have been many systems designed to retrieve similar
documents with most focusing on specific use cases. An
early system involved retrieving similar documents from the
Web [10]. Signatures based on representative sentences of
query documents are submitted to a search engine and the
returned results are labelled as candidate documents. The
documents are then compared to the query document using
shingles and Patricia trees. Govindaraju et al. [5] extract
key phrases from documents and submit them as queries to
a search engine. The extracted key phrases are based on co-
occurrences of words and the results that are returned are

"http:/ /simseerx.ist.psu.edu

scored based on the Jaccard similarity of the keywords and
key phrases of the query document and the returned results.
Dasdan et al. [3] designed a similarity system based on
querying a search engine interface. Queries are constructed
based on the least frequent terms in the document and the
similarity of the returned documents is calculated based on
shingle similarity.

Similar document search can also be applied to different
types of documents. For instance, Pera et al. developed a
book recommender for K-12 users [9]. In addition to tra-
ditional content similarity, Pera et al. also considered the
readability of books. Weng et al [12] formalize query by
document as a document decomposition problem where the
representation of a document is based on decomposing it
into a feature vector as well as other information. Topics
are used as features, which are supplemented with keywords
that are used for the ranking. While SimSeerX does not use
the same features as this approach, it does make use of the
document representation for indexing and retrieval.

3. THE SIMSEERX SYSTEM

The SimSeerX system is made up of the user interface,
the index subsystem and the query subsystem.

3.1 User Interface

As previously stated, SimSeerX supports multiple simi-
larity functions and thus the first decision a user can make
when using SimSeerX is which similarity function they wish
to use when searching. Currently, SimSeerX supports three
different similarity functions but it is possible to add more.
When a similarity function has been selected, options spe-
cific to that similarity function appear. These options in-
clude search parameters as well as the ranking method that
should be used. The user also has the option to select the
recursive depth at which to search, which is referred to as
the number of hops. Lastly, the user submits a file.

Figure 1 shows the results page that is displayed after the
user conducts the search. The results show metadata that is
automatically extracted from the query document, options
to re-run the search with different options and a ranked list
of results.

3.2 Document Representation

The ability of SimSeerX to work with multiple similarity
signatures is based on the document representation. In Sim-
SeerX, each document is decomposed into a series of compo-
nents [12]. Each document d is represented by d = X+m+e,
where X is a set of document signatures, m is document
metadata, and € is other document information. X should be
constructed in such a way that the following conditions are
satisfied as best possible: if documents A and B are similar
(a binary judgment), then (1) |[X4NXpg| > 1; and, by exten-
sion, if documents A and B are not similar then, ideally, (2)
|XaNXp| =@. (1) serves to ensure that similar documents
can be retrieved based on their signatures alone, whereas
(2) serves to minimize the number of comparisons made be-
tween non-similar documents. SimSeerX can be used with
any similarity function that allows for documents to be de-
composed this way since the document signatures X can be
used for indexing and retrieval.

Using this document representation, the indexing, query-
ing, and ranking processes are then described by:

Recursive feedback loop

g -

Search CiteSeer Query
Interface Extractor | Generator

| Tdtimes [index]
|

Query

Combined
Resul;

Search
Results

Figure 2: The SimSeerX workflow.

Indexing. Index every document in C in a standard infor-
mation retrieval index I: Vd € C,index(X, m,€) in I.

Querying. For a query document dq = X + m + ¢, re-
trieve the set of candidate similar documents S from
the index using the document signatures as queries:
S = query(Xa,,I).

Ranking. Score each document d in S using a scoring func-
tion sim(-) that calculates the similarity between d and
dq: Vd € S, sim(d,d,), where sim(-) might take into
consideration any of X, m,e. Return S sorted by score
in descending order.

3.3 Indexing Subsystem

The indexing subsystem indexes each document in order
to allow for similar files to be retrieved based on document
signatures. Each document to be indexed is preprocessed,
which involves tokenization, punctuation removal, conver-
sion to lower case and possibly stemming. Signatures are
then constructed for each document and indexed in a Lucene
index, along with metadata and other information that may
be necessary to calculate the full similarity of the documents
with a given query document. The only difference between
the type of indexing that takes place in most search engines
and the indexing that takes place here, is that here the focus
is on indexing document signatures for retrieval.

3.4 Query Subsystem

The query subsystem encapsulates the SimSeerX work-
flow, which is shown in Figure 2. The subsystem receives
a document as a query and returns a ranked list of sim-
ilar documents. Querying involves document submission,
preprocessing, query signature construction, candidate re-
trieval, and re-ranking. A document undergoes automatic
information extraction when it is submitted, which might
involve text extraction if the document is a PDF as well as
metadata extraction. SimSeerX makes use of CiteSeerEx-
tractor [14] to perform text and metadata extraction. Cite-
SeerExtractor provides an API that performs various types
of extraction, such as text, header, and citation extraction.

Once the text and metadata have been extracted from the
document, queries are automatically constructed and used
to query the index along with any query parameters that the
user might specify. The Solr instance that SimSeerX is based
on has been modified to support custom ranking functions
for different types of similarity queries (discussed in Section
4). Thus, documents are retrieved based on their signatures
and ranked using an appropriate ranking function. Sim-
SeerX also includes a general ranking function whereby each
result can be ranked by its cosine similarity with the original
query document. Finally, the ranked results are returned to
the user.

'~ SimSeerX

Near Duplicate Detection in an Academic Digital Library. by Kyle Williams and C. Lee Giles

¢ Keyphrase © Shingles © Simhash ~ Number of hops|2 v |
Fields to search: |Keyphrases v |
Ranking: | Cosine Similarity ¥ |

1. , Efficient Semantic-Aware Detection of Near Duplicate Resources

Sunilarity score = 0.9123424201610718
View in CiteSeerX

Conduct new search with new document: | Choose File | No file chosen | Submit |

Abstract. Abstract. Efficiently detecting near duplicate resources is an important task when integrating information from various sources and applications. Once
detected, near duplicate resources can be grouped together, merged, or removed, in order to avoid repetition and redundancy, and to increase the diversity in the
information provided to the user. In this paper, we introduce an approach for efficient semantic-aware near duplicate detection, by combining an indexing scheme for
similarity search with the RDF representations of the resources. We provide a probabilistic analysis for the correctness of the suggested approach, which allows
applications to configure it for satisfying their specific quality requirements. Our experimental evaluation on the RDF descriptions of real-world news articles from
various news agencies demonstrates the efficiency and effectiveness of our approach. Key words: near duplicate detection, data integration 1

Figure 1: The SimSeerX results page.

4. SIMILARITY IN SIMSEERX

SimSeerX currently implements three similarity functions
that can be used to find similar documents: key phrase-
based similarity, shingle similarity and simhash similarity.

4.1 Key Phrase Similarity

Key phrases provide high level descriptions of documents
and can be used for efficient document retrieval and similar-
ity measures [11]. To generate key phrases, the Maui tool
[8] is used and trained on the SemEval 2010 dataset. For
each document that is indexed by SimSeerX, the top 10 key
phrases are extracted and indexed alongside the document.
At search time, the top 10 key phrases are extracted from
the query document in the same way. These key phrases can
be used to query either the key phrases of the indexed doc-
uments or the full text of the indexed documents. In both
cases, the query is a phrase and the resulting documents are
ranked using the standard Lucene ranking function.

4.2 Shingle Similarity

Shingles are sequences of tokens (words) in a document
and were first introduced as a means for calculating the sim-
ilarity of documents [1]. For a shingle length w, i.e. a se-
quence of w words, which is also known as a w-shingle, the
similarity between two documents can be calculated in terms
of the number of shingles that they have in common. Given
the w-shingles of two documents, d; and d2, the resemblance
R of the two documents is given by:

S(d1) N S(dg)
S(d1) U S(d2)’ (1)

where S(d) is the set of shingles in document d.

The actual similarity measure is not calculated based on
the shingles themselves, but rather on a hash of the shin-
gles. Because it is computationally expensive to calculate
the similarity of two documents based on all of their shin-
gles, a fixed number of shingles, which is known as a sketch,
are selected from each document and the similarity of the
two documents is estimated based on the Jaccard similarity
of the shingles in their sketch. The calculation of the sketch
of a document is done using a technique known as minhash.

R(dy,ds) =

For a length w, the sequences of tokens whose length is w
represent the shingles. Then, each shingle, which is repre-
sented by the value of its 64-bit Rabin fingerprint is hashed
with h hash functions and track is kept of the minimum
hash value found for each hash function. The sketch of each
document is then represented by its set of A minimum hash
values and the resemblance of two documents can be esti-
mated based on the extent to which their sketches overlap
[6].

To select shingles we use 84 hash functions in the form of
h(z) = (Az + B) mod p, where z is the Rabin fingerprint
of the shingle, p is a large prime, which we set to 25% — 59,
and A and B are random integers in the range [1, p].

During indexing, the sketch of each document is calcu-
lated and the shingles of that sketch are indexed. During
retrieval, the sketch of the query document is calculated and
used to retrieve documents that have a shingle in common
with the query document with the ranking of each document
calculated by the Jaccard similarity of their sketches.

4.3 Simhash Similarity

Simhash [2] is a state of the art near duplicate detection
algorithm. Near duplicate detection is a natural application
of SimSeerX, where the goal is to retrieve near duplicates to
a query document. For each document, the simhash is cal-
culated as follows. A fingerprint V' of size f represents each
document. Each token (word) ¢ that appears in a document
is hashed using the 64-bit Jenkins hash function. Then, if
the i-th bit of the hash F; of token ¢ is 1, then the i-th bit
of V is increased by 1. Conversely, if the i-th bit of F} is 0,
then V is decreased by 1. Once all tokens have been pro-
cessed, V' contains both positive and negative numbers at
each of its f locations that are the result of the sums of the
weights of all of the tokens. Each of the f locations in V is
thresholded to either 0 or 1 to create a final bit-hash for V.

In simhash two documents are considered as being near
duplicates if their simhash Hamming distances is at most
k. To retrieve documents that have a Hamming distance of
at most k, we apply an efficient algorithm [7] that has been
modified to work with an inverted index as follows. Once
the simhash for each document has been calculated, it is
partitioned into k 4+ 1 sub-hashes and these sub-hashes are

Table 1: Average time taken (in seconds) using 10
query documents.

Data Size Time (cold/cached)
~3.5 million 4.74 (0.52)/1.70 (0.27)

2.5 million 4.26 (0.49)/1.88 (0.25)
1.5 million 4.23 (0.61)/1.89 (0.32)

indexed. At query time, the simhash of the query document
is also partitioned into k + 1 sub-hashes that are used to
query the index and retrieve documents that have at least
one sub-hash in common with the query document. This
method guarantees that all documents whose simhashes dif-
fer from the query simhash by k bits will be found since, in
the worst case, the differing bits can only occur in k of the
sub-hashes and the final similarity between two documents
can then be calculated based on the Hamming distance of
their full simhashes.

We have briefly introduced the 3 similarity functions that
are currently supported by SimSeerX. It is relatively simple
to implement additional similarity functions as long as a
document can be decomposed into a set of signatures.

S. SCALABILITY

To evaluate the scalability of SimSeerX, a snapshot of
the CiteSeer® dataset containing 3,577,543 documents was
used. Evaluation is performed on subsets of this collection
of size S with S = 1.5M,2.5M,~ 3.5M (M = million). The
time taken to search without recursion was measured using
key phrases to search over key phrases. Two results are re-
ported: the search time for a cold start whereby the memory
buffers are flushed and the Solr instance restarted before
every search run; and the search time for a cached search
whereby the search is repeated after it completes the first
time. The time reported is the wall time to perform search
excluding document upload, extraction and result rendering.

Table 1 shows the mean time and standard deviation for
both cold start and cached start search runs, where each

search run involves searching with 10 papers from the CiteSeerX

collection. As can be seen from the table, the time taken to
conduct the search is relatively consistent regardless of the
size of the indexed collection thus suggesting that the system
can scale well.

6. CONCLUSIONS

We present SimSeerX, a query by document search engine
for finding similar documents. SimSeerX was designed so as
to allow users to submit full documents as queries in order to
find which documents in a collection are most similar accord-
ing to a predefined similarity function. The overall design
of SimSeerX is a modular architecture with various plug-
gable similarity functions. The key difference between Sim-
SeerX and existing query by document systems is that, while
other work has tended to focus on specific query and rank-
ing methods, SimSeerX as a framework provides a generic
architecture for query by document for any similarity scor-
ing function. Currently, SimSeerX requires users to submit
queries for each similarity function separately. Thus, a fu-
ture feature could involve displaying the results from differ-
ent similarity functions side by side or combining them into
a single ranked list.

Acknowledgments

We gratefully acknowledge partial support by the National
Science Foundation under Grant No. 1143921.

7. REFERENCES

[1] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the Web. Computer Networks
and ISDN Systems, 29(8-13):1157-1166, 1997.

[2] M. Charikar. Similarity estimation techniques from
rounding algorithms. In ACM symposium on Theory
of computing, pages 380-388, 2002.

[3] A. Dasdan, P. D’Alberto, S. Kolay, and C. Drome.
Automatic retrieval of similar content using search
engine query interface. In Proceeding of the 18th ACM
conference on Information and knowledge
management, pages 701-710, 2009.

[4] B. Gipp and N. Meuschke. Citation pattern matching
algorithms for citation-based plagiarism detection. In
Proceedings of the 11th ACM symposium on Document
engineering, pages 249-258, 2011.

[5] V. Govindaraju and K. Ramanathan. Similar
Document Search and Recommendation. Journal of
Emerging Technologies in Web Intelligence,
4(1):84-93, 2012.

[6] M. Henzinger. Finding near-duplicate web pages. In
Proceedings of the 29th international ACM SIGIR
conference on research and development in
information retrieval, pages 284—291, 2006.

[7] G. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. Proceedings of the
16th international conference on World Wide Web,
pages 141-149, 2007.

[8] O. Medelyan, V. Perrone, and I. H. Witten. Subject
Metadata Support Powered by Maui. In Proceeding of
the 10th annual international ACM/IEEE joint
conference on Digital libraries, pages 407—408, 2010.

[9] M. Pera and Y. Ng. Brek12: A book recommender for
k-12 users. In Proceedings of the 35th international
ACM SIGIR conference on research and development
in information retrieval, pages 1037-1038, 2012.

[10] A. Pereira and N. Ziviani. Retrieving similar
documents from the web. Journal of Web Engineering,
2(4):247-261, 2004.

[11] R. Shams and R. E. Mercer. Investigating Keyphrase
Indexing with Text Denoising. In Proceeding of the
12th annual international ACM/IEEE joint conference
on Digital libraries, pages 263266, 2012.

[12] L. Weng, Z. Li, R. Cai, Y. Zhang, Y. Zhou, L. T.
Yang, and L. Zhang. Query by document via a
decomposition-based two-level retrieval approach. In
Proceedings of the 34th international ACM SIGIR
conference on research and development in
information retrieval, pages 505-514, 2011.

[13] K. Williams and C. L. Giles. Near duplicate detection
in an academic digital library. In Proceedings of the
2013 ACM symposium on Document engineering,
pages 91-94, 2013.

[14] K. Williams, L. Li, M. Khabsa, J. Wu, P. C. Shih, and
C. L. Giles. A Web Service for Scholarly Big Data
Information Extraction. In Proceedings of the IEEE
International Conference on Web Services, 2014.

