
Scalability Bottlenecks of the CiteSeerX Digial Library
Search Engine

Jian Wu†, Pradeep B. Teregowda‡, Madian Khabsa‡, Eric Treece†, Douglas Jordan‡,
Stephen Carman†, Prasenjit Mitra† and C. Lee Giles†‡

†Information Sciences and Technology
‡Department of Computer Science and Engineering

University Park, PA, 16802, USA
jxw394@ist.psu.edu

ABSTRACT
As the document collection and user population increase,
the capability and performance of a digital library such as
CiteSeerX maybe limited by some bottlenecks. This pa-
per describes the current infrastructure of the CiteSeerX
academic digital library search engine, outlines its current
bottlenecks and proposes feasible solutions. These bottle-
necks exist in various components of the system including
hardware, web crawling, text extraction and storage. The
hardware bottleneck is the increasing difficulty to maintain
a cluster consisting of almost twenty physical servers. The
solution is to merge some servers and implement the whole
system under a virtual architecture. The web crawling bot-
tleneck is that the seed URLs are biased on on computer
science, information sciences, technology and related fields.
One of the approaches to balance the domain distribution
of our crawl repository, is to obtain seed URLs from generic
search engines. Another bottleneck is the average time to
extract text from the crawled documents. To reduce the
processing time, we have proposed a new extraction model
using message queues and multiple threads. Preliminary ex-
periments indicates that the average time to extract a docu-
ment can be reduced by an order of magnitude. The storage
bottleneck is that as the data repository size grows, a better
tool is required to manage the storage, transferring, sharing
and backing up of our files. Hadoop provides a promising
tool to parallelize data analysis and the Hadoop File Sys-
tem provides a solution for shared storage. All solutions to
the current bottlenecks are either under testing or on our
roadmap. Our indexing protocol does not have foreseeable
bottlenecks in the near future.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.3.7 [Digital Libraries]: System issues

1. INTRODUCTION
CiteSeerX is a digital library search engine that provides
free downloads of over two million documents. There are
over 32 million citations (over 9 million unique citations) and
about 5 million authors (over 1.6 million unique authors).
Besides paper downloads, this search engine also keeps track
of citation references for most of the papers. Based on these
citation references, it has built a large citation network. The
search engine is visited over two million times daily and most
of them are downloading activities.

The infrastructure of the CiteSeerX system is shown in Fig-
ure 1. It contains the following components: the web crawler,
the ingester, the database, the repository, the indexer and
the web application. The infrastructure in Figure 1 is im-
plemented on a cluster consisting of about twenty physical
servers installed with Red Hat Enterprise Linux 5 (RHEL 5).
The detailed description of the CiteSeerX can be seen in [7]
and [11].

Figure 1: The infractructure of the CiteSeerX
search engine.

CiteSeerX collects documents by automatically crawling the
web. It has a focused web crawler which performs a sched-
uled batch crawl on a weekly basis. The crawler downloads
between thousands and tens of thousands of documents each
day. In addition, with the CDI middleware [13], we are able
to crawl using a general web crawler such as Heritrix besides
the original dedicated crawler written in Python (here after
the SYZ crawler). The middleware also allows us to im-
port documents downloaded by FTP in a batch mode. For
example, the middleware is able to import 400,000 PDF doc-
uments in about 50 hours. Both the SYZ crawler and the
CDI middleware contain four filters that only keep PDF,



postscript and their zipped format documents.

Texts are extracted from downloaded documents to make
them searchable. The extracted texts are then parsed and
labeled based on a regular expression procedure. The titles,
authors, text bodies and citations are extracted and saved
as separate files. These files are compiled to a single XML
file for indexing. We use Solr for indexing and MySQL as
the database engine. The web application is deployed using
Tomcat. We also have two load balancing servers to make
the cluster highly available.

CiteSeerX has been growing steadily in the past years. The
number of registered users grew from about 6,000 in 2008
to over 40,000 in 2012 (Figure 2). The number of crawled
documents increased from less than two million to almost
eight million in five years (Figure 3). The total number of
documents has also increased from less than one million to
over two million (Figure 4). The traffic is also growing in
a modest rate. Figure 5 overlays the CiteSeerX traffic in
2011 and 2012. The figure shows that visits to our site have
increased by 1.3% (6,994,697 vs. 6,904,715) while unique
visitors have increased by 1.69% (4,897,548 vs. 4,816,145).
With the growing number of documents, users and traffic, it
is important to consider the scalability issues of our system,
to ensure that it achieves comparable or better performance.

Solr is an enterprise level search and indexing platform that
is built using Apache Lucene1. CiteSeerX uses Solr in a
distributed cluster across several different servers. These
servers replicate the index and balance the distribution of
traffic to the index. The index is searched via RESTful
requests made to the cluster, which returns JSON search re-
sults. This JSON response is then processed in Java servlets
and presented to the user. Currently, the index is able to
handle two million daily requests. Searching accounts for
roughly 31% of overall CiteSeerX traffic. The index is re-
quired by about 620,000 per day or 7 times per second on
average. This load is well below what the Solr is capable of
handling.

In addition, Solr is equipped to have easily configured repli-
cation and distribution of cluster nodes. In order to scale
the index further it would be logical to add more nodes to
the index clusters. This scaling would be accomplished by
adding a slave node into the Solr cluster, at which point
the master index would replicate the index over to the slave
node. However, since the index has not even began to slow
down from traffic this it would be a while before this solution
is necessary.

MySQL has been tested to work with large social network
websites such as Facebook [4] with proper configuration.
Currently, the size of the databases is about 50GB and is
saved in the disk. The reading and writing can be sped up
by using high speed storage devices such as solid state disk
or memory disk. However, the database has not been a bot-
tleneck for the searching performance overall performance.
Tomcat is also a enterprise level software that scales well
so it will not become CiteSeerX bottlenecks anytime soon.
The major bottlenecks are investigated and evaluated in the

1http://lucene.apache.org/

sections below in terms of hardware and software.

Figure 2: The number of registered accounts to Cite-
SeerX in the past five years. Each bar represents the
number at the end of that year.

Figure 3: The number of crawled documents in Cite-
SeerX in the past five years. Each bar represents the
number at the end of that year.

We do not see many publications talking about scalability
of a digital library search engine. Some work has focused on
one aspect such as the database [3] and another on search
[8].

2. SCALABILITY BOTTLENECKS OF Cite-
SeerX

CiteSeerX has several scalability bottlenecks in both hard-
ware and software. There are two problems in the hardware:
occasional hardware failures and computational capability.
The software bottlenecks lie in several aspects: web crawl-
ing, text extraction, and storage.



Figure 4: The number of ingested documents in
CiteSeerX in the past five years. Each bar repre-
sents the number at the end of that year.

Figure 5: CiteSeerX traffic in 2012 (blue) overlaid
with CiteSeerX traffic in 2011 (red).

2.1 Hardware Bottleneck
As CiteSeerX expands its service domains and enlarges its
document collection, the current hardware becomes a bottle-
neck to limit CiteSeerX on document processing and storage.
Currently, CiteSeerX applies a distributed cluster model in
which different modules are located on a number of physical
servers. The drawbacks of this model are two folds. On one
hand, system maintenance takes a significant overhead, in-
cluding replacing failed hard drives, RAID controllers, plac-
ing orders on new servers as well as re-installation at system
failure. This overhead will increase as the system grows
and may lead to higher cost in mechanical and software la-
bor. With CiteSeerX, full time reliability of the system is
required, while providing an architecture that can be ex-
panded on an as needed. At times, some of the components
may become unavailable, but the major parts of the system
can still be accessed.

This can be achieved through the use of a virtualized archi-
tecture, which is composed of three levels (Figure 6): the
storage level, followed by a processing level and finally an
operating system/application level.

The storage level is composed of several servers whose sole

database web repository index extraction 

processing 1 processing 3 processing 2 

Storage 2 Storage 1 

Figure 6: The structure of the three-level virtualized
structure as a solution to the hardware bottleneck.

purpose is to act as storage for the virtual machines. The
processing level is composed of multiple big servers each of
which contains more than ten cores of processors and up to
100GB memory. These servers are connected to the storage
level. The system/application level consists of various of
virtual machines running on the processing level while data
and the virtual machine themselves are stored on the storage
level. A hypervisor takes care of the interactions between
the storage and the processing level.

The advantages of this architecture in regards to CiteSeerX
are three folds. First, this increases the server reliability.
If one processing server fails, the hypervisor can respond
to this and move the virtual machine to another processing
server. We have noticed minimal to no downtime in testing
environments when this occurs. The second advantage is
a smaller footprint in the datacenter which equates to less
physical space used in racks as well as a lower operating
temperature and thus more efficient use of electricity, such
as reported in [6] and [5]. This smaller footprint allows us
to add physical servers to our cluster should we need more
processing power or storage. We then can move more mis-
sion critical VMs to the newly added physical servers while
keeping the old servers for less critical works such as re-
search or experiments. The third advantage is a reduction
in time to setup a new server. CiteSeerX has been running
on twenty or more physical servers in current and past in-
carnations. While this has been scalable, the scalability has
been greatly limited by time as well as cost constraints. By
using a template-based workflow in a virtualized architec-
ture, setup time has been reduced from a day, not including
the time for a vendor to deliver a system, to a matter of
minutes. This allows CiteSeerX features to be added in a
rapid fashion. As the limit of the chosen hypervisor allows a
maximum of 2,000 physical hosts [12], the virtual machines
at the processing level, a limit on scalability in the fore-
seeable future is not expected. Should CiteSeerX require
a more processing or storage space in the future, physical
servers can be added to the cluster with no downtime to the
system.



2.2 Web Crawling Bottleneck
CiteSeerX uses a dedicated multi-thread focused crawler,
citeseerxbot, written in Python (the SYZ crawler). Besides
components of a general web crawler, the SYZ crawler ap-
plies a series of filters, which are specially customized for the
purpose of obtaining academic papers in PDF and postscript
files. We apply a breadth-first crawling policy and crawl up
to a depth of two (not including the seed level). The size
of each downloaded document is limited to 100-megabytes,
which covers almost all academic papers and the majority
of books. If a document resource passes all filters, its URL
information is saved to the document table in the crawl
database. The document itself and the associated metadata
files in XML format are saved to the crawl repository.

As argued by [14], providing high quality seeds is essential to
focused crawlers, so we carefully select and rank seed URLs
from our crawling history based on the document numbers
and citation rates. Following the work in [14], we have
constructed a revised whitelist which contains more than
120,000 seed URLs, selected from more than 700,000 can-
didate seed URLs. All URLs in the revised whitelist are
verified to be alive as of April, 2012. The domains are not
in our blacklist and are ranked by the number of “useful”
documents linking to them. We classify a document to be
useful if it is identified to be an academic document by the
ingestion system.

However, due to the initial seed selection of the CiteSeerX
crawler, most of our seed URLs are in computer science re-
lated domains. For example, homepages of faculties and re-
searchers in computer or information science departments.
We have a large document collection in chemistry, math-
ematical and physical subjects, but Medical sciences, eco-
nomics and finance only take up a small portion. The do-
main bias of the seed URLs is a bottleneck of the Cite-
SeerX, which significantly limits the maximum number of
documents we can crawl each day. The user population is
also limited to computer and information related fields.

The key to remove this bias is to import more seed URLs in
other domains. These seed URLs can be obtained by tak-
ing advantage of general search engine APIs, e.g., the Bing
API. Academic documents crawled by these general search
engines are not focused on particular fields, so their docu-
ment collection provides is more complete. These document
URLs can be obtained by searching a set of keywords in the
fields that CiteSeerX is short of. Alternatively, we can just
search stop words and the content type to obtain document
URLs in random research subjects. Another way is to di-
rectly import documents to the crawler database by down-
loading FTP websites. For example, we have successfully
imported over 400,000 PDF papers from PubMed using the
CDI middleware. Removing the domain bias and setting up
a complete document collection is essential to attract more
users and increase the cite visibility of the site.

2.3 Extraction Bottleneck
A necessary step to make documents searchable is to extract
text from the PDF/postscript files. This step is before the
ingestion so a slow extraction can significantly lag the inges-
tion behind the crawling and becomes a bottleneck. The cur-
rent extraction applies a batch processing model, in which

the program first retrieves a list of un-ingested documents
from the crawler database using an API. The actual crawled
documents are then retrieved from the crawler repository in
a shared storage. A text extractor is then used, e.g., PDFlib
TET PDF IFilter, to extract text out of the PDF files. A
small portion of downloaded documents are in postscript
format, which can be extracted by the ps2text tool. Docu-
ments whose text cannot be extracted are dropped off. The
text documents are examined by a regular expression based
filter to identify whether it is academic related. Documents
that pass this filter are then processed by multiple parsers
to extract metadata, including titles, authors, citations and
the text bodies.

The current metadata extraction system has several limita-
tions. First, the document processing procedure is a pipeline
operation, i.e., each sub-procedure operates in serial and the
output of one stage becomes the input for the next sub-
procedure, which leads to limited throughput. In Figure 7,
we present a diagram which shows the processing time for a
typical document. The total amount of time to extract text

Figure 7: The time distribution of extracting a typ-
ical document.

from one PDF file is about six seconds, which means that it
can extract about 14,400 documents per day. While this is
comparable to the number of documents we crawl daily at
present, it will lag behind our future crawling. In addition,
the text extraction is a semi-automated batch process, so it
requires a lot of manual operations to run commands. Due
to the code complexity and limited threading support, it is
not straightforward to parallelize these processes. Second,
documents to be processed have to be local to the modules.
These limitations imply that merely improving the compu-
tational resources such as the memory and processor speed
does not significantly improve the throughput of the process.

To solve this issue, we designed a new document extractor
by implementing two major improvements. First, the new
extractor makes use of font and layout information embed-
ded in PDF documents. The new extractor also utilizes a
random forest classifier, which uses features generated from
content, layout, font and domain information from dictio-
naries such as author names, title keywords, geographical
entities, academic entities and stopwords. The new code



achieves a comparison quality to the current code. Second,
we develop a message oriented middleware for the extrac-
tion. Message oriented middleware offers several advantages
in building distributed system involving heterogeneous com-
ponents, networks and infrastructure. With the middleware,
once the crawler fetches a document from the web, it posts a
message to the extractor queue. This message points to the
URL of the document. The extractor then consumes this
message from the queue and process the document, generat-
ing an ingestable document on success. A message of com-
pletion is posted onto the ingestion queue, which is handled
by the ingestion system. Many of the performance issues
are related to I/O operations, shared objects and network
issues, which are independent processes. This allows us to
take advantage of parallelizing the application to boost per-
formance. Figure 8 presents the average processing time
for each document as the number of processing instance in-
creases from 2 to 16, which indicates that the mean pro-
cessing time is significantly reduced by applying multiple
threads [10].

Figure 8: The average time used to process each doc-
ument as a function of number of thread instances.

2.4 Storage Bottleneck
The current storage architecture of the system is based on
having two repository servers, with one as a backup of an-
other. The repositories are running on the Global File Sys-
tem (GFS) on top of the RHEL and are accessed for reads
and writes. The read access happens when a document is re-
quested for download where the web server accesses the files
on GFS and streams it through the web. The writes happen
when new documents are ingested or when users enter man-
ual corrections to correct document metadata. When that
happens, the updates are inserted into the database, and
the system creates an XML file describing a new version
and write it to the repository. While this file system works
for the current production, we are expecting some poten-
tial issues that may affect the data service as the CiteSeerX
document collection grows and/or the platform is upgraded.

One of the problems related to the file system in the current
deployment is that the storage module occasionally causes
the entire application to lock, slowing down CiteSeerX sig-
nificantly. These locks happen when the system is trying to
write an XML file triggered by a manual correction while
an ingestion process is adding new documents. We have
observed that traffic spikes tend to aggravate the locking
problem when combined with ingestion and manual correc-

tions. Our analysis and debugging traced the problem back
to the file system. While we are coping with these problems
for now as our repository size has just surpassed 2 million
documents, this can not be a tolerable issue as the repository
continues to grow.

There are several approaches to be pursued for handling the
aforementioned scalability problems in the current reposi-
tory architecture. A simple fix is to use a single large repos-
itory, deployed using RAID 5, which can scale to support all
the concurrent reads and writes. The direct benefit is that
it provides the sufficient bandwidth required by the digital
library. Striping the data across many disks would also en-
hance the bandwidth. While this approach is the simplest
to install and maintain, the cost does not scale linearly with
the storage. In addition, it would be a single point of failure
in case the RAID controller malfunctions, which we experi-
enced on a couple of occasions.

Teregowda [10] proposed a web API to access the file system
where read and write requests are handled by a web server,
therefore shifting the synchronization responsibility to the
API itself rather than the file system. The API would pro-
vide write and read operations to the caller, while it handles
any possible synchronization issues. This approach would
provide a layer of abstraction for the storage system, and
allow using other file systems underneath without modifica-
tions to the code base. However, it requires a careful de-
sign and implementation at the API level to ensure that the
synchronization problems do not merely travel from the file
system level to the API level without solving the problem in
hand.

Another promising approach is to use the Hadoop Distributed
Filesystem (HDFS)2 which uses commodity hardware to cre-
ate multiple replicas of the same document on different ma-
chines [9]. The HDFS has been under active development in
the open source community, as well as by many consulting
companies that provide enterprise level support, i.e. Cloud-
era3. Under this approach, the application would deal with
a single repository, which is on top of HDFS, and the reads
and writes are handled by the filesystem itself. To the best of
our knowledge, HDFS does not exhibit the locking behavior
of GFS as the number of transactions increase, though we
have not benchmarked it on our repository yet. The down-
side of using HDFS is the loss of physical storage to provide
redundancy. Effectively, when HDFS uses 3 nodes replica,
only one third of the storage is available to the application,
and the other two thirds are used for replication.

Currently, we are implementing the API approach to provide
scalable storage, while HDFS is our next step in the direction
of future work.

3. DISCUSSION AND SUMMARY
In this paper, we reviewed the infrastructure of the Cite-
SeerX digital library search engine and addressed several
bottlenecks which can potentially affect CiteSeerX perfor-
mance as the numbers of documents and users grow. We
propose solutions to overcome the bottlenecks. Some of the

2http://hadoop.apache.org/
3http://www.cloudera.com/



solutions are tested and advantages over the current model
are reported. For example, to break the extraction bottle-
neck, we have proposed a new extraction system using more
text features and a message queue. The text extraction is
also parallelized to speed up the processing. The new ex-
traction proposed out-performs the current one in terms of
both quality and speed.

The proposed solutions to other bottlenecks are either un-
der testing or on the roadmap and will be fully tested before
putting it into production. For example, the hardware bot-
tleneck can be solved by implementing the entire system to
a virtual infrastructure instead of a physical cluster. Part of
the CiteSeerX components have been successfully migrated
to the VM infrastructure such as the web crawler. This so-
lution can significantly reduces the server maintenance over-
head, saves costs and make it easy to expand by adding new
storage and processing servers. The crawler bottleneck is
the seed URL domains. We need to obtain seed URLs from
generic search engines to obtain a complete document set.
The file system of the current storage system need to be
upgraded and Hadoop file system is a promising solution.

As a traditional relational database management system,
MySQL is still sufficient for our current scale of data. Al-
though it has not become a major bottleneck for our search
engine, it is shown to be a bottleneck for our crawl his-
tory analysis. A non-relational database solution, such as
HBase, is considered to be a replacement candidate when
the number of searchable papers grows by a factor of ten.
HBase is part of the Apache Hadoop project, which mimics
Google’s Bigtable [2]. Once integrated with Hadoop, HBase
has shown to a boost to large scale data analysis, which is al-
ready seen in Facebook’s real-time messaging system [1]. We
are investigating the feasibility to implement this database
with other components of CiteSeerX.

4. ACKNOWLEDGMENTS
This work is financially supported by NSF grant 0000-0000.

5. REFERENCES
[1] D. Borthakur, J. Gray, J. S. Sarma,

K. Muthukkaruppan, N. Spiegelberg, H. Kuang,
K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer. Apache hadoop goes
realtime at facebook. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, SIGMOD ’11, pages 1071–1080, New York, NY,
USA, 2011. ACM.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[3] J. Chmura, N. Ratprasartporn, and G. Ozsoyoglu.
Scalability of databases for digital libraries. In
Proceedings of the 8th international conference on
Asian Digital Libraries: implementing strategies and
sharing experiences, ICADL’05, pages 435–445, Berlin,
Heidelberg, 2005. Springer-Verlag.

[4] Facebook. Facebook at 13 million queries per second
recommends: Minimize request variance. MySQL Tech

Talk, November 2010.

[5] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A.
Bhattacharya. Virtual machine power metering and
provisioning. In Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, pages
39–50, New York, NY, USA, 2010. ACM.

[6] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng,
and T. D. Nguyen. Reducing electricity cost through
virtual machine placement in high performance
computing clouds. In Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 22:1–22:12, New York, NY, USA, 2011. ACM.

[7] H. Li, I. G. Councill, L. Bolelli, D. Zhou, Y. Song,
W.-C. Lee, A. Sivasubramaniam, and C. L. Giles.
Citeseerx: a scalable autonomous scientific digital
library. In Proceedings of the 1st international
conference on Scalable information systems, InfoScale
’06, New York, NY, USA, 2006. ACM.

[8] W. Meng, Z. Wu, C. Yu, and Z. Li. A highly scalable
and effective method for metasearch. ACM Trans. Inf.
Syst., 19(3):310–335, July 2001.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[10] P. B. Teregowda. COMPUTATIONAL ISSUES IN
DIGITAL LIBRARY SEARCH ENGINES. PhD
thesis, Pennsylvania State University, 2012.

[11] P. B. Teregowda, I. G. Councill, R. J. P. Fernández,
M. Khabsa, S. Zheng, and C. L. Giles. Seersuite:
developing a scalable and reliable application
framework for building digital libraries by crawling the
web. In Proceedings of the 2010 USENIX conference
on Web application development, WebApps’10, pages
14–14, Berkeley, CA, USA, 2010. USENIX
Association.

[12] VMware. VMware vSphere 5.0 Configuration
Maximums. VMware, Inc., 3401 Hillview Ave., Palo
Alto, CA 94304, 2011.

[13] J. Wu, P. Teregowda, M. Khabsa, S. Carman,
D. Jordan, J. San Pedro Wandelmer, X. Lu, P. Mitra,
and C. L. Giles. Web crawler middleware for search
engine digital libraries: a case study for citeseerx. In
Proceedings of the twelfth international workshop on
Web information and data management, WIDM ’12,
pages 57–64, New York, NY, USA, 2012. ACM.

[14] J. Wu, P. Teregowda, J. P. F. Ramı́rez, P. Mitra,
S. Zheng, and C. L. Giles. The evolution of a crawling
strategy for an academic document search engine:
whitelists and blacklists. In Proceedings of the 3rd
Annual ACM Web Science Conference, WebSci ’12,
pages 340–343, New York, NY, USA, 2012. ACM.


