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ABSTRACT
We investigate a variant of the problem of automatic keyphrase
extraction from scienti�c documents which we de�ne as Scienti�c
Domain Knowledge Entity (SDKE) extraction. Keyphrases are noun
phrases important to the documents themselves. In contrasxt, an
SDKE is text that refers to a concept and can be classi�ed as a
process, material, task, dataset etc. A SDKE represents domain
knowledge, but is not necessarily important to the document it is in.
Supervised keyphrase extraction algorithms using non-sequential
classi�ers and global measures of informativeness (PMI, tf-idf) have
been used for this task. Another approach is to use sequential
labeling algorithms with local context from a sentence, as done in
the named entity recognition. We show that these two methods
can complement each other and a simple merging can improve the
extraction accuracy by 5-7 percentiles. We further propose several
heuristics to improve the extraction accuracy. Our preliminary
experiments suggest that it is possible to improve the accuracy
of the sequential learner itself by utilizing the predictions of the
non-sequential model.
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1 INTRODUCTION
Keywords and keyphrases are ubiquitous in digital library search
engines. �ey provide a high-level topical description of documents
and are very useful in data engineering, e.g., [4]. Considerable e�ort
has been spent on automated methods for keyphrase extraction
from scienti�c documents. Recent work includes unsupervised
systems such as RAKE [8] and supervised systems such as Maui [7],
and CeKE [1]. RAKE was tested on a dataset of 500 abstracts from
journal papers in Computer Science and Information Technology.
�e ground truth of Maui was adopted from user tagged documents
in CiteULike. CeKE used author-input keywords from a corpus of
WWW and KDD conference proceedings.

Keyphrases provide a succinct summary of a document. But they
lack concrete content descriptors of the text by which readers can
have a be�er understanding of the concepts in a scienti�c document,
such as materials, methods, tools, datasets, problems, and processes.
As such, we de�ne a new type of textual entity (phrase) for scienti�c
documents which we name Scienti�c Domain Knowledge Entity. An
SDKE represents domain knowledge. For example, in Computer
Science papers, “Python”, “Apache Solr”, “Stanford CoreNLP”, and
“MySQL” are tools, “WebKB” and “DBLP” are datasets, “author name
disambiguation”, and “tree traversal” are problems; in Materials
Science, “Alloy” and “Mg” are materials. Some of these can be
keyphrases in the traditional sense, but these phrases provide a
greater range of semantics. Consider a sentence from our training
set:

Each micro element is divided into spatially-ori-
ented bins in the y-direction in order to resolve
the velocity and shear-stress pro�les.

�e underlined phrases are annotated as SDKEs.
We discriminate SDKEs from traditional keyphrases because

they are di�erent in both semantic density and what they represent.
For example, the keyphrases used in [1] are assigned by authors.
�ere are on average 4–5 keyphrases per document. �e keyphrases
used in [7] are tagged by individual users with about 26 keyphrases
per document. �e dataset we use in this study was adopted from
SemEval 2017 challenge Task 10. �is dataset was labeled by neither
of the methods previously described. �ere are 6338 keyphrases
identi�ed among 350 documents in the training set, which is 18
keyphrases per document. Note that each document is just one
paragraph of text between 60 and 264 words, so the labels are much
denser. We adopted the SemEval 2017 annotation as the ground
truth because it is the closest dataset for our purposes. Traditionally,
keyphrases provide top-level description of the main ideas of a
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document. In contrast, SDKEs give a �nd-grained description of
the document body.

�e�rst two SDKEs in the example above are traditional keyphrases,
i.e., important and informative noun phrases. �e last one is not
because it is not a noun phrase, and the word “velocity” is not
important without considering in context the word “resolve” and
“shear-stress”. �us we explore a hybrid approach where a combina-
tion of non-sequential and sequential classi�ers can be integrated
to extract relevant SDKEs. We believe these methods should be
complimentary: the sequential classi�er should capture the local
dependence among the words while the non-sequential one should
capture the global informativeness.

We use an unsupervised approach as a baseline to extract candi-
date phrases which are then �ltered by a linear kernel SVM that
utilizes global (calculated from the whole document) features. A
linear-chain conditional random �eld[6] using word context and
shallow syntactic features is used to learn the contextual depen-
dence. As expected, these models learn di�erent types of phrases.
A simple merging of their results improves the extraction accuracy
by 5-7%. Employing a set of heuristics we achieve a further increase
of 5% in accuracy. Among the features used by the SVM, tf-idf turns
out to be the most important and therefore is further used in the
design of heuristics. While the task is modeled as extracting SDKEs
from a paragraph of a paper and not the full text, we observe that
the availability of the full text leads to be�er heuristics, improv-
ing the extraction accuracy. We also investigate whether one can
use the SVM predictions directly to improve the accuracy of the
CRF. While our initial resuls �nd no such evidence, we believe this
should be further investigated.

We only focus on the extraction of the phrases and not the clas-
si�cation (inferring that the keyphrase is of type Material, Process,
Dataset). While joint extraction and classi�cation is indeed a more
interesting problem, that is the scope of another paper.

2 RELATEDWORK
Few papers have addressed the problem of semantic scholarly entity
extraction. FacetGist [10] is a framework for extracting key facets
of a technical document, such as application, technique, evaluation
metrics, and dataset. �e documents are abstracts from 51,897
DBLP and 11,203 ACL papers. �e entities extracted are all noun
phrases. Other work by Gupta & Manning[5] extracted three types
of information from the abstracts of 474 NLP papers, namely the
focus, the domain of application, and the techniques. �e extraction
is done by semantic pa�ern matching on the dependency trees of
the sentences in an article’s abstract. While some of the extracted
phrases are labeled as NN (noun compound modi�er dependency),
some start with gerunds (i.e., V-ing) or even prepositions (e.g., for).

While there are many non-sequential keyphrase extractors, we
investigate three popular ones to use on scienti�c documents:
RAKE, Maui, and CeKE. RAKE[8] is an unsupervised approach
that uses centrality measures on word collocation graph to produce
a ranked list of keywords. Maui’s architecture resembles that of
many other supervised keyphrase extraction systems[7]. It �rst de-
termines textual sequences de�ned by orthographic boundaries and
splits these sequences into tokens. Next, machine learning models
are built to calculate probabilities that the candidate is indeed a

keyword. CeKE is another supervised machine learning approach.
In addition to the existing features for keyphrase extraction, such
as tf-idf and POS tags, it uses citation network based features. �is
makes it non-trivial to implement on our data. We applied RAKE
and Maui on a small sample in the training set, and found that they
both deliver extremely low recall and precision.

Gollapalli et al. trained a CRF using orthographic and shallow
syntactic features [3] to extract keyphrases. Our work is di�erent
in two aspects. First, the non-sequential methods in their work
is unsupervised, where we use supervised methods trained on the
ground truth data. �is makes a signi�cant di�erence in terms of
precision, and the F1-measure increases by 6%. In contrast, their
F1-measure[3] increases by only about 1% for one dataset, and
even decreases for the other dataset. Second, their ground truth[3]
was adopted from Caragea[1] for which keyphrases are assigned
by authors. In contrast, our ground truth comprised of semantic
entities (see Section 3.1 for their di�erences).

3 DATASET AND EVALUATION PROTOCOL
3.1 Dataset
We use the dataset released in the SemEval2017 competition Task
10 (i.e. “Extracting Keyphrases and Relations from Scienti�c Pub-
lications”)∗. �is corpus, collected from ScienceDirect, consists of
500 passages, each of which is in a journal article in Computer Sci-
ence, Material Science, or Physics. �e entire dataset was divided
into training, development and testing datasets. Here, we refer to
each passage as a document because labeling and prediction are
only performed on passages, although the full text is provided for
training and development datasets. �ere are 350 documents in
the training set, 50 in the development set, and 100 in the testing
set. Because the gold standard and full text are not released for the
testing set, for this work we treat the development set as the testing
set. �e longest passage in the training set contains 264 words and
the shortest contains only 60 words. �ere are in total 6732 phrases
labeled in the training set and 1128 phrases in the testing set.

Consider the sentence:
We consider the shape optimisation of two- and
three-dimensional solids by combining multireso-
lution subdivision surfaces with immersed �nite
elements.

the underlined spans are annotated as SDKEs and their character
boundaries [(16,34),(38,71),(75,121),(127,151)] with respect to the
beginning of the passage are given in the corresponding annotated
�le†.

3.2 Evaluation
Our evaluation protocol matches that of the previously mentioned
competition. For each paragraph, our system produces an anno-
tated �le with the character spans for the phrases we identify as
SDKEs. If a predicted phrase span is exactly the same as one in the
gold standard �le, we consider that a match. Note that the eval-
uation protocol is rather strict. In many cases we extract SDKEs

∗h�ps://scienceie.github.io/
†�e gold standard provides phrase types as well, but in this work, we focus on

extraction only.



HESDK: A Hybrid Approach to Extracting Scientific Domain Knowledge Entities JCDL’17, June 2017, Toronto, Canada

that enclose gold standard phrases, but they are considered as mis-
matches. To evaluate the systems, precision, recall, and F1-measure
are calculated over the entire set of gold standard phrases and the
extracted phrases. Precision is de�ned as N (match)/N (extracted).
Recall is de�ned as N (match)/N (gold standard). F1-measure is de-
�ned as the harmonic mean of precision and recall. We train all our
models on the training data and report the results on the testing
data.

4 KNOWLEDGE EXTRACTION
Our �rst approach is unsupervised with a high recall but low preci-
sion. However, it provides a very strong baseline. Next, we �lter
the candidate phrases generated by the unsupervised approach by
employing a supervised classi�er. To exploit the sequential nature
of the problem we design a linear chain CRF, which extracts longer
phrases with high precision, albeit with a lower recall. Finally, we
merge the approaches to improve the F1-measure. We also propose
heuristic rules that can improve the classi�cation accuracy.

4.1 EKE: NP-Chunking Based Extractor
Our unsupervised entity knowledge extraction algorithm (EKE) is
based on a keyphrase extraction algorithm initially used on scien-
ti�c papers for ranking domain experts[2]. Given a span of text,
the algorithm �rst tokenizes it with a list of regular expressions.
�e token list is then tagged by the Stanford POS tagger. Based
on the POS taggers, a grammar based chunk parser is applied to
separate two types of chunks: (1) nouns and adjectives, terminated
with nouns, expressed as

NBAR: <NN.*|JJ><NN.*>

and (2) two chunks of (1) connected with a preposition or subordi-
nating conjunction, e.g., of/in/by, expressed as

NP: <NBAR><IN><NBAR>

Typically in traditional keyphrase extraction both original forms
(e.g., capitalization, plural forms) and positional information for
extracted keyphrases are lost. To maintain our evaluation protocol,
we modi�ed EKE to preserve them. Although it is a simple model,
EKE outperforms an NP chunker using a MaxEnt model trained on
CoNLL data [11]. When tested on our training set, EKE reaches a
recall of 48.4% and a precision of 26.08%, while the MaxEnt NP chun-
ker achieves a recall of 20.5% and a precision of 9.87%. �erefore,
we use it as our baseline unsupervised method.

4.2 Supervised EKE
EKE achieves a relatively high recall but low precision. Intuitively,
the precision can be improved by �ltering out unimportant phrases
in EKE results. For this, we use a supervised approach where a
phrase from EKE is marked true if it appears in the gold standard
else false.

�ree metrics are typically used to measure the importance of
a word in a document: frequency of the word in the document
(tf), inverse document frequency or the number of documents the
word appears in (idf), and a combination of these measures (tf-idf).
PMI score for a phrase gives the probability of the collocation of
the words, i.e., whether the occurrence of the words in the phrase
is random or it satis�es the criteria of non-compositionality, non-
substitutability, and non-modi�ability. Mathematically, for a bigram

(x ,y), the PMI score is calculated as p (x ,y)/p (x )p (y). �e same
idea can be extended to n-grams where n > 2.

Speci�cally, for each phrase extracted in the last step, a feature
vector is created from the PMI score of the phrase and the tf-idf
values of the words composing it. Phrases can be represented as
vectors of tf-idf values of their words, but these vectors can have
di�erent lengths. To apply a classi�cation algorithm, they must
be converted into a �xed length feature vector. We achieve this
by creating a vector with the dimension of 3n + 1 where n is the
maximum number of words in a phrase in our data. �e �rst n
dimensions store tf values of the words, the second and third n
dimensions store the idf and tf-idf values respectively. For phrases
with less than n words, this vector is padded with median tf, idf and
tf-idf values calculated from the corpus. �e last dimension stores
the PMI value for the phrase, which is a scalar. A linear kernel SVM
is used as the classi�er.

4.3 Sequential Labeling of SDKEs with CRF
As shown previously, most non-sequential keyphrase extractors
that focus on language constituents such as noun phrases would
fail to learn contextual cues. To address this we propose a linear
chain conditional random �eld (CRF).

Each word in the text is annotated as the beginning of an SDKE
(B), inside (I) or outside (O) of it. �is formulation is known as
B-I-O encoding and has been previously used in similar tasks such
as named entity recognition and keyphrase extraction [3]. Given an
input sequence of words or tokens in a sentence, the goal of the CRF
is to learn the sequence of hidden variables, namely, the B-I-O tags
and predict the same tags on a previously unseen token sequence. A
linear chain CRFmodels Pr(y|x), where y is a sequence of tags and x
is the input sequence of tokens. K feature functions ( f 1, f 2, ... f K )
are de�ned such that each function maps a sequence and a token
index to a real number (f k (y,x , i ) ∈ R.). �e global feature vector
is de�ned as F(y, x) = ∑i < f 1 (y,x , i ), ..., f K (y,x , i ) > [9]. �e
conditional probability distribution for a sequence pair (y, x) is
given by Prλ (y|x) ∝ exp (λ.F(y|x)), where λ is the global weight
vector. We use a python library‡ for the implementation of the
CRF. �e weight vector λ is learned by minimizing likelihood on
the training data using a quasi-Newton algorithm (Limited memory
BGFS). During inference, the learnt weight vector can produce the
probability Pr(y|x) for any tag sequence y on an input sequence
x. �e most likely sequence (having the maximal probability) is
chosen by a dynamic programming approach known as the Viterbi
algorithm.

�e lexical and syntactic features used for the CRF are motivated
by previous work on key phrase extraction [3]. Some of the SKDEs
(speci�cally, materials) are chemical name and formulae, therefore,
some of our features are borrowed from cheminformatics literature
as well. Brie�y, the most important features are: 1. �e word
itself; 2. Words within a boundary of two words, both forward and
backward (to utilize the context); 3. Part of speech and chunk tags;
4. �e su�x of the word (SKDEs tend to end with su�xes “ion”
and “ing” and “ons”). Due to space limitations, we refrain from
reporting all features and their motivations. Note that pertaining

‡h�ps://pypi.python.org/pypi/sklearn-crfsuite

https://pypi.python.org/pypi/sklearn-crfsuite


JCDL’17, June 2017, Toronto, Canada Wu et al.

to the formulation of our CRF the feature functions are calculated
for each “token” or word.

4.4 Combining CRF and Supervised EKE
Will a non-sequential classi�er (e.g., SVM) and a sequential classi�er
(e.g., CRF) complement each other for this task? To answer this, we
compare precision, recall, and F1-measure of individual approaches
against the results of the merged model. Merging is performed
by directly combining results from each approach and removing
duplicates.

As can be seen from Table 1, supervised EKE improves the preci-
sion of unsupervised EKE, while reducing the recall, but the overall
the F1-measure increases by a signi�cant margin. As expected,
the CRF has the best precision among the extractors. When we
combine the CRF results with the supervised EKE results, we can
see the recall improves by 16%, indicating that these methods are
complementary. To further improve the F1-measure, we propose

Table 1: Comparison of HESKD against baselines.

Approach Precision Recall F1-measure
EKE 26% 54% 35%
Supervised EKE 42% 40% 41%
CRF 46% 33% 39%
CRF + Supervised EKE 39% 56% 46%
HESDK 46% 56% 50%

two heuristic rules. We observe that the CRF has a higher precision,
therefore, only the �rst �ltering heuristic is applied to both the CRF
and the supervised EKE results, the rest are applied just on EKE
results. �e extractor with the combination of supervised EKE, CRF
and these rules are referred to as HESDK (Table 1).
• Punctuation Based Filtering: Presence of punctuationmarks such

as comma or semicolon at the end or unclosed braces indicates
incompletion, therefore, phrases with this pa�ern are removed.

• One Word Phrase Filtering: A scienti�c concept phrase ideally
should have more than one word. However, certain words such
as acronyms, chemical names, formulae are usually important.
�erefore, they are identi�ed by regular expressions and not re-
moved, even if classi�ed as false by EKE. Also, single words with
a tf-idf value above a threshold (determined from the training
corpus) are retained.

4.5 Discussion
In many cases, a long SDKE is a combination of phrases extracted
by an EKE. For example, in the sentence “From a practical point
of view, we have endowed the weighted additive model with a
distance function structure…”, EKE extracts “weighted additive
model” and “distance function structure”. In the training set, we
have the information whether an EKE phrase is inside, outside
or an exact match of a gold standard phrase. We can train a non-
sequential classi�er to predict the same information on the test data.
However, directly using this information will cause over-��ing
because on the test data the classi�er results will be inaccurate.
�erefore, we train the classi�er using a probabilistic formulation.
As our feature functions are de�ned for each word in a sequence, if
a word in a training sentence is not inside an EKE phrase, the vector

is [0.5, 0.5], i.e., drawn from a uniform distribution. Otherwise, the
distribution is biased. If it belongs to an EKE phrase that is inside
or exact match to a gold standard phrase, it is [0.5+ ϵ, 1− (0.5+ ϵ )]
else [1 − (0.5 + ϵ ), 0.5 + ϵ], where ϵ ∼ Uniform(0.5, 1). �e non-
sequential classi�er predicts the same probability distribution for
EKE phrases extracted from the test data. While this modi�cation
improves results signi�cantly in the training set, in the test set the
improvements in the CRF results are marginal. We a�ribute this
to the low prediction accuracy of the non-sequential classi�er in a
multi-class se�ing, which can be further investigated in the future.

5 CONCLUSION AND FUTUREWORK
Scienti�c Domain Knowledge Entities are phrases that represent
concepts in a scienti�c document. In this paper, we propose two
separate classi�ers to extract them from the text of a paper: a
non-sequential classi�er learning the informativeness of a phrase
globally and a sequential classi�er learning the same utilizing the lo-
cal context. We show they can be combined using a hybrid method
(HESDK) to improve the accuracy of extraction. Preliminary ex-
periments suggest that informativeness measures can be directly
embedded in the sequential model itself; results we hope to further
validate.
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