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ABSTRACT
Named entity recognition has been extensively studied in the past

decade. The state-of-the-art models, trained on general text such as

Wikipedia articles and newsletters, have achieved F1 > 0.90. Entity

types are focused on people, location, organization, etc. However,

entity recognition from domain-specific text, in particular research

papers, is still challenging. In this paper, we perform a comparative

study of sequential tagging methods on this task using a manu-

ally curated corpus from biomedical papers on Lyme disease. Each

model we compare consists of a non-sequential classification and

a sequential-tagging component. In this pilot study, we freeze the

non-sequential component to study how the sequential tagging

methods perform with different models including the conditional

random field (CRF) and bidirectional long short-term memory (BiL-

STM). The results shed light on the importance of pre-trained word

embeddings such as ELMo for relatively small training samples, the

roles of attention mechanism, and the residual unit. BiLSTM with

attention+residual+ELMo achieves the best performance in recog-

nizing entity strings. CRF with enriched features achieves the best

performance in recognizing entity mentions and their positions.
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tion.

KEYWORDS
digital library, entity recognition, conditional random field, long
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1 INTRODUCTION
Named entity recognition (NER) is a fundamental task in infor-

mation extraction that seeks to extract named entities from un-

structured text and classify them into predefined categories. The

outcome can be utilized for many downstream applications such

as constructing knowledge bases, data linking, and question an-

swering. In the past decade, NER has been extensively studied

based on models trained on general text, such as Wikipedia arti-

cles and newsletters, e.g., [14]. The most extracted entities fall into

predefined categories including but not limited to people, organi-

zation, location, time expression, and monetary values. Although

the general NER has achieved remarkable accuracy [14, 15], entity

recognition from domain specific text, represented by scholarly

papers published in research venues, is still challenging. Since the

BioNLP shared task in 2004, much effort has been put on identifying

DNA, RNA, cell line, cell type, and protein in biomedical papers. In

this paper, we conduct a comparative study of sequential tagging

models on domain knowledge entity extractions from biomedical

papers on Lyme disease. Our research question is: how do differ-
ent sequential tagging approaches, with recently proposed boosting
mechanisms, perform in extracting domain knowledge entities?

We first define domain knowledge entities (DKEs), best described

as noun phrases (NPs) representing domain knowledge of interest.

DKEs are different from keyphrases [8], generally defined as impor-

tant phrases or concepts in a paper. Keyphrases provide high-level

description of a paper but DKEs can be at low-levels. For example,

the article titled “Lyme disease: A rigorous review of diagnostic cri-

teria and treatment” [3] has 4 keyphrases. However, the following

sentence contains 6 DKEs, marked by underlines.

“Spirochetes with similar morphology, protein profile and

antigenic determinants were detected in Ixodes ricinus ticks

from Switzerland and Ixodes pacificus ticks from Oregon

and subsequently in Ixodes persulcatus ticks in Russia. ”
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Figure 1: The general architecture of the entity extractors,
including a non-sequential classifier and a sequential tagger.
The results are merged and a rule-based filter is applied.

DKEs have been found useful in detection of fake scientific news

[10], because they represent unique knowledge in a certain domain

and a combination of them can be good identifiers of text snippet

for research works. DKEs in medical science were extracted to

generate knowledge triples and construct knowledge graphs from

Electronic Medical Record (EMR) [5].

Sequential tagging can be used for recognizing DKEs from un-

structured text. In this paper, our comparison is focused on condi-

tional random field (CRF), bidirectional long-short term memory

(BiLSTM), and their vaiants. We do not compare Hidden Markov

Model (HMM) because CRF has already shown advantages over

HMM in many sequence tagging problems, e.g., [16]. Our work

is based on a relatively small dataset containing 100 documents

in biomedical science. Each document consists of 1–3 paragraphs

manually curated from journal articles on Lyme disease. The docu-

ments are manually annotated and validated by domain experts in

biomedical and health sciences. To the best of our knowledge, there

is no open access dataset on this particular domain. We demonstrate

that despite of the relatively small size, the best model achieves

a decent F1 = 0.55 on extracting entity strings. The results also

shed light on the critical roles of pre-trained WE and the attention

mechanism in training with relatively small samples.

2 RELATEDWORK
In a 2011 paper, key aspects of scientific papers were extracted by

matching language patterns in dependency trees [7]. The authors

extracted focus, technique, and domain from titles and abstracts in

the ACL Anthology corpus using handwritten patterns. A similar

work in 2017 used an unsupervisedmethod [12] but only application
and technique were extracted, and the evaluation was on computer

science papers.

In 2015, SegPhrase was developed to extract quality phrases

from text corpora using distant supervision [13]. The method rec-

tifies the TF-IDF of segmented phrases in order to raise the rank

of more informative phrases. A similar framework FacetGist ex-

tracts application, technique, evaluation metrics, and dataset from

academic papers, using POS-tagging to segment phrases. The final

selection of candidate concepts is made by solving a joint optimiza-

tion problem. The experiments were based on ACL and DBLP titles

and abstracts. Both farmeworks are best used on text corpora rather

than individual documents.

The SemEval 2017 (SE17) had a task to extract “keyphrases” from

scientific documents, which are essentially named entities in their

context [2]. The winner of SE17 proposed a model [1] to stack

CRF on top of BiLSTM. The model represents each word token

using a vector xk by concatenating a vector ck (from character

embedding) and a vector generated byword embedding (WE)wk , in

which k denotes a token position. Next, the feature representations

of words are learned using neural language models. The token

representation xk is fed through a BiLSTM to embed the history

into a fixed dimensional vector. The bi-directional embeddings are

concatenated and used for sequence tagging. The BiLSTM layers

are followed by a CRF layer to predict the tag of each token. The

model achieved an F1 = 0.54 (the ensemble model achieved an

F1 = 0.55), however, the implementation was not open source.

3 MODELS
3.1 CRF and BiLSTM
Sequential tagging is a method to label individual tokens such as

words in a sequence, a sentence for instance, in which order is im-

portant. One commonly used model is CRF, In CRF, the probability

of tags for a token depends on its own features, and features and
tags of the tokens surrounding it. CRF computes the joint probabil-

ity distribution of the entire label sequence when an observation

sequence intended for labeling is available. Recurrent neural net-

work (RNN) is an nonlinear model for representation learning. The

bidirectional long short-term memory (BiLSTM) has been proposed

to in lieu of the vanilla RNN to overcome its vanishing gradient

problem. In this model, the vector representation of the current

token depends on the representations of context tokens. BiLSTM

is usually followed by a fully connected layer or a CRF layer for

sequence tagging, e.g., [18].

Recently, the attention mechanism was proposed to be incor-

porated in many BiLSTM-based models [21]. The idea is to apply

attention weights of individual tokens, calculated using context

vectors, when aggregating them to generate the output vector. The

attention mechanism has been adopted in many NLP tasks such as

machine translation [11] and question-answering [4]. In our work,

we apply a special type called “self-attention”, in which the weights

are computed based on the correlation between a sentence itself.

Self-attention has been used for semantic role labeling [20].

The residual unit structure was designed to solve the degraded

performance of very deep neural networks. In the residual unit,

the output of a shallow layer is directly added to the output of a

deep layer, providing a clear path for gradients to back propagate

to shallow layers, making the learning process smoother and faster.

Residual networks have been applied to image classification and

significantly boosted the performance and training time, e.g., [9].

Our comparative study also utilize pre-trained WE, which has

shown advantageous to train anmodel when the dataset is relatively

small [6]. In this paper, we use ELMo, a language model trained

on 1 billion word benchmark [17]. The pre-trained model uses

a multilayer BiLSTM and calculates the weighted sum of hidden

states to represent each word.

2020-01-22 18:44. Page 2 of 1–4.
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3.2 Baseline Models
In a previous work [22], we proposed HESDK, a hybrid method to

extract DKEs (Figure 1). The method used an NP chunker followed

by an SVM classifier to classify NPs based on TF-IDF calculated

using 1M abstracts in the Medline 2016 database. The method also

employs a CRF model to label word-level tokens in the Inside-

Outside-Beginning (IOB) scheme [19]. The results of these two

methods were merged and a rule-based filter was applied before

the final results are obtained. In this pilot study, we freeze the non-

sequential component and change the models in the sequential

tagging component. The goal is to investigate whether neural net-
work models always achieve better performance than feature-based
models and how the WE, attention, and residual unit affect the per-
formance. The sequential models are listed below.

(1) CRF. The sequential model used in HESDK [22]. The model

extracts 9 features from the current word and the word before

and after the current word (in total 27 features).

(2) EnrichedCRF. Similar to (1) except that the number of features

of each token increases to 16. New features include the first two

characters of the POS-tags (e.g., VB from VBD), the type of the

phrase the word is in (e.g., NP or VP), the first two characters

of a phrase, the first two characters of the word, etc.

(3) Res-BiLSTM. This model contains two BiLSTMs (so four LSTM

layers) and there is a residual unit after the second layer (Fig-

ure 2 without the attention layer, ELMo not used).

(4) Attn-BiLSTM. This model contains 1 BiLSTM followed by an

attention layer (Figure 2 without X2 and the residual unit). A

model with two BiLSTM layers was shown to underperform.

(5) BiLSTM-CRF. This is basically the model implemented by [1]

with one BiLSTM followed by a CRF layer.

(6) BiLSTM-ChE. In this model, the BiLSTM is enhanced by char-

acter embedding. The motivation is that although WE is pow-

erful to encode most words, rare or unseen words are usually

embedded as dummy vectors. Character embedding is a solu-

tion to mitigate the out-of-vocabulary (OOV) problem. A word

is modeled as a character sequence. An LSTM layer is first used

to generate WE using character encoding. Another BiLSTM is

used to further generate the encoding of each word. The word

and character-WEs are concatenated to generate the final WEs.

(7) Res-BiLSTM-ELMo. This model is based on (3) except that the

input to the Res-BiLSTM was initialized using the pre-trained

ELMo WE [17] (Figure 2 without the attention layer).

(8) Attn-Res-BiLSTM-ELMo. This is the most complicated model

we applied. The input was initialized using the pre-trained

ELMo, followed by two BiLSTMs, a residual unit was used to

add outputs of the first BiLSTM (i.e.,X1) and the second BiLSTM
(i.e., X2). An attention layer was applied after the residual layer

and a TimeDistributed layer in Keras is applied to output IOB

tags for each token (Figure 2).

4 EXPERIMENTS
4.1 Data Processing and Experimental Setups
The ground truth data are compiled by first searching a list of

keywords, such as “Lyme disease”, “tick-borne disease” on Google

Scholar, resulting in 140 articles, from which 41 were randomly

selected ranging from 1990 to 2018. We visually inspected them

and extracted 100 documents to annotate, each consisting about

1–3 passages. Each document is manually cleansed such that (1)

Each passage occupies only one line; (2) All characters (e.g., α ) are
encoded in UTF-8; (3) Superscripts and subscripts are expressed

in the Latex way, e.g., “^{+}”; (4) Citation marks are preserved at

the original places and canonicalized to Arabic numbers in square

brackets, e.g., “[10]”. Cleansing the data allows us to focus on in-

formation extraction, without affected by noise introduced when

converting PDFs into text.

We use a web-based tool called brat for annotation. The anno-
tator follows five general rules. (1) A DKE must be a noun or an

NP; (2) Acronyms of DKEs are also DKEs (e.g., “LNB” for “Lyme

Neuroborreliosis”); (3) Conjunction connected phrases are treated

as a whole (e.g., “endemic and nonendemic areas”); (4) Try to label

semantically meaningful superphrase when it contains a subphrase

(e.g., “B. afzelii infection” instead of “B. afzelii”); (5) medicine names

and body parts, even if commonly seen in daily life, are still labeled

Table 1: A comparison of models. All results are before the
rule-based filters. Triplets are (Precision, Recall, F1).

Sequential model Hard Soft

Sequential model only

CRF 0.13 0.17 0.15 0.41 0.39 0.40

Enriched CRF 0.27 0.17 0.21 0.43 0.25 0.31

BiLSTM 0.10 0.15 0.12 0.32 0.35 0.33

Res-BiLSTM 0.07 0.09 0.08 0.25 0.25 0.25

Attn-BiLSTM 0.06 0.11 0.07 0.21 0.29 0.24

BiLSTM-CRF 0.06 0.08 0.07 0.20 0.22 0.21

BiLSTM-ChE 0.08 0.12 0.10 0.27 0.31 0.29

Res-BiLSTM-ELMo 0.13 0.14 0.13 0.46 0.36 0.40

Att-Res-BiLSTM-ELMo 0.13 0.21 0.16 0.44 0.45 0.46

Sequential model + Non-sequential classification

CRF 0.22 0.44 0.30 0.47 0.58 0.52

Enriched CRF 0.35 0.43 0.39 0.52 0.49 0.50

BiLSTM 0.20 0.42 0.27 0.41 0.55 0.47

Res-BiLSTM 0.21 0.39 0.27 0.35 0.47 0.40

Attn-BiLSTM 0.17 0.41 0.24 0.30 0.51 0.37

BiLSTM-CRF 0.20 0.40 0.26 0.30 0.51 0.37

BiLSTM-ChE 0.19 0.41 0.26 0.37 0.53 0.44

Res-BiLSTM-ELMo 0.24 0.41 0.30 0.51 0.56 0.54
Att-Res-BiLSTM-ELMo 0.21 0.47 0.29 0.49 0.62 0.55

2020-01-22 18:44. Page 3 of 1–4.
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as DKEs (e.g., “antibiotics” and “brain”). The final ground truth

corpus contains 1952 DKEs.

We used Keras v2.1.6, Tensorflow v1.8.0, and Tensorflow-hub v0.3.0

for implementation. For BiLSTM, we set the number of memory

units to 512. The input/output dropout rate and the recurrent

dropout rates are both set to 0.20. The learning rate was set to

10
−4
. The sparse categorical cross entropy was used as the loss

function. The models were trained up to 15 epochs. The Adaptive

Moment Estimation (Adam) optimizer was adopted in the training

process. The pre-trained ELMo WE has a dimension size of 1024.

We randomly chose 75% documents for training and the remaining

25% for testing.

4.2 Evaluation and Discussion
We consider two types of evaluations (Table 1). Under the hard

criteria, an extracted entity is taken as a true positive (TP) if both
phrase strings and positions are correctly identified. Under the

soft criteria, only phrase strings are considered. It is intuitive that

the performance is better under the soft criteria. For complete-

ness, we present the performance with only the sequential tagging

component and a combination with the non-sequential classifier.

The following discussion pertains to the sequential tagging results

unless otherwise noted.

(1) The neural models do not necessarily outperform the feature-

based models (i.e., CRF and Enriched-CRF). Although the Attn-

Res-BiLSTM-ELMo model achieves the best performance under

the soft criteria. The Enriched-CRF achieves the best perfor-

mance under the hard criteria.

(2) The pre-trained WE model (i.e., ELMo) plays an important role

in the neural network models. The F1 increases from 0.25 (Res-

BiLSTM) to 0.40 (Res-BiLSTM-ELMo).

(3) The attention mechanism significantly increases the recall of

Res-BiLSTM-ELMo (from 0.36 to 0.45) with a marginal loss of

precision (from 0.46 to 0.44).

(4) The enriched features in the CRFmodel are helpful in predicting

exact positions of entity mentions. A feature analysis indicates

that the type of the phrase plays an important role.

(5) The character embedding model BiLSTM-ChE underperforms

compared with the plain BiLSTM model. The residual unit also

decreases the F1. This is likely to be caused by the relatively

small training sample size. There are not many OOV characters

and the advantage of the residual unit is more prominent on

tasks with a large amount of training data.

(6) The non-sequential classifier significantly boosts the overall

performance. In the Attn-Res-BiLSTM-ELMo model, the F1 in-
creases by 9% (from 0.46 to 0.55) under the soft criteria. In the

Enriched CRF model, the F1 increases by 18% (from 0.21 to 0.39)

under the hard criteria. This implies the benefit of combining

sequential and non-sequential models.

5 CONCLUSION
We conducted a comparative study of sequential labeling methods

on the task to recognize DKEs from biomedical papers on Lyme

disease. The results indicate that the CRF models outperforms all

variants of BiLSTM models under typical settings when predicting

both entity strings and positions. The CRF underperforms BiLSTM

with attention, residual unit, and ELMo when predicting only entity

strings. When the training sample is relatively small, pre-trained

WEs and the attentionmechanism can significantly boost the perfor-

mance. However, the overall performance of all sequential tagging

methods on predicting the positions of DKEs still need to be im-

proved. We will expand the ground truth size to at least 300. We

will also fine-tune hyper-parameters and consider using Stochastic

Gradient Descent (SGD) instead of the default Adam optimizer.
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