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ABSTRACT 

An approach for modeling the response of laminated 
composite plates with piezoelectric patches, taking into 
account damage, is developed.  An analytical model is 
presented that includes the effects of delamination and 
transverse matrix cracking.  The equations of motion 
are formulated by using a coupled piezoelectric-
mechanical theory that enables simultaneously solution 
for the mechanical strains and electric displacement.  
The finite element method is used with a refined, 
higher-order theory to model the composite plate 
response.  Delamination is modeled by using a set of 
sublaminates, with continuity conditions that are 
enforced at the boundaries.  Matrix cracking is 
incorporated as a reduction in ply stiffness that is a 
function of the crack density.  Both matrix-crack 
closure and contact between the sublaminates are 
modeled, and a discrete time integration approach is 
used to compute the dynamic response.  Results are 
shown for a simply-supported plate and illustrate the 
influence of composite damage on the electrical 
response of attached piezoelectric devices.  The results 
demonstrate that this modeling technique approximates 
the influence of composite damage on the global 
response the damaged structure and predicts the 
transient electrical and mechanical response of 
piezoelectric smart composite structures.   

INTRODUCTION  

Composite laminates offer superior strength and 
stiffness over conventional materials for a given mass, 
but are also vulnerable to damage such as delamination 
and matrix cracking. This damage can occur during 
service life, as a result of low-velocity impact or 

stresses created by excessive loading. The presence of 
delamination and matrix cracking is known to alter the 
dynamic characteristics and also reduce the strength of 
a structure, particularly under compressive loading. 
Thus, it would be beneficial to develop a means for 
detecting this type of damage in a composite structure. 

The concept of using piezoelectric materials, in the 
form of thin actuators and sensors mounted to a 
structure, is being investigated by many researchers as a 
possible means for structural health monitoring and 
damage detection. The reduction in laminate stiffness 
caused by delamination and matrix cracking leads to 
changes in natural frequencies, mode shapes, damping 
and the strain field within a composite plate.  Thus, the 
measurement of dynamic response using piezoelectric 
sensors appears to be a promising approach for 
detecting damage.  Since experimental investigations 
can be expensive, damage detection research would 
benefit from an accurate and efficient computational 
model.  To be of practical importance, the model must 
be capable of representing the effect of damage in 
composite structures with embedded or surface-bonded 
piezoelectric sensors, and must be capable of 
representing the impact of the damage on the dynamic 
structural and electrical response of the system.  
Because such matrix cracking is generally found with 
delamination resulting from fatigue or low-velocity 
impact, the combined modeling of delamination and 
matrix cracking is necessary for an accurate simulation 
of a damaged smart composite structure. 

A large amount of literature has been published on 
modeling the effects of transverse matrix cracking on 
the stiffness degradation of composite laminates.1-7  
Matrix cracks open under load, thus creating an 
increase in the global strains of a laminate and a 
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reduction in the effective stiffness.   The cracked layer 
is still carrying some of the load, and thus the reduction 
in laminate stiffness is a function of crack density.  
Because damaged laminates usually contain hundreds 
of individual matrix cracks, most analytical models 
have represented the damage as an idealized 
arrangement of cracks spaced evenly apart, at an 
average distance.  Solutions are then computed as 
functions of the average crack density.  Some models 
are closed-form solutions,1,2 while others are parametric 
models based on matching experimental data.  Early 
models were applicable to only pure extension, making 
them inappropriate for structures with complex loading.  
The behavior under shear loading was then addressed, 
and models that could be applied to angle-ply laminates 
were developed.1,2,4,6  Recently, models have been 
developed which combine simulation of the inplane 
stiffness degradation with the ability to estimate the 
changes in stiffness caused by bending loads.3-5  These 
models are capable of effectively simulating matrix 
cracking in a structure under dynamic loading, if the 
complications created by crack closure are addressed.   

The majority of the work that has been conducted on 
delamination detection has concentrated on predicting 
delamination growth and the associated reduction in 
compressive strength of a structure subjected to quasi-
static loading.  Delamination also affects the dynamic 
response of a structure, yet there are fewer models for 
describing these effects.7-16  There have been very few 
efforts reported that attempt to accurately model the 
presence of both delamination and matrix cracking7 or 
address how these forms of damage influence the 
piezoelectric response of adaptive structural 
systems.14,15  The delamination also forms sublaminates 
that can come into contact with each other during plate 
vibration.  This contact has been examined in only a 
few works,15,16 although the results from these works 
show that contact can sometimes have a significant 
influence on the dynamic response of a laminate.  This 
lack of information is not surprising, because the 
contact between the sublaminates makes determining 
the response a nonlinear problem, which requires the 
use of special time-integration methods that treat the 
discontinuity in the plate stiffness.17 

Review of the studies previously described indicates a 
need for an effective method for modeling the dynamic 
response of damaged composites with attached 
piezoelectric devices.  Thus, the objective of this 
research is to develop a model that is capable of 
describing the effect of delamination and matrix 
cracking in a composite plate, of arbitrary laminate 
configuration, with consistent accuracy for a wide 
variety of laminate materials.  The intention of this 
work is not to attempt to detect damage per se, but 

rather, to illustrate a simulation technique that can be 
used to develop damage-detection methods and provide 
mechanics insight for future experimental efforts.  
While delamination, matrix cracking and piezoelectric 
structures have all been studied individually, in great 
detail, effort has not been made to combine them into a 
single model that is capable of capturing the effect of 
damage on the response of a smart structural system.  
This paper is an attempt to develop such a model by 
combining previous work on delamination,7,15 matrix 
cracking7 and piezoelectric modeling.15,18  Although, 
the assumptions made in modeling the damage yield 
approximate results, the model is very computationally 
efficient when compared to three-dimensional modeling 
of the damaged region, because exact characterization 
of each individual matrix crack is not required.  This 
efficiency, combined with the versatility of the finite 
element method, results in a model that can potentially 
be used to study a vast number of structural 
configurations. 

In the present paper, a coupled piezoelectric-
mechanical model is combined with damage-modeling 
methods in order to predict the mechanical and 
electrical response of a damaged plate with 
piezoelectric actuators and sensors. First, the modeling 
of a plate with piezoelectric devices is described.  The 
model uses a formulation based on simultaneous 
solution of the coupled piezoelectric-mechanical 
equations.  Next, matrix cracking is incorporated into 
the structural model as a reduction in laminate stiffness, 
based on crack density. Delamination is then addressed 
by dividing the laminate into undelaminated regions 
and sublaminates, and modeling each as an individual 
plate joined together by continuity conditions.  Included 
is a discussion on the influence of the delamination 
crack-tip singularity on the global response of the 
system and the appropriateness of neglecting it.  A 
discontinuous time-integration technique is described, 
which can be used to investigate the effects of 
sublaminate contact on the dynamic response of the 
adaptive composite plate.  Finally, results are presented 
to illustrate the models ability to simulate the effect of 
damage on the static and dynamic response of adaptive 
composite plates. 

PIEZOELECTRIC M ODELING  

The model used in this paper is based on a recently 
developed, coupled piezoelectric-mechanical 
formulation, which allows accurate prediction of both 
the mechanical and the electrical response of a 
piezoelectric structural system.18  Traditionally, the 
constitutive relations used in structural analysis are 
expressed as a function of the components of the strain 
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(εij) and electric (Ei) fields.  Uncoupled models only 
solve one of the two constitutive equations depending 
on whether the piezoelectric device is being used as an 
actuator or a sensor.  Use of the two-way coupled 
model allows both constitutive relations to be solved 
simultaneously, thus the transformation of energy 
within the piezoelectric material is more accurately 
represented.  The model for smart composite laminates 
used in the present work is based on an alternate 
formulation of the constitutive relations given by 

kkijklijkl
D

ij Dhc −= εσ  (1) 

kik
S

klikli DhE βε +−=  (2) 

where the stress (σij) and the electric field components 
(Ei) are related to the strains (εkl) and the components of 
the electric displacement (Dk) by the open-circuit elastic 
constants (cD

ijkl), the zero-strain dielectric constants 
(βS

ij) and the piezoelectric coefficients (hijk).  Using this 
formulation, the electric displacement can be taken as 
constant through the thickness of the piezoelectric 
device, thus ensuring conservation of charge on each of 
the electrodes.   

The equations of motion are formulated by using a 
variational approach based on Hamilton’s Principle.  
The variational principle between times to and t, for the 
piezoelectric body of volume V, are written in matrix 
form as 
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where the first term represents the kinetic energy, the 
second term is the electric enthalpy, and δW is the total 
virtual work done on the structure.  The terms u and ρ 
correspond to the mechanical-displacement vector and 
the density, respectively.  The electric enthalpy, H, is 
given in matrix-vector notation by 
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Here, εεεε and D are used to represent the strains and the 
electric displacement vector, and CD, h, and ββββS are the 
matrices containing the elastic, dielectric and 
piezoelectric constants, respectively.  The work done by 
body forces (fB), surface tractions (fS) and an electrical 
potential (φ) applied to the surface of the piezoelectric 
material is expressed as 
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Equations (3-5) provide the basis for determining the 
equations of motion for a piezoelectric body. 

A refined, higher-order laminate theory is used to 
model the mechanical-displacement field.  This theory 
assumes a parabolic distribution of transverse-shear 
strain, thus providing accurate estimation of transverse-
shear stresses for moderately thick laminates, with little 
increase in computational effort.  Application of this 
theory to the equations of motion reduces the strains 
and displacements to five variables that are functions of 
the inplane coordinate only.  The finite element method 
is then used to solve for these variables. 

In the analysis presented herein, it is assumed that the 
piezoelectric material is oriented with its polarization 
axis normal to the mid-plane of the plate and that the 
piezoelectric device has electrodes covering its upper 
and lower surfaces.  For this case, the electric 
displacement is zero along the two inplane coordinates.  
The out-of-plane electric displacement can then be 
discretized over the surface of the piezoelectric device 
by using finite elements. 

By using these assumptions for the orientation of the 
piezoelectric device and the finite element method, the 
equations governing the response are used to solve for 
the nodal displacements and the nodal electric 
displacements.  The equations only consider the 
mechanical aspects of the smart structure and neglect 
electrical inertia and damping.  When considering an 
integrated, smart structural system, additional terms 
must be added to the system equations for electrical 
components in the system.  For a simple LRC circuit, 
the variational energy, δΠq, is given by 
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where L, R and C are the inductance, resistance and 
capacitance, and V is the applied voltage.  These 
equations can be combined with Eq. (3) to give the 
equations governing the response of both the 
piezoelectric body and the attached electrical system.   
The charge flow (q) in the electrical system equates to 
the integration of the electric displacement over the 
upper surface of the piezoelectric device.  Since the 
finite element method has been used to discretize the 
electric displacement, the integration is transformed 
into matrix form using the matrix of interpolation 
functions (Nq) and the nodal electric displacement (De) 
as follows 
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
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4 
American Institute of Aeronautics and Astronautics 

Combining these equations, the resulting coupled 
electrical-mechanical system equations are obtained; 
that is, 
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where ue is the nodal displacements, De is the vector 
containing the nodal electric displacements and any 
additional charge associated with the electrical system.  
The electric inductance, resistance and capacitance are 
contained in the M q, Cq, and K q matrices, respectively.  
The matrix K uu is the mechanical-stiffness matrix, K DD 
is the electrical-stiffness matrix, and K uD and KDu are 
the stiffness matrices due to piezoelectric-mechanical 
coupling.  The vectors Fu and Fq are the force vectors 
due to mechanical and electrical loading.  The matrix 
M u is the structural mass matrix, and to incorporate 
structural damping into the equations, a structural 
damping matrix Cu is added to the system equations.  
The nature of the damping matrix can be chosen to 
meet the needs of the user, but in the present work 
classical damping is used.  

M ATRIX -CRACKING M ODEL 

The choice for the methodology used for modeling 
matrix cracking is dependent upon the overall purpose 
of the analysis and the structural model used.  Unlike 
other studies that attempt to predict the amount of 
damage, based on loading history, it is assumed herein 
that the size and location of the damage is known.  
Thus, the micro-mechanics associated with crack 
growth are not included in the model used herein.  The 
matrix cracking examined in this work consists of 
transverse matrix cracks that extend through the 
thickness of a ply and run parallel to the fibers.  It is 
assumed that the cracking may be in any combination 
of layers, including the surface layers of the laminate.  
Matrix cracks cause a reduction in the structural 
stiffness by opening under load.  If only the effects of 
Mode I and Mode III crack opening are included in the 
model, then the results would only be appropriate for 
classical-plate-theory models where transverse-shear 
deformation is not considered.  For moderately thick 
plates modeled using a shear-deformation theory, the 
transverse shear contributes to the plate deflection, and 
therefore Mode II crack opening must be accounted for. 

Some assumptions must be made to adequately model 
the effects of matrix cracking in a composite laminate.  
The first assumption is that the effects of the cracks on 
the global response can be modeled by a statistically 

uniform array of cracks which are spaced at some 
average distance.  It is also assumed that all cracks 
extend vertically through an entire layer and are aligned 
parallel to the fibers.  The term “layer” is used with a 
special purpose in this section.  Since consecutive plies 
oriented in the same direction have no means of 
arresting crack growth, which normally occurs when 
the crack tip intersects fibers running in a different 
direction, multiple plies with the same fiber orientation 
behave as a single, thick layer.  As will be described 
later, it is also assumed that cracking in one layer is not 
influenced by the presence of cracking in other layers. 

Since the equations of motion for the composite plate 
developed earlier in this work are based on the variation 
of the total energy, the effect of matrix cracking is 
incorporated as a reduced potential energy (Ucracked).  
This reduced potential energy is given by the difference 
between the strain energy in the uncracked laminate and 
the energy associated with the opening of a crack in the 
laminate (∆Ucrack) using 

crackAcracked UdAU ∆−




= ∫ Cεε
T

2

1
 (9) 

The strain energy in the uncracked laminate is 
computed using the elastic stiffness matrix of the 
laminate, C.  Computing crack-opening energy at every 
stage of the finite element process would be a 
cumbersome and computationally expensive procedure.  
If a convenient method can be found for determining 
the crack-opening energy, then the effect of matrix 
cracking can be incorporated as an effective laminate 

stiffness (C ) by using 

Fig. 1.  Reduction in stiffness for graphite-epoxy 
[0/902]s laminate. 
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The energy associated with crack opening, assuming 
that the work done in one cracked layer is not affected 
by cracking in other layers, is defined as 
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The summation in this expression provides the total 
energy for all cracked layers.  The energy is seen to be 
proportional to the thickness of the cracked layer, tk, 
and the normalized crack-density parameter, ρk.  The 
crack density is defined as the ratio of the thickness of 
the cracked layer to the average spacing between 
cracks, dk; that is, 

k

k
k

d

t=ρ  (12) 

The parameter, ττττk represents the stresses that would be 
present in the uncracked laminate, which can in turn be 
related to the strain, εεεε.  The matrix, ββββkk, relates the 
stress to the crack opening energy and is dependent on 
the properties of both the cracked layer and the 
laminate as a whole.  In the present work, finite element 
analysis of the representative crack is used to determine 
the ββββkk matrix, as detailed in Ref. 7. 

The method presented herein has been shown to 
accurately describe laminate stiffness degradation that 
is caused by matrix cracking.7  The reduction in 
extensional and bending stiffness for cracked [0,902]s 
laminates made of graphite-epoxy material is shown in 
Figure 1.  In this figure, the results obtained using the 
model presented herein for both extension (solid line) 
and bending (dashed line) are compared with 
experimental data1 and two-dimensional NASTRAN 
models,7 represented by the squares and triangles 
respectively.  Unlike most closed-form solutions, this 
method gives excellent agreement for a variety of 
materials and ply layups, and also gives good results for 
inplane and transverse-shear stiffness.  This versatility 
makes the model a valuable tool for estimating the 
stiffness degradation caused by matrix cracking when 
little experimental data is available. 

DELAMINATION M ODELING  

To incorporate delamination into the structural model, 
the structure is divided into regions composed of 
individual sublaminates, and the variational equations, 
Eqs. (3-5), are applied to each region.15  Next, 

continuity conditions are imposed at the interfaces 
between the undelaminated region and the 
sublaminates, based on the offset between the finite 
element nodes at the midplane of each sublaminate.  
The out-of-plane displacements, slopes and the inplane 
displacements are forced to be equal for the laminate 
and sublaminate on each side of the interface, resulting 
in a set of constraint equations.  A transformation 
matrix is constructed in order to eliminate the degrees 
of freedom at the boundary of the sublaminates from 
the system matrices.  This transformation condenses the 
system degrees of freedom along the boundary of the 
delamination to effectively remove the sublaminate 
nodes and reform the system equations in terms of the 
nodal degrees of freedom belonging to the 
undelaminated region.  This approach is an effective 
and efficient method for modeling delamination, but 
two aspects of the delaminated plate that still need to be 
addressed are the crack-tip singularity and contact 
between the sublaminates. 

Delamination Crack-Tip Singularity  

By modeling the sublaminates as individual plates and 
directly connecting them, the singularity created by the 
delamination crack tip has been neglected.  Likewise, 
most other models that have been used to describe the 
vibration of delaminated composite plates have also 
neglected this singularity.  As a result, the localized 
strains and stresses in the vicinity of where the 
sublaminates join the undelaminated structure are not 
accurately modeled.  Since the objective of this work is 
to capture the effect of delamination on the global 
response of the structure, this deficiency is not 
necessarily of concern, provided that this singularity 
does not create any large changes in the global 
deformation of the structure.  The following discussion 
is presented to illustrate when this assumption applies. 

To verify that the delamination crack-tip singularity has 
a minimal effect on the global structural deformation, 
an idealized two-dimensional delaminated beam was 
modeled.  The beam, shown in Fig. 2, is cantilevered 

Fig. 2.  Cantilevered beam for crack tip analysis. 
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and has a delamination starting at the free end.  The 
beam was assumed to be made of an isotropic material 
to allow convenient finite element modeling.  The beam 
was modeled by using a traditional mesh of two-
dimensional plane-strain elements and, also, with a 
two-dimensional mesh that includes a finer mesh size 
and quarter-point crack-tip elements in the vicinity of 
the delamination tip.  The sections on either side of the 
delamination are subjected to an opening force at the 
free end, and the resulting displacement (end opening) 
is computed for both finite element meshes.  In the 
following results, the material was defined to have an 
elastic modulus of 91Gpa and a Poisson’s ratio of 0.3.  
Figure 3 shows the two finite element meshes, in the 
deformed state. 

An estimate of the effect of the singularity is calculated, 
based on the difference in end opening between the two 
finite element meshes (δ1 - δ2).  These results are 

presented in Fig. 4, for various delamination lengths, 
each denoted by the diamond symbols and connected 
by a solid line.  For this case, the sublaminates are each 
1mm thick, and the length of the undelaminated section 
is 1cm.  In Fig. 4, the abscissa is the ratio of the length 
of the delamination, l, to the total beam depth, d.  The 
results show that as the delamination becomes longer, 
the difference between the model with the singularity 
and the model without the singularity diminishes 
rapidly and that if the delamination is longer than about 
five times the thickness of the beam the difference is 
less than one percent.  Thus, it is reasonable to neglect 
the crack-tip singularity provided the delamination 
length to laminate thickness is greater than five. 

If the location of the delamination within the beam is 
changed to be closer to the top or bottom beam surface, 
similar results are obtained.  The differences in 
delamination opening for three different delamination 
locations are shown in Figure 5.  The diamonds, 
squares and triangles represent the results obtained for 
ratios of thickness of the upper sublaminate to the 
thickness of the lower sublaminate of 1, 0.5 and 0.25, 
respectively.  These results show that the difference 
between the two models is the same, regardless of the 
location of the delamination within the thickness of the 
beam.  Thus, the effect of the crack-tip singularity on 
the global deformation of the structure is governed 
more by its size relative to the thickness of the beam, as 
opposed to its depth from the surface.  Because plate 
structures are generally thinner than beams, neglecting 
the crack-tip singularity in the plate model presented 
herein is not expected to create errors greater than 
approximately one percent, for all but the smallest of 
delaminations.  Small delaminations would require a 
finer mesh of plate elements to model the small 
sublaminates, and a more accurate field description, 
through the thickness, may be necessary. 

Fig. 3.  Deformed shape of the finite element meshes 
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(a) Refined mesh with quarter-point 
crack-tip elements 

(b) Uniform mesh 
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Fig. 4.  Error from neglect of crack tip singularity. 
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Dynamic Contact 

During vibration, contact occurs between the 
sublaminates in the delaminated region as the 
delamination opens and closes.  The impact between 
the sublaminates affects the vibration response and 
should be incorporated into the developed plate model 
in order to accurately model the dynamic response of 
the plate.  Mode shapes, obtained from a linear 
eigenvalue analysis, are not valid representations of the 
vibration of a delaminated plate due to the nonlinearity 
created by the contact between the sublaminates.  For 
example, an eigenvector showing delamination opening 
during maximum deflection would also correspond to a 
condition where the sublaminates penetrate each other 
during the opposite deflection.  As a result, the system 
cannot be represented by a linear combination of mode 
shapes, as in linear analysis, in order to allow 
computationally efficient determination of the transient 
response of the system. 

Contact between sublaminates is modeled by using the 
procedure described in Ref. 15.  That is, each node of 
the upper sublaminate is assumed to be connected to the 
corresponding node of the lower sublaminate by a 
fictitious spring.  This spring is defined to have zero 
stiffness under tension and stiffness proportional to the 
transverse Young’s modulus of the plate when 
subjected to compression. For analytical purposes, the 
stiffness matrix for the contact springs is formed as an 
independent matrix, and is based on the current nodal 
displacements.  This stiffness matrix is then added to 
the linear stiffness matrix before solving for the nodal 
displacements.  The use of fictitious springs is an easily 
implemented procedure that avoids recalculation of the 
positions and velocities of the sublaminates based on 
conservation of momentum each time contact or release 
occurs.16  The difficulty in using these springs during 
dynamic analysis is that the sudden change in stiffness 
of the springs acts like an impact, requiring careful 
modeling to correctly predict the response of the plate.  
Moreover, the bimodularity of the contact springs 
makes the transient problem nonlinear.  In the present 
study, a time-integration technique was used to 
simulate the nonlinear response of the laminate when 
contact between the sublaminates is included. 

The time-integration technique used in this paper is 
based on the discontinuous time-integration method of 
Cho and Kim.17  The reason for using this method, 
instead of a traditional Newmark method, is that the 
sudden change in stiffness that occurs during impact 
and release of the sublaminates creates jumps in the 
field variables that result in large numerical oscillations 
in the analytical solution.  The discontinuous time-
integration method uses a generalized derivative 

concept to simulate the effect of sudden discontinuities 
that occur during contact and impact problems.  The 
generalized derivative allows a discontinuity to be 
incorporated into a time-integration scheme without 
having any other constraints enforced on the nodes 
during contact and release.  This time-integration 
method is an iterative solution algorithm, that uses a 
predictor-corrector approach for each time step.  
Further details about the discontinuous time-integration 
method are found in Ref. 17.  

RESULTS FOR A DAMAGED PLATE  

Much of the literature on the vibration of delaminated 
plates is primarily for cantilevered plates.  Results are 
presented in this section that show the response of a 
carbon-epoxy composite plate, simply supported on all 
four sides and with damage in the form of both 
delamination and matrix cracking.  The dimensions of 
the plate are 0.5m by 0.5m, the ply stacking sequence is 
[0/90]2s, and the ply thickness is 0.127mm.  The 
properties for the carbon-epoxy material are listed in 
Table 1.  The plate was modeled by using a 20x20 finite 
element mesh.  This mesh size was based on analysis 
that showed that this mesh size was able to accurately 

Fig. 6.  Effect of matrix cracking on the static 
displacement of the square plate midpoint under 

uniform pressure. 
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Table 1.  Properties of a carbon-epoxy lamina 

E11 134.4 GPa 

E22 10.34 GPa 

G12 5.00 GPa 

ν 0.33 

ρ 1.477 g/cm3 
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predict the first twelve out-of-plane natural frequencies 
to within one-percent. 

First, the effect of matrix cracking on the static 
response of the plate was examined for the case in 
which a uniform pressure was applied to the upper 
surface of the plate.  The damage consisted of a square 
region of matrix cracking centered within the plane of 
the plate.  The out-of-plane displacement at the center 
of the plate for a unit pressure is plotted in Fig. 6.    
These results are for the cases of cracking only in the 
bottom ply, cracking only in the topmost ply, and 
cracking in both the upper and lower plies.  For all 
cases, a crack density of 1.0 was used. 

The displacement per unit pressure is plotted in Fig. 6 
against the non-dimensional size of the cracked region, 
which is defined as the ratio of the length of the cracked 

region to the length of the square-plate edge.  The three 
cases presented are for cracking in the uppermost ply, 
denoted by the squares connected with a solid line, 
cracking in the lowermost ply, denoted by the diamonds 
connected with a finely dashed line, and cracking in 
both uppermost and lowermost plies, denoted by the 
triangles connected with a thick dashed line.  The 
results show that cracking in the uppermost ply has less 
of an effect on the static deformation of the plate than 
cracking in the lowermost ply.  This difference is 
because the pressure on the upper surface causes the 
cracks in the top ply to close, limiting their influence on 
the deformation.  Although the cracks in the topmost 
ply are closed, some increase in the deflection is still 
induced since the cracking also reduces the shear 
stiffness of the ply.  Since friction is neglected, the 
reduction in the shear stiffness is not affected by crack 
closure.  The shear stresses are largest in the corners of 
the plate and as the cracked region grows larger and 
expands into the corners, the effect of the cracking on 
the plate deformation increases as expected. 

Next, the linear eigenvalues for the plate with matrix 
cracking and delamination were studied to determine 
the effect of damage on the natural frequencies of the 
plate.  The nonlinearity associated with crack closure 
and with contact between the sublaminates means that 
the system cannot be reduced by using modal analysis, 
but the eigenvalues still give a general indication about 
how much the damage is affecting the global response 
of the structure.  The natural frequency for the first 
vibration mode is plotted against the size of the cracked 
region in Fig. 7.  Cracking is in the bottom ply only, 
with a crack density of 1.0.  The three curves represent 
the natural frequency for each half-cycle of the 
vibration and the effective frequency for the overall 
vibration of the plate.  The downward half-cycle is 
represented by the diamonds connected with a solid 
line, the upward half-cycle is represented by the squares 
connected with a thick dashed line, and effective, or 
average, natural frequency is represented by the 
triangles connected with a finely dashed line.  During 
the upper half-cycle, the cracks in the bottom ply are 

Fig. 7.  Effect of matrix cracking on the square-plate 
fundamental frequency of vibration. 
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closed and during the lower half-cycle they open, 
leading to different eigenvalues depending on the 
deformed shape at various times during the vibration.  
An effective vibration frequency is found by using the 
total period for one full cycle of the vibration to occur.   

Figure 8 shows the natural frequency for a delaminated 
plate plotted against the ratio of delamination length to 
the edge length of the square plate.  The two cases 
presented are for a plate with combined delamination 
and matrix cracking, represented by the squares 
connected with a finely dashed line, and for a plate with 
only delamination, represented by the diamonds 
connected with a solid line.  The delamination is 
between the top two plies and forms a square region 
centered on the plate.  For the case of combined 
delamination and matrix cracking, the cracking is in 
both the top and bottom plies and extends 5cm beyond 
the delamination, as shown in Fig. 9.  This damage 
pattern is approximately that which would result from a 
low-velocity impact on the back of the plate.  For small 
delamination sizes, the fundamental natural frequency 
of the plate is reduced very little by the presence of the 
delamination, as has been shown by other research.8-10  
Even for a delamination length of four-tenths of the 
length of the plate, the reduction in the natural 
frequency is only 1.0% for the delaminated plate and 
2.7% for the plate with both delamination and matrix 
cracking.  Higher frequency modes are not presented in 
this work, because they are greatly influenced by the 
local deformation associated with the delamination and 
the nonlinearity of sublaminate contact, making them 
less meaningful.  These results indicate that except for 
extremely large delaminations, the effect of 
delamination and matrix cracking on the response of the 
plate is relatively small.  The limited influence of the 
damage applies to both the static deformation and 
dynamic natural frequencies of the structure.  This 

limited influence can be viewed positively in that 
damage of the type considered herein will not result in 
drastic changes in the global response of system. In 
contrast, it also indicates that it is likely to be difficult 
to detect a small region of damage on a large structure 
using only the low frequency response. 

Next, piezoelectric patches were used to study the 
response of the plate under dynamic loading conditions.  
The plate geometry shown in Fig. 9 was used as a 
representative adaptive structure.  Piezoelectric patches 
of lead-zirconate titanate (PZT-5H) are located in 
opposite corners of the plate.  The patches were 5cm by 
5cm in area and 0.25mm thick.  A 100V transient 
electrical voltage was applied to one patch and the 
opposite patch was used as a sensor to measure the 
global deformation response of the system.  The sensor 
was assumed to be open circuited (zero net charge 
flow) and the voltage across the electrodes was used as 
the sensor output.  The response of the system was 
simulated both with and without damage. 

The first transient electrical signal simulated is a single 
cycle of a 1000Hz sine wave with 100V amplitude and 
numerical time integration was conducted using a 50µs 
time step.  This signal generates an impulse type of 
response from the system.  The time history of the 
sensor response is shown in Fig. 10 for both the 
undamaged plate (solid line) and the plate with a 
delamination and matrix cracking (dashed line).  The 
damaged plate contains a 10cm by 10cm delamination 
between the top two plies, and the cracking is in both 
the top and bottom plies, extending 5cm beyond the 
delamination.  The response of the two systems is quite 
similar when examined in the time domain and no 
apparent difference can be noted.  The frequency-
response curves for the systems are shown in Fig. 11.  
Here, small differences in the response of the system 

Fig. 10.  Sensor voltage time history for a single cycle of 1000Hz actuator input. 
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are shown, due to the changes in the natural frequencies 
of the higher modes caused by the delamination and 
stiffness reduction associated with matrix cracking.  
The relative amplitude remains the same for both the 
damaged and undamaged cases and it would not be 
apparent which curve contained damage. 

Next, an electrical signal with increasing frequency was 
applied to the system in which the input frequency 
increased linearly from 250Hz to 2000Hz, over the first 
25ms of the simulation.  Again, a 50µs time step was 
used for the numerical integration.  The frequency 
response of the sensor voltage is plotted in Fig. 12 for 
the damaged (dashed line) and undamaged (solid line) 
laminates.  As for the case of a single-cycle sine wave, 
only small differences in the response of the system are 
seen and the relative amplitude is similar for both the 
damaged and undamaged cases. 

Finally, a continuous sine wave of 1000Hz was used as 
the electrical input.  For this case, a 20µs time step was 
used.  The resulting frequency-response curves are 
shown in Fig. 13.  Again, the solid line represents the 
undamaged laminate and the dashed line represents the 
laminate with delamination and matrix cracking.  These 
results suggest an increase in the damping of the 
structure due to the delamination and matrix cracking.  
This result is interesting, because only classical 
damping was included and friction between the 
sublaminates and matrix cracks was not modeled. 

The present approach efficiently approximates the 
influence of delamination and matrix cracking on the 
response of composite laminates. Small changes were 
observed in displacement magnitudes and natural 
frequencies of the system at lower frequencies, while 
more noticeable changes occurred at higher 
frequencies, as seen by the shifting of the frequency-
response peaks in Figs. 11 and 12.   However, the cases 

presented herein illustrate the difficulty of using low-
frequency response to detect damage in composite 
laminates.  Utilizing the higher frequencies for damage 
detection leads to other issues, due to the difficulty in 
accurately modeling the structural response for the 
higher modes.  The present approach can be used with a 
more refined finite element mesh, but exact replication 
of the influence of the damaged region on the response 
at high frequencies is likely not possible as a result of 
the approximate nature of the model.  However, 
damage is very probabilistic in nature and exact 
characterization of the damage would be of little avail 
since no two damaged regions would ever be identical.  
Thus, the model is still useful at higher frequencies, due 
to its ability to produce an effect that approximates that 
of an actual damaged region.  This model will, 
therefore, be useful in simulating damage detection 
schemes utilizing piezoelectric sensors and actuators.  
However, an aspect that needs to be addressed in more 
detail is the attenuation of the vibrational response by 
the damaged region.  The change in structural damping 
seems to be a major effect of delamination and matrix 

Fig. 11.  Frequency response for a single cycle of 
1000Hz actuator input. 
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cracking, and further investigation is needed to 
accurately model the damping in the damaged region.   

CONCLUDING REMARKS  

An approach has been developed to model the response 
of damaged composite plates with piezoelectric 
patches.  Damage in the form of delamination and 
transverse matrix cracking has been included in the 
model.  Delamination was incorporated by modeling 
the undamaged region and each sublaminate formed by 
the delamination as individual plates and then enforcing 
continuity conditions between them.  Matrix cracking 
was included as a reduction in the laminate stiffness.  
The model utilizes a coupled piezoelectric-mechanical 
theory and finite elements to simultaneously solve for 
both the mechanical and electrical response of the 
system.  Both matrix-crack closure and contact between 
the sublaminates are modeled, and a discrete time-
integration approach was used to compute the dynamic 
response.  The results demonstrate that this modeling 
technique does approximate the influence of composite 
damage on the global response the damaged structure 
and predicts the transient electrical and mechanical 
response of piezoelectric smart composite structures.  
Small changes in the displacement and global response 
at low frequencies were observed, along with moderate 
changes at higher frequencies.  The change in the 
damping characteristics of damaged composite 
laminates appears to be a major effect of delamination 
and matrix cracking and requires further study and 
modeling. 
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