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Prediction of aircraft engine noise is an important aspect of addressing the issues of
community noise and cabin noise control. The development of physics based methodolo-
gies for performing such predictions has been a focus of Computational Aeroacoustics
(CAA). A recent example of code development in this area is the ducted fan noise prop-
agation and radiation code CDUCT-LaRC. Included within the code is a duct radiation
model that is based on the solution of Ffowcs Williams-Hawkings (FW-H) equation with a
penetrable data surface. Testing of this equation for many acoustic problems has shown it
to provide generally better results than the Kirchhoff formula for moving surfaces. Cur-
rently, the data surface is taken to be the inlet or exhaust plane for inlet or aft-fan cases,
respectively. While this provides reasonable results in many situations, these choices of
data surface location lead to a few limitations. For example, the shear layer between
the bypass flow and external stream can refract the sound waves radiated to the farfield.
Radiation results can be improved by including this effect, as well as the reflection of the
sound in the bypass region from the solid surface external to the bypass duct surround-
ing the core flow. This work describes the implementation, and possible approximation,
of a shear layer boundary condition within CDUCT-LaRC. An example application also
illustrates the improvements that this extension offers for predicting noise radiation from
complex inlet and bypass duct geometries, thereby providing a means to evaluate external
treatments in the vicinity of the bypass duct exhaust plane.�
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I. Introduction

Prediction of aircraft engine noise is an important aspect of addressing the issues of commu-
nity noise and cabin noise control. The development of physics based methodologies for per-
forming such predictions has been a focus of Computational Aeroacoustics (CAA). A recent ex-
ample of code development within this area is the ducted fan noise propagation and radiation
code CDUCT-LaRC.1 Included within the code is an acoustic radiation model that is based on the
Ffowcs Williams-Hawkings (FW-H) equation with a penetrable data surface.2 Testing of this equa-
tion for many acoustic problems has shown it to generally provide better results than the Kirchhoff
formula for moving surfaces. Currently within CDUCT-LaRC, the data surface for radiation cal-
culations is taken to be the inlet or exhaust plane for inlet or aft-fan cases, respectively. While this
provides excellent results in many situations, these data surface locations may lead to a few limi-
tations. The first involves the effects of the shear layer on acoustic radiation. With the data surface
at the exhaust plane, refraction of sound through the shear layer may not be taken into account.
Secondly, difficulties may arise when large aft or forward radiation angles are of interest for inlet
or aft-fan cases, respectively. In these situations, the effects of the engine cowl are not taken into
account and the acoustic results are essentially symmetric about the data surface.

The discussion to follow describes one approach to alleviating these issues within the CDUCT-
LaRC framework by extending the propagation calculations beyond the exhaust plane of the bypass
duct. An impedance boundary condition to be applied on the surface of the shear layer is derived.
This is followed by the implementation of this boundary condition and possible areas for approx-
imation. Preliminary results are then presented to illustrate some initial examples utilizing the
extended propagation calculations. Finally, concluding remarks are offered, as well as areas for
further development and applicability.

II. Derivation

The shear layer between the bypass flow and external stream can refract the sound waves
radiated to the farfield. Radiation results can be improved by including this effect, as well as
the reflection of the sound in the bypass region from the solid surface external to the bypass duct
surrounding the core flow (see figure 1). One way to achieve this is to extend the CDUCT-LaRC
bypass duct propagation calculation, which is based on the parabolic approximation, beyond the
exhaust plane and to apply a boundary condition (BC) similar to a liner BC on the shear layer.
Although this derivation has been presented in reference,1 it is useful to revisit the details in this
work. The development of this boundary condition begins with the satisfaction of two conditions
on the shear layer:

1. The particle displacement must be continuous across the shear layer.

2. The acoustic pressure must be continuous across the shear layer.
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Figure 1. Boundary Regions for the Aft-Fan Geometry

The first result involves the acoustic velocity normal to the shear layer. This follows a derivation
of the liner BC by Myers3 as presented by Farassat and Dunn.4 The subscripts 0 and 1 are used for
the background and acoustic quantities. The particle displacement amplitude normal to the shear
layer is also denoted by q3 and the time dependence is harmonic with the factor e C iωt . Following
the notation of Farassat and Dunn4 [eq. (3) with ε D 1], one may write

∂q3

∂t
DFE iωq3 D G

q3
EHn0 I@J EHn0 I ∇ EHu0 KML EHu1 I EHn0 N 1D G

q3
EHn0 I@J EHn0 I ∇ EHu0 KML EHu1 I EHn0 N 2 (1)

where the superscripts 1 and 2 designate regions 1 and 2 in figure 1, EH u is the fluid velocity, andEH n is the unit normal to the shear layer.
From equation 1, one finds

q3 D E u1
1n

iω L G EHn0 I@J EHn0 I ∇ EHu0 K�N 1 D E u2
1n

iω L G EHn0 IJ EHn0 I ∇ EHu0 K�N 2 O (2)

and

u2
1n D iω L G EHn0 I@J EHn0 I ∇ EHu0 KPN 2

iω L G EHn0 I@J EHn0 I ∇ EHu0 KPN 1 u1
1n O (3)

This result shows that if u1
1n is found on the shear layer from the parabolic approximation method

in region 1, then u2
1n on the external side of the shear layer may be calculated.

Next, the derivation of the impedance, z2, on the side of the shear layer adjacent to region 2 is
presented beginning with the model and assumptions.a First, the shear layer is taken to be infinitely

aNote that until the end of this section, we work with the zeroth order quantities (background flow, time independent
quantities). For simplicity of notation, we denote regions 1 and 2 by subscripts.
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thin, an assumption previously utilized in equation 3. Second, the barber pole pattern of the modes
present in the flow region is assumed to persist in the flow region inside the shear layer. This
barber pole pattern has a trace velocity on the shear layer surface in the direction normal to itself.
Figure 2 shows this trace velocity, EHVs , and the method in which it is calculated. This figure also
shows a local tangent plane to the shear layer surface which is cylindrical. Assuming the acousticQSR

θ T R
UψVXW�Y[Z]\�Y^`_ba�\^cWed/d=\�Ygf

Figure 2. Trace Velocity Description

pressure in a mode to be proportional to exp
G E i J ωt E mθ E kxx K�N where m is the circumferential

mode number, x is the axial distance, and kx is the axial wave number, it follows that

θ̇ D ω
m h ẋ D ω

kx
(4)

Rsθ̇ D ω i c1

m
Rsc1 D kRs

m
c1 (5)

ẋ D ω i c1

kx
c1 D k

kx
c1 (6)

Vs Dkjjj EHVs jjj D kc1

l
Rs

m m 2 L 1
k2

x
O (7)

Here, Rs is the local radius of the shear layer (assumed almost constant), k D ω i c1, and c1 is the
local speed of sound in region 1 of the shear layer. Noting that this expression relates to m nD 0 h the
zero order circumferential mode may also be considered with little difficulty. Here, the acoustic
pressure in a mode is proportional to exp

G E i J ωt E kxx KPN . Therefore,

θ̇ D 0 h ẋ D ω
kx

(8)
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Vs Dojjj EHVs jjj D kc1

kx O (9)

Additionally, the trace velocity for the plane wave case may be simplified further. Since the
axial wave number for the right traveling plane wave is written kx D k

1 p M , it follows that the trace
velocity is independent of frequency and is given by

Vs D c1 J 1 L M K O (10)

From the un-numbered equation above equation 11.1.21 in Morse and Ingard,5 the impedance,
z2, is

z2 D ρ2c2J 1 L M2 cosφ K sinφ
(11)

where M2 D u2 i c2 is the Mach number based on the background flow in region 2 and φ is the
preferred direction of propagation of plane waves in region 2. This angle is found purely by
kinematic considerations. Figure 3 shows the geometry in the local plane containing EHVs and the
local normal to the shear layer which is along axis 2. Let EH e D J sinφ h cosφ K be the direction normal
to the wavefront. The effective wave speed in region 2, EHce , isEHce D c2

EH e L EHu2 cosψ (12)

where cosψ D ẋ i Vs is shown in figure 2. The projection of EHce on the shear layer is equal to the

q[r�s
φ

φ t u
v rwqgxyu ψq s

z<{"|=} sb~ |�� sg���/x }7�� } �/s�� � x } r
�

r

Figure 3. Effective Wave Speed Description

trace speed Vs. This gives
Vs D u2 cosψ L c2 sinφ
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from which it is seen that
sinφ D Vs E u2 cosψ

c2 O (13)

Using this in equation 11 leads to (equation 11.1.12 of Morse and Ingard5)

z2 D ρ2c2 J Vs E u2 K 2
Vs � J Vs E u2 K 2 E c2

2
O (14)

The final step in the formulation is that

z1 D u2
1n

u1
1n

z2 (15)

and equation 3 provides an expression for u2
1n i u1

2n .

III. Implementation

Implementation of the aforementioned impedance boundary condition rests on the calculation
of two main quantities. The first is the ratio of particle velocity external to the shear layer (region 2)
to the particle velocity internal to the shear layer (region 1), u2

1n i u1
2n. The second is the impedance

on the external side of the shear layer, z2. Determination of the ratio of particle velocities, (eq. 3),
requires knowledge of the background flow velocity vectors and the unit normal to the shear layer
surface. The background flow velocity vectors are available from the steady compressible flow
solution obtained within the background flow module of CDUCT-LaRC. Additionally, the location
of the shear layer may be obtained from the background flow solution. The Non-Uniform Rational
B-Splines (NURBS) techniques utilized within the grid generation and redistribution functionality
of CDUCT-LaRC then provide the ability to define the shear layer surface and therefore, the unit
normal to the shear layer. Coincidentally, the NURBS functionality also provides a means for
using the background flow grid and solution to create an acoustic grid suitable for propagation
calculations (i.e. as orthogonal and uniform as possible).

Knowledge of the shear layer surface also extends to the calculation of the impedance on the
external side of the shear layer, as it depends on the local shear layer radius. However, as seen in
equation 14, calculation of z2 also requires knowledge of the circumferential mode number, m, and
the axial wave number, kx. When the background flow in region 1 of the shear layer is uniform,
this presents little problem, as the propagation solution for the internal portions of the duct may be
decomposed into duct modes and the ’important’ modes may be treated individually. Assuming
that a hardwall section exists at the exhaust plane. However, this approach may lead to difficulties
when the background flow is non-uniform, as the modal decomposition may not be well defined.
In these situations, it is possible that straight-forward decomposition into fundamental annular duct
modes may lead to non-physical modal amplitudes as the radial mode number is increased beyond
those that should be cut-off. It would therefore seem beneficial to attempt an approximation to the
external impedance, z2, that is independent of radial mode number.
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As the accuracy of the parabolic approximation decreases for modes nearing cut-off, a reason-
able approach may be to use the axial wave number of the first radial mode. Thus, for a given
circumferential mode, the axial wave number for the first radial mode would be used in equations
7 and 9 to obtain the trace velocity for all cut-on modes of a given circumferential order. It should
be noted that this approximation does not lead to impedance values, z2, that are independent of fre-
quency, as in the plane wave case. On the contrary, the axial wave number generally is a function
of frequency and this approach results in frequency dependent impedance values.

To explore the effects of this approximation while reducing the effects of other factors, consider
a straight annular geometry with uniform flow in the internal (region 1) and external (region 2)
areas of the shear layer. This alleviates the effects of a non-unity ratio of particle velocity (eq. 3).
In addition, the radius of the shear layer, Rs, may then be taken to be constant so that the trace
velocity changes only with circumferential mode, m, and axial wave number, kx. Initially, take the
duct to have dimensions similar to a business jet geometry with inner and outer radii of 0.303 m
(11.9 in) and 0.391 m (15.4 in), respectively. With M1 D 0 O 5 and M2 D 0 O 3, the normalized (with
respect to ρc) shear layer resistance, z2, for all cut-on radial modes are shown for m=1, 2, 5, 7, and
10 in figure 4. The results for the zero order circumferential mode are not included as only one
mode, other than the plane wave, is cut-on.

Figure 4. Shear Layer Resistance for m = 1, 2, 5, 7, and 10

It should be noted that only the resistance is presented because the reactance is zero based on
the given flow assumptions. Equation 14 shows that in order for z2 to be imaginary, vs E u2 � c2,
which is not satisfied by the conditions specified above. Additionally, the possibility of non-zero
reactance that is introduced through equation 3 is also suppressed by the specified flow conditions.
In this case, as circumferential mode number increases, it appears that the resistance tends to
decrease slightly with increasing radial mode number. However, it can be seen that the calculated
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resistance values are nearly constant for the lower order radial modes. Thus, for these conditions,
it appears that using the axial wave number of the first radial mode in equation 7 for subsequent
radial modes may be a reasonable assumption. For example, the (10, 1) has a cut-off ratio of 1.8
for this geometry and flow conditions, one could therefore hope that treatment within the bypass
duct would attenuate this mode so that it’s importance is diminished near the exhaust plane.

Carrying the analysis further, another annular geometry with dimensions similar to a larger
commercial engine (inner and outer radii of 1.17 m (46.1 in) and 2.26 m (89 in), respectively) may
be considered. With M1 D 0 O 7 and M2 D 0 O 3, the shear layer impedance for m=1, 2, 5, 7, and 10
are shown in figure 5 at a source frequency of 1600 Hz.

Figure 5. Shear Layer Resistance for m = 1, 2, 5, 7, and 10

In this case, a much wider range of radial modes are cut-on and it can be seen that the shear
layer resistance remains fairly constant for the lower order radial modes (i.e. 1~9) . As with the
previous geometry, this is less accurate for higher order circumferential modes which appears to
be due to the fact that the Rs

m term in the trace velocity decreases for larger m. Similarity to the
previous case aside, there is another feature to notice in the resistance plot. As the radial mode
number increases past 9, there is a large increase in resistance and then corresponding decrease
back to the levels for the order modes. This peak in the values is associated with modes for which
the axial wave number actually becomes negative and continues to grow negatively until cut-off.
As discussed by Eversman,6 negative phase velocities may arise for wave propagation solutions
in the presence of the mean flow. In such a situation, the applicable downstream solution has the
smallest absolute value of kxwith downstream power transmission. In these cases, the formulation
of the trace velocity, and therefore impedance expression, may fall into question and bring about a
possible area of further research. However, the importance of these modes may also be questioned,
as again these are nearing cut-off and it is hoped that internal bypass duct treatment may attenuate
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them considerably. In addition, recall that as modes near cut-off, the accuracy of the parabolic
approximation diminishes. It would therefore seem reasonable to verify that lower order modes
(larger cut-off ratio) are properly treated at the expense of modes close to cut-off.

For this geometry, the zero order circumferential mode also has a wider range of radial modes
cut-on. The impedance results for m D 0 are shown in figure 6. The resistance for the plane wave
(m D 0 h n D 0) is not included as it may be treated separately and maintains a constant value over
frequency given by equation 10. Again, as seen previously, the resistance appears to decrease as

Figure 6. Shear Layer Resistance for m = 0

radial mode number increases. However, in contrast to non-zero circumferential modes, it appears
that the zero circumferential order modes does not maintain the nearly constant resistance values
for the lower order radial modes. This appears to be due to the absence of the � Rs

m � 2
in the trace

velocity (eq. 7) which is generally larger in magnitude than the term � 1
kx � 2

. The trace velocity is
therefore affected by a change in axial wave number and varies more noticeably with increasing
radial mode number. It should also be noted that the resistance value for the n=14 radial mode was
not included in 6. This is due to the fact that while this mode is barely cut-on, Vs E u2 is less than
c2 and z2is purely imaginary (i.e. reactive). As discussed for the m nD 0 cases in figure 5, the axial
wave number for this mode is negative and the validity of equation 7 must be assessed. Based on
these results, it may be the zero order circumferential modes, other than the plane wave, that are
most effected by the axial wave number assumption presented. However, as mentioned previously,
it is hoped that the importance of the higher order modes is diminished near the exhaust plane of
the bypass duct by carrying less energy than the lower order modes and being attenuated more
effectively by internal treatment.
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IV. Example Calculation

Finally, a sample calculation for a more realistic geometry with a pylon extending beyond the
exhaust plane of the bypass duct (figure 7) is briefly discussed. The geometry is taken to be that of
the Jet Engine Simulator (JES) in the Jet Noise Laboratory of the NASA Langley Research Center.

Figure 7. Jet Engine Simulator (JES) Geometry

As this is intended to illustrate a possible application of the shear layer boundary condition,
simplified flow conditions are prescribed. The external Mach number, M2, is set to a uniform value
of 0.3. The Mach number internal to the shear layer is taken to obey 1D Mach/area relations with
an initial Mach number of 0.7. The mean flow module of CDUCT-LaRC was used to approximate
the shear layer surface location using inflow conditions set to match the Mach numbers mentioned
above. This resulted in a pseudo duct geometry as shown in figure 8. This is essentially a duct
extending from the exhaust plane of the bypass duct to the trailing edge of the core cowl with the
inner and outer walls composed of the core cowl and shear layer surfaces, respectively. Addition-
ally, the duct is split due to the presence of pylon, shown as solid surfaces (shaded) in figure 8.

Typically, the background flow solution would also be used to determine local Mach number
values for the determination of the shear layer impedance and ’pseudo-duct’ propagation calcu-
lations. However, since this is an illustrative example, the simplified mean flow conditions were
used. Assuming a plane wave source at 1600 Hz, the shear layer boundary condition was ap-
plied and contours of the real part of acoustic potential are presented in figure 9. These contours
are shown in relation to the entire geometry to further illustrate the location of the propagation
calculations.

Radiation calculations may then be performed within the CDUCT-LaRC framework using the
exposed (outer) surfaces of the pseudo-duct as source surfaces. Treatments on any of the solid
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Figure 8. Pseudo-duct geometry

Figure 9. Real Part of Acoustic Potential [M1_init � 0.7, M2 � 0 � 3 � f = 1600 Hz, Plane Wave Source].
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surfaces within the pseudo-duct may then be evaluated by determining RMS pressure at observer
locations of interest or overall radiated power.

With this extension in mind, it is useful to summarize the possible steps involved in a full
CDUCT-LaRC calculation for the JES geometry in figure 7. With a proper grid and mean flow so-
lutions available from the grid generation and background flow modules, propagation calculations
may be performed within the bypass duct. Various liner configurations on any of the surfaces may
be included. Results provide acoustic information throughout the bypass duct up to the exhaust
plane. At this point, radiation to farfield observers could be computed. However, the acoustic and
mean flow data may also be used to perform propagation calculations within a pseudo-duct defined
by the core cowl and shear layer surfaces and extending from the exhaust plane to the trailing edge
of the core cowl. Radiation calculations may then be performed using the outer surfaces of this
pseudo-duct as the source surfaces. This may be done in an effort to include some shear layer re-
fraction effects and/or evaluate the performance of treatment external to the bypass duct but within
the pseudo-duct.

V. Concluding Remarks

Previous results obtained using CDUCT-LaRC1 have shown that the modules for duct propa-
gation and radiation offer appropriate initial models for noise prediction. However, the radiation
calculations did not include the aforementioned shear layer boundary condition and instead used
the bypass duct exhaust plane as the source surface. In this work, a shear layer boundary condition
allowing the extension of CDUCT-LaRC propagation calculations to a pseudo-duct defined by the
core cowl and shear layer surfaces has been developed. Initial steps in the implementation have
also been discussed. An approximation is proposed whereby the axial wave number for the first
radial mode is used in the expression for shear layer impedance for higher order radial modes at the
same circumferential order. It is hoped that the importance of higher order will be diminished near
the exhaust plane of the bypass duct through attenuation by internal treatment, thereby improving
the accuracy of the approximation. An example application has also been presented to illustrate
the improvements that it offers for predicting noise radiation from complex inlet and bypass duct
geometries. Additionally, the extension provides a framework within which to evaluate treatments
in locations within the pseudo-duct, thereby providing a means to evaluate some external treat-
ments in the pursuit of aft-fan noise attenuation. Future work will focus on the application of
the shear layer boundary for validation purposes ranging from simplified geometries to complex
configurations similar to the example application mentioned previously.

Acknowledgments

The authors would like to thank Russ Thomas of the Aeroacoustics Branch at NASA Langley
and Mike Wiese of the NASA Langley Geometry Laboratory for assistance with the Jet Engine
Simulator geometry.

12 of 13

American Institute of Aeronautics and Astronautics



References
1Nark, D. M., Farassat, F., Pope, D. S., and Vatsa, V., “The Development of the Ducted Fan Noise Propagation

and Radiation Code CDUCT-LaRC,” AIAA Paper 2003-1652, 2003.
2Brentner, K. B. and Farassat, F., “Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation

for Moving Surfaces,” AIAA Journal, Vol. 36, No. 8, 1998, pp. 1379–1386.
3Myers, M. K., “On the Acoustic Boundary Condition in the Presence of Flow,” Journal of Sound and Vibration,

Vol. 71, No. 3, 1980, pp. 429–434.
4Farassat, F. and Dunn, M. H., “A Simple Derivation of the Acoustic Boundary Condition in the Presence of

Flow,” Journal of Sound and Vibration, Vol. 224, No. 2, 1999, pp. 384–386.
5Morse, P. M. and Ingard, K. U., Theoretical Acoustics, McGraw-Hill Book Company, 1968.
6Eversman, W., “Energy Flow Criteria for Acoustic Propagation in Ducts with Flow,” The Journal of the Acous-

tical Society of America, Vol. 49, No. 6, 1971, pp. 1717–1721.

13 of 13

American Institute of Aeronautics and Astronautics


