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Abstract

The mathematical consequences of a few simple scaling assumptions about the e�ects of compress-

ibility are explored using a simple singular perturbation idea and the methods of statistical 
uid

mechanics. Representations for the pressure-dilatation and dilatational dissipation covariances

appearing in single-point moment closures for compressible turbulent are obtained. The results

obtained, in as much as they come from the same underlying diagnostic relationship, represent

a uni�ed development for both the compressible covariances. While the results are expressed in

the context of a second-order statistical closure they provide some interesting and very clear phys-

ical metaphors for the e�ects of compressibility that have not been seen using more traditional

linear stability methods. In the limit of homogeneous turbulence with quasi-normal large scales

the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The

expressions obtained are functions of the rate of change of the turbulence energy, its correlation

length scale, and the relative time scale of the cascade rate. With the appearance of the length

scale the dilatational covariances are found to scale with the Mach numbers based on the mean

strain and rotation rates. The expressions for the dilatational covariances contain constants which

have a precise and de�nite physical signi�cance; they are related to various integrals of the longi-

tudinal velocity correlation. The pressure-dilatation covariance is found to be a non-equilibrium

phenomena related to the time rate of change of the internal energy and the kinetic energy of the

turbulence. Also of interest is the fact that the representation for the dilatational dissipation in a

turbulence, with or without shear, features a dependence on the Reynolds number. This article is

a documentation of an analytical investigation of the implications of a pseudo-sound theory for the

e�ects of compressibility. The novelty of the analysis is in the very few phenomenological assump-

tions required to produce the results. Subsequent work will assess the consequences of this analysis

in the context of compressible turbulence models for engineering calculations.
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NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1 Introduction

In the moment equations for compressible turbulence several new quantities, not seen in the in-

compressible form of the equations, appear. There are new terms in the equations that re
ect

the fact that the 
uctuating dilatation, d = uk ;k, in a compressible turbulence is not zero. These

e�ects have been divided into two categories, Lele(1994). There are contributions to the 
uctuating

dilatation by the the 
uctuating pressure; there are also contributions to the 
uctuating dilatation

by 
uctuations in composition or temperature which occur in situation in which of heat and mass

transfer are relevant. These two sources of the 
uctuating dilatation have been distinguished using

the phrases compressibility e�ects and variable inertia e�ects, Lele (1994). There are also additional

e�ects, in inhomogeneous or nonequilibrium 
ows, associated with the portion of density 
uctua-

tions due to gradients in the mean density; these e�ects might also be called variable inertia e�ects

giving rise to the di�erences between Favre and Reynolds averaged variables. There are also e�ects

associated with the transport coe�cient variations due to the 
uctuations in temperature. In this

article e�ects due the occurrence of a nonzero 
uctuating dilatation, the so-called compressibility

e�ects, are treated.

In the context of single-point moment closure methods, compressibility e�ects due to the 
uctuating

divergence appear in two new terms in the kinetic energy equation of a turbulent �eld: the pressure-

dilatation, < pd >, and the variance of the dilatation, < dd >, which is related to what has come to

be called the compressible dissipation, �c =
4

3
� < dd >. The turbulent energy equation is written

as

< � >
D

Dt
k = Pk � < � > �s + < pd > � < � > �c + Tk: (1)

Pk represents the production and Tk represents the transport terms and any other terms (that

are not directly germane to the present analysis). There are additional terms representing the

contraction of the mass 
ux vector on the mean 
ow acceleration. Tk will also be used to represent

all such terms. The < pd > and < dd > appearing in the k equation were recognized by Zeman

(1990, 1991) and Sarkar et al. (1991) in earlier studies of compressible turbulence closures. They

are the subject of this work.

The dilatational covariances also appear in the internal energy equation, here written in terms of

the mean temperature with a constant cv:

< � > cv
D
Dt

T = PT � < pd > + < � > �s+ < � > �c + TT

Where TT is the transport of the mean temperature including such e�ects as heat 
ux and

the turbulent or pressure transport. The production, for a speci�c class of 
ows, is given by
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PT = �PD + 2 < � > (S2 + W 2) where the strain and rotation tensors are de�ned to be

symbolically equivalent to the incompressible case, ie. traceless: Sij = 1

2
[Ui;j +Uj ;i�

2

3
D�ij ],

Wij = 1

2
[Ui;j �Uj ;i ]. Note that Sjj = 0 since D = Uj ;j . There are additional terms depend-

ing on heat or species transfer and 
uctuations in 
uid properties: they are not germane to the

present analysis. Note that the dilatational covariances appear with opposite signs in the kinetic

and mean internal energy equations. The dilatational covariances represent an irreversible, �c, and

reversible transfers, < pd >, of energy between the mean internal energy �eld and the 
uctuating

kinetic energy �eld.

The pressure-dilatation covariance, < pd >, and the dilatational variances, < dd >, - which is

related to the dilatational dissipation - have been the subject of several studies stressing both the

fundamental issues in understanding the physics as well as obtaining models suitable for use in

engineering calculations. In addition to the aforementioned works of Zeman and Sarkar, additional

insight into these terms can be found in the studies of Durbin and Zeman(1992), Zeman and

Coleman (1991), Zeman (1993), Erlebacher et al. (1990), Sarkar (1992), Sarkar et al (1991a,

1991b), Blaisdell et al. (1991), Blaisdell and Sarkar (1993), Lee (1992).

The present approach di�ers from the approaches of both Zeman and Sarkar. A low turbulent Mach

number expansion of the equation of state, the Navier Stokes, the continuity and wave equations is

conducted. The problem is recognized as a singular perturbation in as much as there are two relevant

length scales: an inner scale, `, associated with the turbulence �eld, and an outer scale � � `=Mt

associated with a propagating \acoustic" radiation �eld surrounding the vortical motion producing

the radiation �eld. The perturbation development produces an algebraic constitutive equation for

the 
uctuating dilatation: the continuity equation, rather than being a prognostic equation for the

density, becomes a diagnostic equation for the 
uctuating dilatation. Taking the relevant moments

of the expression produces constitutive relations for < pd > and < dd >. Assuming homogeneity

and quasi-normality expressions without any unde�ned constants are obtained for < pd > and

< dd >.

Retaining only the lowest order isotropic contribution produces simple expressions in terms of an

incompressible turbulence for the unknown covariances are found. The expressions are then given

in terms of quantities carried in a single-point closure.

The analysis can be contrasted to more traditional approaches using linear stability theory. Lele

(1994) provides a resume of several of these works. Despite the inherent limitations in the linear

stability analysis there has been some useful light shed on the dynamical aspects of the e�ects of

compressibility on the 
ow. Here a statistical approach to the problem is taken. Such an approach
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accounts for the nonlinearity of the phenomena. A statistical approach approach, however, does

average over the many interesting dynamical features of the 
uctuation 
ow but delivers some very

interesting insights indicating the nature of the cumulative e�ects of the 
uctuations. Of particular

note is the interpretation of the e�ects of compressibility as an added mechanism for the transfer

of energy between the turbulence �eld and the mean internal energy �eld. The theory predicts the

mechanism and the rate of this intermodal energy transfer.

It is found, in analogy with the pressure-strain covariances in the Reynolds stress equations for an

incompressible 
ow, Ristorcelli et al. (1994), that the representations for the dilatational covari-

ances have a rapid and a slow component. However, unlike the rapid-pressure in the incompressible

problem, the rapid component depends on the spatial area of the rapid-pressure correlation. This

behavior results in a dependence on a \gradient" Mach number: a Mach number formed using

the mean velocity gradient and a length scale of the turbulence. This quantity appears to be an

important parameter in distinguishing the e�ects of compressibility in a mixing layer from those in

a boundary layer, Sarkar (1994).

Several other interesting results have been found. These are now highlighted:

1) The pressure dilatation < pd > can be either positive or negative depending on the rate of

change of the kinetic energy, the mean temperature, the length scale of the turbulence and the mean

velocity gradients. For a near equilibrium 
ow, as long as the production exceeds the dissipation

by an amount that scales with the square of the turbulent Mach number, M2

t =
2=3k

c2
, and the rate

of increase of the internal energy �eld, the pressure-dilatation will be negative transferring energy

from kinetic to internal modes.

2) The representation for < pd > can be shown to behave as an added mass term in the the k

equation: inertia is added to the turbulence by the capacitance of the 
uctuating pressure �eld.

The 
uctuating pressure �eld, or equivalently the mean internal energy, acts as a capacitor storing

energy fed into the turbulence by the production and then transferred to the internal energy by

< pd >.

3) The pressure dilatation, < pd >, scales with M2

t with order M4

t and higher corrections. The

dilatational dissipation scales as M4

t with a Re�1t dependence; Rt =
4

9

k2

��
is the turbulent Reynolds

number. For high Reynolds number 
ows, much higher than those seen in DNS, the dilatational

dissipation is found to be small; the primary e�ects of compressibility are due to the pressure-

dilatation. The e�ects of compressibility, occurring through the agency of the pressure-dilatation

covariance, are found to be important in nonstationary 
ows.
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4) The rapid portions of both < pd > and < dd > scale with the relative time scales of the cascade,

Sk=� and Wk=�, (the mean strain and rotation) to the second and fourth powers. With the

concomitant appearance of the turbulent Mach number Mt, the expressions are found to scale with

the mean deformation and mean rotation Mach numbers S`=c and W`=c. It is these Mach numbers

that distinguish the mixing layer from the equilibrium boundary layer and thus the representation

can discriminate between these two types of 
ows. The appearance of the two di�erent gradient

Mach numbers indicates a dependence of the dilatational covariances on the relative amounts of

strain versus rotation; a fact not yet looked for in experimental or numerical results.

5) Unlike the incompressible dissipation, in which the viscosity sets the small scales but otherwise

has very little e�ect on the cascade rate, the dilatation dissipation is, in this linear theory, dependent

on the viscosity. For a �xed Mt number, as Rt ! 1, the dilatational dissipation vanishes. The

compressible dilatation doesn't appear to be able to be understood as a spectral cascade rate set

by the large scales of the 
ow.

6) It is seen that the density 
uctuations are related to the incompressible pressure 
uctuations,

p = 
� which, upon rescaling, can be understood as, � = M2

t p. This indicates that compressible

numerical simulations starting from \incompressible" initial conditions are more consistently ini-

tialized with nonzero initial density and temperature 
uctuations. One can speculate that initial

conditions inconsistent with the variances associated with the incompressible pressure may create

a wave �eld that may delay the decay of the transients or that may not even decay during the

course of a DNS. These transients are analogous to the transients associated with the free motion

of a second order system, y00 + y0 + y = 0 relaxing from some initial condition. This situa-

tion appears to correspond to the analysis followed by Erlebacher et al. (1990) and Sarkar et al.

(1991b). The dependence on the initial conditions in compressible isotropic simulations has been

thoughtfully noted in Blaisdell et al. (1993). The crucial point, as is made clear by the analysis, is

that the initialization of any calculation with zero 
uctuating temperature, density or dilatation is

inconsistent with a �nite non-zero turbulent Mach number.

The present treatment for the e�ects of compressibility can be thought of as analogous to the forced

system, y00 + y0 + y = f(!t); the forcing coming from the vortical motions of a turbulence with

non-zero Mach number in which the e�ects of transients from initial conditions has faded. The

analogy can be made exact, however, doing so is not relevant to the present subject.

The present article is organized in the following fashion: governing equations, analysis, discussion of

physic of the results of the analysis, discussion of limitations and assumptions. The �rst two sections

are fundamental in laying the ground work for the representations for the covariances with the
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uctuating dilatation: �rst a simple heuristic picture of the physics is presented after which a system

of equations consistent with the physics presumed is derived. In the subsequent section and its

four subsections, the assumptions of homogeneity and isotropy are exploited in obtaining analytical

expressions for the desired covariances. The methods of statistical 
uid mechanics, following the

inceptional works of von Karman and Howarth (1938), Batchelor (1951), and Proudman (1952),

are relied on extensively. As a byproduct of the section on the rapid pressure-dilatation correlation

an expression for the pressure variance in an arbitrary three-dimensional mean 
ow is derived.

Later sections discuss the physical implications of the representations derived. Qualitative com-

parison is made to the physics that is known for several simple compressible turbulent 
ows. It is

shown that the models show no e�ects of compressibility in the equilibrium adiabatic wall layer as

is known to be the case. The document �nishes with a summary of the limitations and assump-

tions built into the theory which suggest future work as well as the class of 
ows for which the

representations are expected to be useful.

This article is meant to be primarily analytical. A simple perturbation analysis and the methods

of statistical 
uid mechanics are used to investigate the implications of a few simple and reasonable

assumptions. The results are a mathematical consequence of the initial assumptions. The article

is intended to be a documentation of this procedure and its implications. The objective is to

providing metaphors and nondimensional numbers with which to understand and further explore

diverse issues in compressible turbulence. Testing, verifying, exploring and evolving the present

analytical results into a working turbulence model suitable for engineering calculations is the subject

of a sequel work now in progress. These more quantitative issues are addressed in several works

planned and in progress, Ristorcelli (1995), Ristorcelli et al. (1995).

2.1 A physical background for the mathematics

Before presenting the mathematical development leading up to the analytical expressions for pres-

sure dilatation and the dilatational covariances a physical picture underlying and suggesting the

mathematical development is described. A more formal and mathematical presentation is given in

due course.

It is useful to keep in mind the one essential and central bit of physics that forms the lynchpin of the

theory and makes the present method and results possible: in the near �eld of an acoustic source,

whose size is small with respect to the wavelength of its emission, the 
uid behaves as if it were

incompressible. This observation appears to have been �rst made by Landau and Lipschitz (1958)

and is a cornerstone in the method of matched asymptotic expansions in the �eld of acoustics.
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Three basic ideas form the foundation of the pseudo-sound theory for the dilatational covariances.

The �rst is recognizing the problem as a singular perturbation problem - it has two di�erent length

scales. As it is the turbulence that creates the pressure and density 
uctuations in the medium

the frequencies of the compressible disturbances are the same as the frequencies of the turbulence,

c=� � ~u=`. The two length scales are: a correlation length scale associated with the 
uctuations

of the turbulence, `, and a length scale � � `=Mt associated with the propagation of pressure

and density 
uctuations associated with the turbulent 
uctuations. Here Mt = (2k=3)1=2=c is

the turbulent Mach number where k = 1=2 < ujuj > and c2
1

= 
p1=�1 is the sound speed.

The turbulent Mach number is to be used as the small parameter in expansions of the compressible

equations to obtain representations for the e�ects of compressibility as manifested in the covariances

with the 
uctuating dilatation. Underlying the lowMt assumption which leads to the two disparate

scales is what is called, in the sound generation problem of aeroacoustics, the compact-source

assumption. This is equivalent to the idea that the 
ow structure covers a distance small with

respect to the length scale of the compressible radiation it emits. Closely related to these two

length scales are two time scales: one associated with the convective modes of the 
ow, say ~u=`,

and the sound crossing time - the time it takes for a information to cross a typical scale of the

turbulence, c=`. Note that the conventional de�nition of the Mach number is used: it is the ratio

of a characteristic 
uctuating velocity to the (mean) sound speed. This is in concordance with the

conventions of the acoustics literature from which some of our ideas are drawn.

The second idea concerns the pressure. In the sound generation problem, two pressures, an \acous-

tic" pressure which propagates and a pseudo-pressure associated with the convective motions of

the 
uid, are sometimes distinguished. The term pseudo-pressure was �rst coined by Blokhintsev

(1956) as quoted in Ribner (1962). The term propagating pressure will be used for the term \acous-

tic" pressure so as not to imply that the problem is linear as the propagation of sound is assumed to

be in the small disturbance limit. Without attempting to be precise, the pressure 
uctuations in a


uid satisfy, to the degree suitable to the present heuristic discussion, the following wave equation,

Lighthill (1952)

c�2
1
p;tt � p;jj = (�uiuj);ij (2)

where p represents the deviations of the 
uid pressure from its value at the static reference state.

Care must be taken in assessing which solutions to this equation are relevant to compressible tur-

bulence modeling. Solutions to this equation are comprised of the homogeneous solution, which

obeys the sourceless wave equation and the wave equation with source due to the turbulent 
uc-

tuations. The sourceless wave equation, essentially the equation of linear acoustics, describes an
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acoustic �eld resulting from certain speci�cation of the boundary conditions or initial conditions.

It has little to do with the vortical motions associated with the 
uid turbulence that are the source

of the propagating wave �eld. Following Ribner (1962) the 
uid pressure is decomposed into its

convective and propagating parts p = pc + pp where pc satis�es

� pc;jj = (�uiuj);ij (3)

and therefore pp satis�es

c�2
1
pp;tt � pp;jj = �c�2

1
pc;tt : (4)

In the adiabatic limit the right hand side can be written as (��;tt ) and is therefore related to

changes in volume of the 
uid element - the dilatation - that generates the propagating pressure.

In the region of the 
uid turbulence, for low turbulent Mach number, the pseudo-pressure is larger

than the propagating pressure whose source is from 
uid motions. Far from the turbulent portion of

the 
uid, the propagating pressure is the major portion of the pressure �eld as the pseudo-pressure,

being associated primarily with the convective motions, decays rapidly. Thus, there is an inner

region of scale ` in which the major portion of the pressure is associated with the vortical motions

and an outer region, or an acoustic mantle of scale �, in which the the propagating pressure is

the major component of the pressure �eld. In the inner region of scale ` << �, the sound speed

is e�ectively in�nite: on a time scale of the 
ow, signals are felt throughout the region of scale `

e�ectively simultaneously. Which is to say that, in the near �eld, pp satis�es the following Poisson

equation

� pp;jj = �c�2
1
pc;tt : (5)

These ideas, well-known in studies of sound generation, were �rst understood as a singular per-

turbation by Landau and Lipschitz (1958). A more formal presentation of these ideas is given in

the following section. To obtain representations for covariances with the dilatation, only the inner

solution of the singular perturbation problem, were the pseudo-pressure dominates, is used. This is

consistent with the observations of Sarkar (1992), Blaisdell and Sarkar (1993), in which it has been

found, numerically, that the incompressible portion of the pressure makes the largest contribution

to the pressure-dilatation covariance.

The third idea is that equations should uniformly approach their incompressible form as the Mach

number goes to zero with bounded derivatives. These facts are used to produce the gauge functions

in a perturbation expansion in which the small parameter is related to the Mach number of the

velocity 
uctuations, the turbulent Mach number, Mt. This does not limit the theory to low mean
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ow Mach numbers. In general, the aerodynamic problem requires an assessment of the e�ects of

compressibility on a 
ow of arbitrary mean Mach number as felt through the compressible nature of

the low Mach number turbulent 
uctuations. In this way the turbulent Mach number dependence

of the covariances is obtained by a systematic and consistent balance of terms in the compressible

Navier Stokes equations. These are ideas have received additional ampli�cation in the very useful

and thought provoking work of Zank and Matthaeus (1991).

The use of the inner solution is a useful approximation in mediums that are �nite or in�nite in

extent for covariances involving at least one 
uctuating quantity which does not propagate - whose

source is local. Contributions to the covariances from regions outside of the correlation length, the

outer solution, are negligible. This is because there is no correlation between the local 
ow �eld in

the region ` with quantities outside the region `. Such is the case for < pd > in which the major

contribution to the 
uctuating p is the local pc.

This is not the case for covariances of the propagating �eld such as, for example, the variance

< dd >, whose far �eld component may be larger than its near �eld if the size of the domain,

D, of the 
ow D=� >> 1 as is implicit in compressible homogeneous simulations. This raises

some interesting and subtle ideas related to the physics of homogeneous numerical simulations:

ideas relevant and important to the interpretation and use of homogeneous compressible DNS to

calibrate models for 
ows of engineering interest occurring in �nite domains.

The present article makes use of, what is called, the compact 
ow assumption: the size of the

turbulent �eld, D, is small or on the order of the acoustic scale, D=� � 1. Sound traveling through

a 
ow on scales comparable to the wavelength of the emitted sound will begin to be scattered by

the vorticity. In addition its accumulated e�ects on the 
ow will begin to modify the 
ow through

which it is traveling. It is for this reason that acoustic analogies sometimes fail when they are used

to predict the far �eld of an acoustic source after the signal has traversed the 
uctuating medium

for more than a few wavelengths. The present interest is in predicting covariances and this compact


ow assumption is much less of a restriction than in acoustics as the length scale of the correlation

naturally �lters out signals coming from portions of the domain that are uncorrelated with the local

vorticity. The compact 
ow assumption is still necessary in order to neglect covariances between

propagating �elds, such as < dd >.

While most 
ows of engineering interest can be categorized as compact 
ow problems, homogeneous

compressible simulations do not fall into that category. Homogeneous DNS correspond, locally, to

a turbulence immersed in a general random background wave �eld which will make contributions

to the variances of a propagating �eld such as < dd >, even though the coherence between the
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local turbulent �eld and the background �eld that propagates through it is small. For that matter,

the local 
ow could be exactly incompressible and it would still experience a net drain of energy

from the background dilatational wave �eld in which it is immersed. The work of Sarkar et al.

(199b) has made progress on problems of this type. The model problem they appear to have solved

in their approach is that of a turbulence of scale ` irradiated by an in�nite external acoustic �eld

generated by a turbulence whose statistics are the same as those of the local turbulent region.

Their �ndings are related to 
ows in which the size of the turbulent �eld is, at least, � and the

�eld is also homogeneous on the � scale (at least) because the assumption of homogeneity made in

compressible DNS. While such simulations shed much basic insight on the e�ects of compressibility

(this paper could not have been written without those insights) application of such results to models

for compact 
ows of general engineering interest should be done with these possibilities in mind.

The assumption of homogeneity is made throughout the mathematical development: this is an

assumption of homogeneity on the scale ` which is to say `=L < 1 where L is the scale of the region

of homogeneity. This assumption coupled with the compact source and compact 
ow assumptions

means that the theory is applicable to 
ows in which `=� < 1; L=� < 1; D=� � 1. The article of

Sarkar et al. (1991a) and compressible homogeneous simulations in general appears to be relevant

to the problem in which `=� < 1, and L=� > 1; D=� > 1.

This completes an intuitive background of the physics of the problem and is a useful perspective

from which to view subsequent developments and more subtle side issues. A mathematically more

formal statement of these ideas is now carried out.

2.2 The governing equations: a mathematical foundation

The following equations are used to describe the portion of the 
ow of interest:

�;t + up�;p = � �up;p (6)

�ui;t + �upui;p + p;i = 0 (7)

p=p1 = (�=�1)
 (8)

For clarity of exposition the viscous terms are not carried: they can be shown to be of higher order

for the compressible portions of the �eld, see for example Zank and Matthaeus (1991). This re
ects

the fact that the inner solution of the sound generation problem, on the small length scale, `, is

being sought and at these scales viscous e�ects which attenuate wave propagation are unimportant.

Moreover, a spectral Mach number exhibits an approximate ��1=3 dependence and the scales of

the motion responsible for the 
uctuating dilatation will not be the scales of the 
ow in
uenced by

viscosity.
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The momentum and continuity equations can be combined to give the following equation

�;tt � p;jj = (�uiuj);ij (9)

which becomes a wave equation for � or p if the gas law is used to eliminate one in favor of the

other. The equation is left in this form for subsequent purposes. There are, of course, some

limitations regarding the application of this set of equations to a general compressible 
ow. The

most substantial is the assumed form of the gas law valid for isentropic 
ows: heated wall-bounded


ows have strong temperature e�ects and as such the application of the theory in the near-wall

region at high Mach number is, strictly speaking, not valid. The development presented here

suggests a procedure for handling the problem in more complex 
ows with heat transfer.

Perturbing about a quiescent state, (p1; �1), the nondimensional forms of the pressure and density

are taken as p = p1(1 + p0); � = �1(1 + �0). After rescaling the independent variables with `=~u

and `, and dropping the primes, the equations become

�;t + up�;p = �(1 + �)up;p (10)

(1 + �)ui;t + (1 + �)upui;p +��2 p;i = 0 (11)

p� 
� = 1=2 
(
 � 1)�2 (12)

�;tt � ��2p;jj = [(1 + �)uiuj ];ij (13)

where �2 = 
M2

t and Mt = ~u=c1 where ~u = 2k=3 =< ujuj > =3 and c2
1

= 
p1=�1. Note that

the choice of time scales is determined by the energy containing scales of the motion: it is a coarse

grained time scale. The �ne grained time scale of the problem includes some very interesting physics,

but relevant only in a cumulative, to the construction of a statistical model. A meaningful balance,

giving bounded �rst derivatives of the velocity, is established if p � �2. It then follows that � � �2

also. The conventional de�nition, in concordance with the acoustics literature from which some of

our ideas are drawn, of the Mach number is used. It is the small parameter that emerges naturally

in the relevant nondimensionalization of the compressible equations. The use of this symbol as the

small parameter is only for this section; it will be used subsequently to denote the dissipation. Note

that the conventional de�nition of the turbulent Mach number Mt = (2k=3)1=2=c means that it is a

factor 0:816 or 0:577 smaller than the Mach numbers de�ned using k or q2 =< ujuj >. Expansions

of the form

p = �2 [ p1 + �2p2 + :::: (14)

� = �2 [ �1 + �2�2 + :::: (15)

ui = vi + �2 [ wi + �2w2i + :::: (16)
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are chosen. The gauge functions for the velocity are determined by the boundedness condition on

the second derivative of the velocity, following the methodology of Zank and Matthaeus (1991),

with di�erent results. The only meaningful balance using a perturbation series in unit powers

produces the same results. Note that this is not the linear acoustic scaling in which pressure and

density disturbance scale as p0 � �1~u2 � �1w0c1 , �0 � �1M2 and thus the 
uid velocity of a


uid particle associated with the passage of a wave is w0 �M ~u.

Inserting the expansions into the equations produces, to the lowest two orders, the incompressible

equations

vi;t + vpvi;p + p1;i = 0 (17)

p1;jj = � (vivj);ij (18)

p1 = 
�1 (19)

where vi;i= 0. Note that if the pressure 
uctuations are scaled with velocity 
uctuations then the

last equations can be written as �1 = M2

t p1. The correction for the compressibility of the 
ow,

which does not involve a wave equation on the inner scales, is

�1;t+vp�1;p = �wk ;k (20)

wi;t + vpwi;p +wpvi;p + p2;i = �1(vi;t+vpvi;p ) (21)

� p2;jj = (wivj + wjvi + �1vivj);ij ��1;tt (22)

p2 � 
�2 = 1=2 
(
 � 1)�2
1
: (23)

This is a statement of the fact that, over a region of size `, the pressure signal is felt, e�ectively, in-

stantaneously. Re
ect on the fact that � is a small parameter and that analysis will not adequately

represent the e�ects of compressibility when shocklets are important. The analysis represents the

e�ects of compressibility as a linear correction to the nonlinear zeroeth-order of incompressible tur-

bulence problem. This completes the derivation of the evolution equations for the inner expansion.

The full problem is the sound generation of acoustics and it requires matching the inner solution to

an outer solution. For the single-point turbulence closure problem for the dilatational covariances

the outer solution is not required. The above equations will be used to develop representations for

the unknown terms. Some of the above relations may also be used to specify initial conditions for

DNS that seek to investigate compressibility e�ects whose source is the turbulent velocity �eld and

not initial conditions that re
ect some other generation mechanism (for example, passage through

a shock).

The terms that are sought in this study are various moments of the 
uctuating dilatation d =

wj ;j . The zeroeth-order equations show that the density 
uctuations are given by the pressure

11




uctuations, 
�1 = p1. The evolution equation for the density 
uctuations now becomes a diagnostic

relation for 
uctuating dilatation,

�
d = p;t+vpp;p : (24)

The subscript has been dropped. It is seen that one does not need to obtain a solution to the

evolution equation for the compressible velocity �eld, wi, in order to obtain its dilatation. A very

nice result indeed y; it forms the kernel of the present pseudo-sound theory. The dilatation is diag-

nostically related to the local 
uctuations of the pressure and velocity; it is the rate of change of the

incompressible pressure �eld p1;jj = (vivj);ij , following a 
uid particle. The pressure 
uctuations

which originate as a constraint to keep the eddies incompressible drives the near �eld dilatation.

Note that scaling the 
uctuating pressure with the mean energy of the velocity 
uctuations indicates

d = M2

t [ p;t+vpp;p ].

Constitutive relations for the pressure-dilatation and the dilatational squared covariances can be

written by taking the appropriate moment of the 
uctuating dilatation equation to produce, drop-

ping the subscript,

�2
 < pd > = < pp >;t (25)


2 < dd > = < _p _p > + 2 < _pvqp;q> + < vpp;p vqp;q> (26)

for a homogeneous turbulence. The overdot is used to represent the time derivative when it appears

within the brackets. It should be noted that the near �eld compressibility e�ects, as manifested in

< pd > and < dd >, have been directly linked to the incompressible velocity �elds. This fact will

be exploited to obtain expressions for the dilatational covariances in a turbulent 
ow.

3.1 Analysis for the pressure dilatation covariance in isotropic turbulence

The simplest form of the problem is now solved: expressions for the dilatational covariances for

an isotropic turbulence without any mean deformation are obtained. For those familiar with the

pressure strain covariance modeling in incompressible turbulence, this is analogous to the slow

pressure component of the representation. The constitutive relationship for < pd > is the starting

point. Using the assumptions of isotropy, homogeneity and quasi-normality, an expression with no

unde�ned constants can be obtained. The methods of statistical 
uid mechanics similar to those

of Batchelor (1951, 1953), Proudman (1952), and especially works of von Karman and Howarth

(1938) are used.

yA similar expression in di�erent contexts with di�erent assumptions has been obtained independently by both
S. Girimaji (1995) and S.Crow (1970).

12



Batchelor (1951) has obtained a representation for the pressure variance, < pp >, in an isotropic

incompressible turbulence. Here, a simpler Greens function method, following Kraichnan (1956),

is used. The pressure of interest satis�es the Poisson equation: p(x; t);jj= �(vivj);ij from which it

follows that the two-point pressure variance obeys

< p(x; t)p(x0; t) >;jjp0p0 = < vivjv
0

pv
0

q >;ijp0q0 (27)

which can be written as a di�erential equation in ri = x0i � xi. Following the usual methods for

translationally invariant random processes,

< p(x; t)p(x0; t) >;jjpp= < vivjv
0

pv
0

q >;ijpq (28)

Using the assumption of translational invariance (homogeneity) where now < p(x; t)p(x0; t) >=<

pp0 > (r). The Greens function for the equation is � 1

8�
j r0 � r j and the solution is expressed as

< pp0 >= � 1

8�

R
< vivjv

0

pv
0

q >;ijpq j r
0 � r j d3r0 (29)

The quasi-normal assumption is used to relate the fourth-order moment to the second-order mo-

ments. The adequacy of the quasi-normal assumption have been investigated over several years.

Batchelor (1951) has presented evidence of its adequacy when invoked with respect to the large

scales of the 
ow. A spectral version of this assumption is used in the EDQNM theory which since

its inception, as presented in Orzag (1970), has produced very useful results. The adequacy of

the assumption for the large scales of the 
ow has been documented in the several experimental

works. McComb (1990) gives a summary of these results. In compressible 
ows the adequacy of

the quasi-normal assumption for the large scales has been investigated in Sarkar et al. (1991a) and

Blaisdell et al. (1993). The assumption produces

< vivjv
0

pv
0

q >=< vivj >< v0pv
0

q > + < viv
0

p >< vjv
0

q > + < viv
0

q >< v0pvj > : (30)

The de�nition for the correlation, < viv
0

j >=
2k
3
Rij(r), where k = 1

2
< vjvj >, is used to obtain

< vivjv
0

pv
0

q >;ijpq= 2 < viv
0

p >;jq < vjv
0

q >;ip= 2 (
2k

3
)2Rip;jqRjq;ip: (31)

The pressure variance becomes

< pp0 >= �2 (2k
3
)2 1

8�

R
Rip;jqRjq;ip j r

0 � r j d3r0: (32)

Continuity, the fact that Rij ;j (r) = 0, has been used. For isotropic turbulence the integral can

be written in terms of the longitudinal correlation function. >From the inceptional paper of von

Karman and Howarth (1938), the longitudinal correlation, < v1(0)v1(r) >=< v1v1 > f(r) =

13



2k
3
f(r) = 2k

3
R11, allows the general two-point correlation to be written as Rij = �

rirj
2r

f 0 + (f +

1

2
rf 0)�ij . The integrand can be written in terms of the scalar function f(�). Following Batchelor's

(1951) development the fourth-order two-point correlation can be expressed as

Rip;jqRjq;ip = 2 [2f 002 + 2f 0f 000 +
10

r
f 0f 00 +

3

r2
f 02]

= 2
1

�2
d

d�
[
1

�

d

d�
(�3f 02)]: (33)

Inserting into the integrand and applying integration by parts successively produces, returning to

dimensional variables, the Batchelor (1951) result:

< pp > = 2 (
2k

3
)2�2

1

Z
1

0

�f 02(�)d� =
8

9
�2
1
k2Is

1
(34)

where

Is
1
=

Z
1

0

�f 02(�)d� : (35)

Here, and henceforth, � = r=` is the nondimensional spatial coordinate such that
R
f(�)d� = 1.

Inserting the result into the constitutive relation for the pressure dilatation,

�2
 < pd > =
D

Dt
< pp > (36)

produces, in dimensional quantities, the following expression for the slow pressure dilatation,

< pd >s = �
2

3
Is
1

D

Dt
[< � > M2

t k] (37)

after accounting for the normalization employed. Here, the undisturbed density and pressures have

been replaced by by the local mean density and pressures. The turbulent Mach number is de�ned

as M2

t = 2k
3
=c2 where c2 = 
 < � > =P is the local mean speed of sound.

3.2 Analysis for the variance of the dilatation in isotropic turbulence

The quasi-normal form of the constitutive relation for the variance of the dilatation is


2 < dd >= < _p _p > + < vpp;p vqp;q> : (38)

Starting, once again, from the nondimensional Poisson equation for zeroeth-order pressure �eld,

p(x; t);jj= �(vivj);ij, an equation similar to the two-point variance of the pressure derived above

can be obtained for the variance of the time derivative of the pressure by di�erentiation:

< _p(x; t) _p(x0; t) >;jjpp = < (vivj);t (v
0

pv
0

q);t>;ijpq : (39)

The assumption of homogeneity has been used and the equation is written in terms of the usual

spatial di�erence coordinate, ri. Expanding the products of the time derivatives produces,

< (vivj);t (v
0

pv
0

q);t>;ijpq = 4 < _vivj _v0qv
0

p >;ijpq (40)
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and the di�erential equation for the variance becomes

< _p(x; t) _p(x0; t) >;jjpp = 4 < _vi _vp
0 >;jq < vjv

0

q >;ip : (41)

The fact that < _vjv
0

q >= 0 for homogeneous isotropic turbulence, as can be seen by using the

Navier Stokes equations to rewrite _vj , has been used. The tensor < _vi _v
0

j > can be written in

terms of the correlation function, < _vi _v
0

j >=< _v _v > _Rij which can be rewritten in terms of the

longitudinal correlation, f1, where as usual, _Rij = �
rirj
2r

f 0
1
+ (f1+

1

2
rf 0

1
)�ij to produce < _vi _v

0

i >=<

_v _v > [3f1 + rf 0
1
] =< _v _v > r�2(r3 f1)

0. The bi-harmonic equation for the variance of the time

derivative of the pressure becomes

< _p _p0 >;jjpp= 8 2k
3
< _v _v > 1

r4
[ 1
r3
(rf 0f 0

1
)0]0: (42)

Using the Greens function method and integrating by parts produces, in dimensional form,

< _p _p >= 4 �2
1

2k
3
< _v _v >

R
1

0
�f 0f 0

1
d� (43)

An expression for the two-point variance of the acceleration, < _v _v > f 0
1
is required. Little is known

of the longitudinal correlation for the acceleration. The Navier Stokes equations can be used

to obtain an equation relating the acceleration correlation, f1, to f , the well-known longitudinal

correlation of the two-point velocity correlation z. The dynamical equations of the inviscid portions

of the motion, in the absence of a mean velocity �eld, can be used to produce the following equation

for the two-point covariance of the acceleration:

< _vi _v
0

i >= ��
�2

1
< pp0 >;jj � < vivjv

0

iv
0

k >;jk (44)

where the usual nomenclature of the homogeneous turbulence is in e�ect and the independent

variable is the two-point separation ri.

The quasi-normal expression for the last term on the right in the evolution equation for the two-

point acceleration produces

< vivjv
0

iv
0

k >;jk = [< vivj >< v0iv
0

k > + < viv
0

i >< vjv
0

k > + < viv
0

k >< v0ivj >];jk

= (
2k

3
)2

1

r2
[r3 (ff 00 �

1

2
f 02 +

4

r
ff 0)]0 (45)

after substituting in terms of the longitudinal correlation. For operations on functions of r, the

Laplacian can be written < pp0 >;jj = r�2 d
dr
(r2 d

dr
< pp0 >) and the dynamical equation for the

two-point acceleration becomes, after one integration,

< _v _v > f1 = �
1

�2
1

1

r

d

dr
< pp0 > � (

2k

3
)2(ff 00 �

1

2
f 02 +

4

r
ff 0): (46)

zThis development was indicated to me by Y. Zhou.
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>From the expression for the two-point covariances for the pressure, Batchelor (1951), the following

expression can be derived

1

r

d

dr
< pp0 >= �4�2

1
(
2k

3
)2
Z

1

r

1

r0
f 02dr0 (47)

Inserting Batchelors expression in the equation for f1 and taking the derivative produces the quan-

tity required,

< _v _v > f 0
1
= � (

2k

3
)2(ff 000 +

4

r
ff 00 +

8

r
f 0f 0 �

4

r2
ff 0): (48)

Inserting the expression for < _v _v > f 0
1
into the variance, < _p _p >= 4 �2

1

2k
3
< _v _v >

R
1

0
�f 0(�)f 0

1
(�)d�

produces, after some manipulations,

< _p _p >= 4 �2
1
(
2k

3
)3

1

`2
Is
2
= 9

�2
�2
1
(2k
3
)2 �

2

k2
Is
2
=

4

�2
�2
1
�2Is

2
; (49)

where

Is
2
=

R
1

0
�f 0[ff 000+ 4

�
ff 00 + 8

�
f 0f 0 � 4

�2
ff 0]d� : (50)

In the above expression the usual and empirically veri�ed scaling � � ~u3=` has been used. The

characteristic velocity 
uctuation will be taken to be ~u2 = 2

3
k in which case � = �(2k

3
)3=2=`. Note

that the coe�cient of proportionality is twice as large as that when ~u2 =< u1u1 > is used. The

integral length scale is identi�ed with the longitudinal correlation, ` = L11.

Work by Sreenivasan (1984) has indicated the utility of this expression for turbulent 
ows. A

more recent and very timely article, Sreenivasan (1995), assesses the accuracy of this expression in

several canonical (incompressible) simple shear 
ows. For homogeneous shear the data indicates

� � 1 � 2. For the log layer or wake 
ows � � 4. For 
ows with smaller microscale Reynolds

numbers Sreenivasan (1984, 1994) shows that � � R�1

� . There is also a weak dependence on

nondimensional shear rate.

The fourth-order moments in the constitutive expression 
2 < dd >=< _p _p > + < vpp;p vqp;q> are

now treated. Beginning with the two-point statistic and writing it as a function of the separation

distance, ri,

< vpp;p v
0

qp
0;q0 >= �[< vkv

0

q >< pp0 > + < vpp >< v0qp
0 > + < vpp

0 >< v0qp >];pq

= � < vkv
0

q >< pp0 >;pq (51)

where continuity, < vpv
0

q >;p= 0, and the fact that any isotropic vector is zero have been used.

Further manipulations and setting r = 0 produces

� < vkvq >< pp >;pq= �
2k

3
< pp >;pp�2kbpq < pp >;pq (52)
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where bpq is the anisotropy tensor, bij =< vivj > =2k � 1

3
�ij . It is zero in an isotropic turbulence.

A theory including the contribution of the anisotropy of the turbulence would be possible assuming

otherwise. Expressing the two-point covariance in terms of its longitudinal correlation function and

performing the appropriate di�erentiations of < pp0 >=< pp > P (r) produces for the fourth-order

moment:

�
2k

3
< pp >;pp= �2k

3
< pp > 3P 00

0
(53)

The second derivative of Batchelors solution for the two-point pressure variance can be used to

show that P 00

0
= � 4

`2
Is
3
where

Is
3
=

Z
1

0

1

�
f 02d� (54)

The fourth-order moment can be written as

< vpp;p vqp;q>=
2k
3
< pp > 12

`2
Is
3
= 16�2

1
(2k
3
)2 k

`2
Is
1
Is
3
= 54

�2
�2
1
(2k
3
)2 �2

k2
Is
1
Is
3
: (55)

Batchelors result for the pressure variance and the empirically validated scaling � = �(2k
3
)3=2=` have

been used. The particular form of the expression is chosen in anticipation of later manipulations.

The above results are substituted into the constitutive equation for the variance of the dilatation

- 
2 < dd >= < _p _p > + < vpp;p vqp;q> - to obtain the following simple expression for the slow

portion of the representation for the variance of the dilatation

< dd >s= 9

�2
M4

t (
�
k )

2 [Is
2
+ 6Is

1
Is
3
]: (56)

The variance of the dilatation scales with the time scale of the large eddies of the spectral cascade.

The integrals are, typically, order one quantities. Zhou (1995) has determined their value from

high Reynolds number wind tunnel data. Values are given in the appendix. Following present

conventions, in which the compressible dissipation is de�ned as < � > �c =
4

3
< � >< dd >, the

model can be put in a form more pertinent to the evolution of the kinetic energy of the turbulence.

Using the de�nition of the Reynolds numbers, Rt =
4k2

9�<�> to eliminate the viscosity the model can

be written in a form appropriate for the kinetic energy equation

�sc =
16

3�2

M4

t

Rt
�s [I

s
2
+ 6Is

1
Is
3
]: (57)

A complete summary of the models is given in a subsequent section and in the appendix.
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3.3 Analysis for the pressure dilatation subject to mean velocity gradients

In this section an expression for the pressure dilatational covariances for a general homogeneous

mean velocity gradient with no mean dilatation is derived. A similar procedure, in which frequent

recourse is made to the Poisson equation for pressure, is followed. The Poisson equation now

involves the mean velocity gradient. The nomenclature used in the pressure-velocity covariance

modeling in incompressible second-order closures will be followed: the covariance will be called the

rapid component of the pressure-dilatation covariances.

The constitutive relation for the pressure-dilatation is

�2
 < pd >=
D

Dt
< pp > (58)

The velocity �eld is partitioned according to the Reynolds decomposition Vi + vi; the upper

case denoting a steady mean velocity �eld with constant gradients the lower case will continue

to indicate the 
uctuating �eld. The mean strain and rotation tensors are Sij = 1

2
[Vi;j +Vj ;i ],

Wij =
1

2
[Vi;j �Vj ;i ]; W

2 and S2 denote the traces of the squares of these matrices. The nondimen-

sional form of the Poisson equation for pressure is p(x; t);jj = �(vivj);ij . The 
uctuating pressure

is know given by the following Poisson equation:

p(x; t);jj= � (viVj + Vivj + vivj);ij :

Multiplying this equation by a similar Poisson equation for p(x0; t) and averaging produces

< p(x; t)p(x0; t) >;j0j0qq = 4Vi;j Vp;q0 < vj ;i v
0

q;p0 > + < vivjv
0

pv
0

q >;ijp0q0 :

Expressing the di�erential equation in terms of the spatial separation, ri, produces a biharmonic

equation for the two-point pressure variance

< pp0 >;jjqq= � 4Vi;j Vp;q< vjv
0

q >;ip : (59)

The fourth order moment which represents the slow pressure contribution obtained in a previous

section have been dropped. The Greens function method produces the following solution

< pp0 > (r) = 4Vi;j Vp;q
1

8�

Z
< vjv

0

q >;ip jr � r0jd3r0 = 4Vi;j Vp;q Ijqip(r): (60)

The dependence of the solution on the mean 
ow gradients has been expressed. The pressure

variance is known once a representation for the integral Ijqip is found. For a class of turbulent 
ows

a tensor polynomial in the anisotropy tensor is a suitable approximation for Ijqip. Ristorcelli et al.

(1994, 1995a) includes a discussion of issues related to this assumption. Here, only the zeroeth-order

term in such a polynomial will be retained for the purpose understanding the physics and obtaining
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scalings for the compressibility e�ects. Higher order terms which scale with the anisotropy of the

turbulence, bij =< vivj > =2k � 1

3
�ij are neglected in these zeroeth-order expressions. Note that

b12 � 0:16 is not atypical. At this point, and considering the purpose of the article, the additional

algebra necessary to obtain the anisotropic contributions to the integral is not warranted. A

fourth-order isotropic tensor possessing the proper symmetry and satisfying the continuity relation

Ijiip = 0 at r = 0 is

Ijqip = Ar
1
[�jq�ip �

1

4
(�ji�qp + �jp�iq)]

where

Ar
1
=

2

15
Ijjii =

2

15

1

8�

Z
< vjv

0

q >;ip r
0d3r0 =

1

15

2k

3
`2Ir

1
: (61)

Expressing the integrand in terms of the longitudinal correlation in the normalized coordinate,

< vjv
0

j >;ii=
2k
3
��2[�3f 000 + 7�2f 00 + 8�f 0]. The facts < vjv

0

j >=
2k
3
[rf 0 + 3f ] = r�2 d

dr (r
3f) and,

that in spherical coordinates, the Laplacian is r2 = r�2 d
dr
r2 d

dr
have been used. It is also possible

to integrate by parts allowing the integrand to be expressed in lower order derivatives for more

accurate computation from experimental data. Thus

Ar
1
= 1

15

2k
3
`2
R
1

0
�2[�2f 000 + 7�f 00 + 8f 0]d�

= 1

15

2k
3
`2
R
1

0
� d

d� (�
2 d
d� (�

�2 d
d� (�

3f))) d�

= 2

15

2k
3
`2
R
1

0
�fd� = 1

15

2k
3
`2Ir

1
(62)

and the solution for the rapid pressure variance in an arbitrary three-dimensional mean velocity

gradient can be expressed as

< pp >r= 1

15
�2
1

2k
3
`2 [3S2+ 5W 2] Ir

1
: (63)

Note that the integral has dimensions of a characteristic correlation area: the rapid pressure contri-

bution to the pressure variance will vary according to the spatial scale of the turbulence unlike the

slow pressure contribution given. This dependence on the spatial scale was �rst noted by Kraichnan

(1956) who solved the problem of the pressure 
uctuations in an isotropic turbulence in unidirec-

tional shear. The results here extend Kraichnans (1956) results for a planar unidirectional shear

to an arbitrary mean deformation. A very interesting, and more modern, paper highlighting the

physical and wavespace aspects of the results is George et al. (1984). The results are now substi-

tuted into the constitutive equations given above and the rapid portion of the pressure-dilatation

covariance in dimensional variables is then given by

< pd >r= �
1

30
Ir
1

D

Dt
[�1

2k

3

`2

c2
1

[3S2 + 5W 2] ]
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Note the appearance of the quantity S`=c1; the dependence of the compressibility e�ects on a

deformation rate Mach number indicated by Lele (1994) and Sarkar (1994) and substantiated

phenomenologically in Sarkar (1994). Note that the theory also predicts a dependence on a Mach

number based on the mean rotation, W`=c1. The expression is recast in terms of the turbulent

Mach number and the representation for the rapid component of the pressure-dilatation covariance

becomes

< pd >r= �
1

30
Ir
1

D

Dt
[< � > M2

t `
2 [3S2 + 5W 2] ] (64)

It is seen that two e�ects contribute to the pressure-dilatation covariance: one due to the exchange

between potential and kinetic modes of energy (since M2

t � k ) and the other due to changes in the

scale area of the correlation. Increases in the kinetic energy results in a transfer of the mechanical

energy to the 
uctuating pressure �eld. Similarly, increases in length scale, implying a decreased

rate of cascade to the smaller scales, also transfers energy to the 
uctuating pressure. Unlike the

slow pressure-dilatation, however, the rapid-pressure-dilatation does not always have the opposite

sign of the growth of kinetic energy but now depends on the rate of increase of the area of the

correlation, `2.

In order to close the representation it is necessary to have an expression for `. This introduces

an element of empiricism; up to this point no phenomenological assumptions, other than the very

reasonable quasi-normal assumption for the large scales, had been made. The usual heuristic

approximation � = �(2k=3)3=2=` where � ' 1� 4 produces

< pd >r= �
1

30
(
2

3
)3Ir

1
�2

D

Dt
[< � > kM2

t [3Ŝ
2 + 5Ŵ 2] ] (65)

Here the quantities with a carat are nondimensional deformation and rotation rates eg., Ŝ2 =

(Sk=�)2.

3.4 Analysis for the variance of the dilatation subject to mean velocity gradients

In the constitutive relationship for the variance of the dilatation the time derivative is replaced

by the mean advective derivative, D
Dt

= ( );t+ Vk( );k which comes from the mean portion of

the advective terms in the expressions for the dilatational covariances. Carrying the substantial

derivative as part of the time derivative term involves no approximation and follows quite naturally

from the Reynolds decomposition. However it is necessary to carry out the development in a

way that preserves Galilean invariance. The quasi-normal form of the constitutive relation for the

pressure dilatation is


2 < dd >= <
�

p
�

p> + < vpp;p vqp;q>
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The small circle will be used to indicate the mean convective derivative; for example in the equation

above <
�

p
�

p>= < Dp
Dt

Dp
Dt >.

An expression for <
�

p
�

p> appearing in the the constitutive relations for the variance of the dilatation

is obtained �rst. For the convenience of the presentation the two contributions to the variance of

the dilatation will be denoted 
2 < dd >1=<
�

p
�

p> and 
2 < dd >2=< vpp;p vqp;q>. Applying

the Reynolds decomposition to the nondimensional form of the Poisson equation for pressure,

p(x; t);jj= � (vivj);ij, and taking the appropriate derivatives and dropping the terms quadratic in

the 
uctuating velocities (which were treated in an earlier section) produces

�

p (x; t);jj = � (
�

vi Vj + Vi
�

vj);ij = �2Vi;j
�

vj ;i : (66)

Multiplying this by a similar Poisson equation for
�

p (x0; t) and averaging produces the biharmonic

equation for the two-point pressure variance

<
�

p (x; t)
�

p (x0; t) >;j0j0qq= 4Vi;j Vp;q0 <
�

vj ;i
�

v
0

q;p0 >= 4Vi;j Vp;q<
�

vj
�

v
0

q>;ip : (67)

The last equality has been written in terms of the separation variable, ri. The Greens function

solution procedure produces the following representation for the two-point variance

<
�

p
�

p
0

> = 4Vi;j Vp;q
1

8�

Z
<
�

vj
�

v
0

q>;ip jr � r0jd3r0 = 4Vi;j Vp;q Ijqip(r): (68)

It is the variance that is required. Following the method discussed in the the previous section, the

fourth order tensor, neglecting higher order corrections for anisotropy, is represented at r = 0, as

an isotropic tensor

Ijqip = Ar
2
[�jq�ip �

1

4
(�ji�qp + �jp�iq)]

Ar
2
=

`2

15

Z
1

0

<
�

vj
�

v
0

j>;pp �
3d� =

`2

15

2k

3
Ir
2

(69)

As has been noted little appears to be know about the two-point statistics of the acceleration. If the

acceleration correlation were known it would be a simple matter to show that the integrand is given

by < vjv
0

j >;ii=<
�

v
�

v> [�3f 000
1
+7�2f 00

1
+8�f 0

1
]��2 in the normalized coordinate. Unfortunately this is

not the case and an expression for f1 in terms of f is sought. The Navier Stokes equations without

the viscous terms, which describe the energy containing range of the 
ow, will be used to obtain an

expression for the integral,
R
1

0
<
�

vj
�

v
0

j>;pp �
3d�. Taking the equation for �

�

vi= vkVi;k +vkvi;k+pi,

and multiplying it by a similar equation for
�

v
0

j , averaging and taking the trace produces, in the ri

coordinate,

<
�

vj
�

v
0

j>= � Vi;k Vi;q< vkv
0

q > � < pp0 >;jj � [Vi;k < vkv
0

qv
0

i >;q+Vi;q < vkviv
0

q >;k ]

� [< pv0kv
0

i >;ik + < p0vivk >;ik ] � [Vi;k < vkv
0

qv
0

i >;q+Vi;q < vkviv
0

q >;k ]

� < vjvkv
0

qv
0

j >;kq
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The two-point triple covariances are zero for homogeneous isotropic turbulence and the fourth-order

correlation was treated in a previous section. The equation yields, after taking the Laplacian, the

quantity sought:

<
�

vj
�

v
0

j>;pp= � Vi;k Vi;q < vkv
0

q >;pp� < pp0 >;jjpp : (70)

In the previous section it had been shown that the two-point pressure variance satis�ed the bihar-

monic equation: < pp0 >;jjqq = 4Vi;j Vp;q< vjv
0

q >;ip. Thus

<
�

vj
�

v
0

j>;pp= � Vi;k Vi;q< vkv
0

q >;pp� 4Vi;j Vp;q< vjv
0

q >;ip ; (71)

which upon multiplication by �3 and integration produces the desired result for
R
1

0
<
�

vj
�

v
0

j>;pp �
3d�

in the de�nition of Ir
2
:

2k

3
Ir
2
= � Vi;k Vi;q Ikq � 4Vi;j Vp;q Ijqip (72)

and Ir
2
is seen to be related to the two integrals, Ikq =

R
1

0
< vkv

0

q >;pp �
3d�, and Ijqip =

R
1

0
<

vjv
0

q >;ip �
3d�. The isotropic portion of these tensors are related to an earlier integral, Ir

1
, de�ned

in the previous section. The tensors have the following representations

Ijqip =
2

15
Ir
1
[�jq�ip �

1

4
(�ji�qp + �jp�iq)]

Ijq =
1

3
Ir
1
�jq :

Inserting these expressions into the equation for Ir
2
produces an expression for the two-point accel-

eration correlation integral in terms of the two-point velocity correlation integrals:

Ir
2
=

1

30
Ir
1
[13S2 + 15W 2 ] ; (73)

and the rapid pressure variance becomes

<
�

p
�

p>r =
1

15

1

30
[3S2 + 5W 2] [13S2+ 15W 2 ] Ir

1
`2

2k

3
: (74)

Substituting ` = �(2k=3)3=2=�, and inserting into 
2 < dd >1=<
�

p
�

p> which is related to the

dilatational dissipation by �rc1 =
4

3
� < dd >1=<

�

p
�

p> produces

�rc1 = (
1

15
)2(

2

3
)5

M4

t

Rt
� [3Ŝ2+ 5Ŵ 2] [13Ŝ2+ 15Ŵ 2 ] �2Ir

1
(75)

after accounting for the nondimensionalizations employed.

An expression for the fourth-order moment, < vpp;p vqp;q>, appearing in < dd >2 is now sought.

In a previous section it was seen that under the quasi-normal and isotropic approximations that

< vpp;p vqp;q>= �
2k
3
< pp >;qq. The Greens function method produces

< pp0 >;jj = 4Vi;j Vp;q
�1

4�

Z
< vjv

0

q >;ip
d3r0

jr � r0j
= 4Vi;j Vp;q Ijqip(r) (76)
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where the biharmonic equation for the pressure variance from the previous section has been used.

Following the usual procedures, at r = 0, with Ijqip = Ar
3
[�jq�ip �

1

4
(�ji�qp + �jp�iq)] produces

< pp >;jj =
2

15

2k

3
[3S2 + 5W 2]Ir

3
: (77)

where

Ar
3
=

2

15
Ijjii =

2

15

2k

3
Ir
3

(78)

Using the facts < vjv
0

j >= 2k
3
[rf 0 + 3f ] = r�2 d

dr (r
3f) and, that in spherical coordinates the

Laplacian is r2 = r�2 d
dr
r2 d

dr
, produces Ir

3
= �

R
1

0
�2f 000+7�f 00+8f 0 d�: Re
ection on the integrand

will show that it is suitable for application of Gauss's theorem: the exact result Ijjii =< vjvj >=

2k
3
3f(0) is possible and Ir

3
= 3. The integral is nonetheless carried symbolically in the light

of computations extending this theory to anisotropic turbulence. More pragmatically, the integral

expression and its exact value, have been used to evaluate the accuracy of the numerical integration

technique of experimental data.

The fourth-order moment becomes

< vpp;p vqp;q>= �
2k

3
< pp >;qq =

2

15
(
2k

3
)2 [3S2+ 5W 2]Ir

3
(79)

and thus

< dd >2=
2

15
M4

t [3S2 + 5W 2]Ir
3
: (80)

which allows the second portion of the rapid dilatational dissipation to be expressed as

�rc2 =
3

5
(
2

3
)5

M4

t

Rt
� [3Ŝ2 + 5Ŵ 2] Ir

3
: (81)

The rapid portion of the dilatation dissipation can be written as the sum �rc = �rc1 + �rc2 and thus

�rc = (
2

3
)5

M4

t

Rt
�s [3Ŝ

2+ 5Ŵ 2][
3

5
Ir
3
+ (

1

15
)2[13Ŝ2 + 15Ŵ 2] �2 Ir

1
]: (82)

This concludes the analytical development of the representations for the pressure dilatation and

the dilatational dissipation covariances for compact 
ows. There will be additional mathematical

manipulations of the expressions obtained section in order to understand the implications of the

analysis.
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3.5 Summary of the dilatational covariance representations

The section is ended with a summary of the results of the analysis. The dilatational dissipation is

comprised of a slow and a rapid part: �c = �rc + �sc where

�sc =
16

3�2

M4

t

Rt
�s [I

s
2
+ 6Is

1
Is
3
]: (83)

�rc = (
2

3
)5

M4

t

Rt

�s [3Ŝ
2+ 5Ŵ 2][

3

5
Ir
3
+ (

1

15
)2[13Ŝ2 + 15Ŵ 2] �2 Ir

1
] (84)

It is useful to re
ect on the results of Blaisdell et al. (1993), Figure 12, in which it appeared that

the dilatational dissipation could not be parameterizable solely in terms of the turbulent Mach

number. The present analysis suggests its dependence, in simple shear 
ows, on two additional

parameters, Rt and Sk=�s. The pressure-dilatation covariance is a sum of similar terms, < pd >=<

pd >s + < pd >s,

< pd >s = �
2

3
Is
1

D

Dt
[< � > M2

t k] (85)

< pd >r= �
1

30
(
2

3
)3Ir

1
�2

D

Dt
[< � > kM2

t [3Ŝ2 + 5Ŵ 2] ] (86)

The constants, denoted by the Ii, in the these expressions are given by integrals of the longitudinal

correlation:

Is
1
=

Z
1

0

�f 02d�

Is
2
= �

Z
1

0

�f 0[ff 000 +
4

�
ff 00 +

8

�
f 0f 0 �

4

�2
ff 0]d�

Is
3
=

Z
1

0

1

�
f 02d�

Ir
1
= 2

Z
1

0

�fd�:

Ir
3
= �

Z
1

0

�2f 000 + 7�f 00 + 8f 0 d�

Except for two very reasonable phenomenological assumptions the results presented above are

a mathematical consequence of the assumptions that led to the diagnostic relationship: �
d =

p;t+vpp;p. The assumptions used in developments subsequent to the diagnostic relationship are

the quasi-normal behavior of the large scales and relationship relating length scale to dissipation.

The analysis, apart from the quasi-normal behavior, veri�ed in Blaisdell et al. (1993), has produced

an exact but unclosed, in the context of single-point moment methods, result. The quasi-normal

approximation relates the fourth-order moments of the velocity distribution to the second-order

moments as if the large scales of the turbulence were Gaussian. To achieve closure an expression

for the length scale is required; the very well established phenomenological relationship between
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turbulence length scale and dissipation: ` = �(2k=3)3=2=�s is used. With these quali�cations in

mind the expressions derived are, in the limit of a homogeneous isotropic turbulence, mathemat-

ically precise. The expressions here may be viewed as the leading order term in a more general

expression in which successive terms scale with the anisotropy and inhomogeneity of the 
ow. It

is expected that such an analysis for the dilatational covariances will, at the very least, predict

the fundamental nondimensional parameters and scalings in the characterization of the e�ects of

compressibility.

4.1 The physics embodied in the dilatational dissipation representations

Various aspects of the compressible dissipation representations are now discussed. The dilatational

dissipation is comprised of a slow and a rapid part: �c = �rc + �sc where

�sc =
16

3�2

M4

t

Rt

�s [I
s
2
+ 6Is

1
Is
3
]: (87)

�rc = (
2

3
)5

M4

t

Rt
�s [3Ŝ

2+ 5Ŵ 2][
3

5
Ir
3
+ (

1

15
)2[13Ŝ2 + 15Ŵ 2] �2 Ir

1
] (88)

Immediately apparent, in contradistinction to other models for these terms, is the fact that the

analysis predicts a dependence of the compressible dissipation on mean 
ow gradients and Reynolds

number. The dependence on the Reynolds number suggests that assessing the importance of

the dilatational dissipation on the basis of low Reynolds number numerical simulations may be

misleading when applied to higher Reynolds number 
ows. Computation done with these models,

for example Ristorcelli et al (1995) indicates that the major reduction in spread rate in the mixing

layer, for example, is due to the pressure dilatation. The Mach number dependence is also stronger

than the M2

t dependence in Sarkars model for the dilatational dissipation, and less steep than the

exponential dependence of Zemans model.

The importance of the dilatational terms is di�cult to assess a priori ; their scaling with Mt and

Rt suggests that they are negligible. This is probably the case for the slow term. This is however

not the case for the rapid term. Terms like Ŝ appearing in �rc are typically in the range 0 � 10;

depending on the mean velocity gradients the dilatational dissipation may or may not contribute

to a 
ow. The equilibrium (incompressible) homogeneous shear, for example, has Sk=� ' 6; the

equilibrium log-layer Sk=� ' 3:3. For these planar 
ows Ŝ and Ŵ are the same. Using Ŝ � 10 as

an upper bound the quantity [3Ŝ2+5Ŵ 2] � 103. When squaring it again, as occurs in the Ir
1
term,

the fact of its M4

t dependence is easily compensated.

The present mathematical development also shows the importance, in mean �elds solely charac-

terized by the mean strain and rotation, of a Mach number based on the mean velocity gradient.
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Sarkar (1994) has de�ned a gradient Mach number as Mg = S`=c where, for simple planar 
ows,

Ui;j = U1;2= S and the length scale he used is transverse two-point correlation of the longitudinal

velocity. In this article ` will be taken as the traditionally de�ned integral scale. Using the scal-

ing ` = �(2k=3)3=2=�s the dependence on the mean deformation can be related to the turbulent

Mach number and the ratio of strain to correlation times: S`=c = �2

3

Sk
�s
Mt = �2

3
ŜMt = MS .

For a general three-dimensional 
ow the theory makes a distinction between a Mach number

based on the mean strain and the mean rotation. A second gradient Mach number is de�ned

W`=c = �2

3

Wk
�s
Mt = �2

3
ŴMt = MW . For simple planar 
ows the mean rotation and strain

are the same, MS = MW and the mean gradient parameterization, S`=c is complete. For 
ows

characterized by mean pressure gradients and bulk dilatation additional work is required.

The rapid portion of the dilatational dissipation can be rewritten in terms of these two mean

gradient Mach numbers as

�rc �
M2

t

Rt

�s [3M
2

S + 5M2

W ][
3

5
Ir
3
+ (

1

15
)2[13Ŝ2 + 15Ŵ 2] �2 Ir

1
]: (89)

The structure of the model is seen to be similar to the Sarkar model, �c / M2

t �s, but now with a

coe�cient that is not a constant but depends on the Reynolds number and the mean strain and

rotation Mach numbers.

Sarkars (1994) heuristic reasoning can be used with success to indicate the behavior of the dilata-

tional terms in di�erent mean 
ows. Though Sarkars (1994) subject is the changes in the anisotropy

of the turbulence due to compressibility, as indicated by the work of Abid (1993), his arguments

are equally applicable to both the dilatational dissipation and the pressure-dilatation covariances.

Sarkars (1994) arguments indicate that the e�ects of compressibility are much larger in the mixing

layer than in the equilibrium boundary layer: the mixing layer is stabilized with respect to the

boundary a layer by compressibility. The di�erence between the compressible mixing layer and the

boundary layer 
ow can be parameterized in terms of a gradient Mach number, Mg. In Sarkars

(1994) examples Mg (proportional toMS) for the mixing layer can be an order of magnitude larger

than that for the boundary layer. The same reasoning using the a mean gradient Mach number

applied to the dilatational dissipation indicates that compressibility dissipation e�ects are substan-

tially more important for the mixing layer than for the wall boundary layer. Using Sarkars (1994)

values and de�nition of the gradient Mach numbers, Mg � 6 in a mixing layer while in the boundary

layer Mg � 1 and the e�ects of the compressible dilatation are an order 62 more important in the

mixing layer than in the boundary layer. A similar variation is seen using MS to characterize the

e�ects of compressibility.
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Gradient Mach number type quantities have been identi�ed in the works of Durbin and Zeman

(1992), Cambon et al. (1993), and Lele (1994). The quantity has been given various physical

interpretations. Durbin and Zeman (1993) have, in the context of a RDT theory for compressed

turbulence, interpreted it as the change in Mach number over an eddy of scale `. It can also be

understood as the ratio of the acoustic propagation time across an eddy to the mean deformation

time scale, Lele (1994). Reviewing the analysis indicates a more thermodynamic, rather than kine-

matic, origin and interpretation of the gradient Mach number. The S` in the gradient Mach number

appears because of the scaling of the rapid pressure integral with the area, as was �rst noticed by

Kraichnan (1956). The c in S`=c appears because of the linearization of the gas law relating the


uctuating p and � about the local mean pressure and density state. It sets the magnitude of the

proportionality constant in the dimensional form of the diagnostic equation relating d and p. With

these ideas in mind one is led to interpret the gradient Mach number as an indication of the relative

magnitude of the pressure 
uctuations (due to shear) to the dilatational 
uctuations as set by the

local mean density and pressure (which need not be adiabatically related).

Mention should also be made of the Wilcox (1992) analysis of the sensitivity of the 
at plate friction

coe�cient, cf , to models for the dilatational dissipation. His arguments show that models, such as

the Sarkar et al. model (1991b) or Zeman (1990), predict e�ects of compressibility when in fact

there are none. Sarkars (1991b) model, for example, undesirably reduces the skin friction in the

compressible 
at plate 
ow because of the modi�cation of the e�ective von Karman constant. (It

should be made clear that Sarkars model was intended for use in free shear 
ows such as the mixing

layer: it was after all calibrated using the homogeneous DNS of a compressible shear). Wilcox's

analysis has been repeated for the current model. The modi�cations to the von Karman constant

of the present model are smaller than that of the incompressible form of the modeled equations.

This is because of the near wall M4

t dependence.

The thoughtful reader will have noticed that the analysis has produced a representation for the

dissipation that depends on the Reynolds number. The magnitude of the dilatational dissipation

depends on the viscosity: for a �xed Mt, as Rt !1, the dilatational dissipation vanishes. This is a

rigorous consequence of the diagnostic relationship, �
d = p;t+vpp;p, derived from the perturbation

method and subsequently employed to obtain the results. The initial assumptions lead to an

expression for the dilatation that is related to the pressure 
uctuations, an essentially inviscid

phenomena. The dependence on the viscosity arises when one computes the compressible dilatation

from its de�nition using the variance of the dilatation: �c =
4

3
� < dd >.
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It appears that, in the small turbulent Mach number limit, that the usual interpretation of dissipa-

tion type quantities as spectral 
uxes is not appropriate for the dilatational dissipation. This is a

�nding which has caused some consternation and much consideration; it is, however, a mathemat-

ical consequence of the initial assumptions. A portion of the ideas arising from diverse discussions

with colleagues will serve to make this result plausible; as will, perhaps, the fact that the results are

consistent with EDQNM results. The utility of the results of the analysis, in the context of their

application to computing engineering 
ows, is another and very di�erent subject to be treated in a

subsequent work.

That the compressible dissipation might not be interpreted as a spectral 
ux (as is the case of

the solenoidal dissipation) is suggested by results given in the EDQNM of Bataille (1994). In

Batailles (1994) simulation the energy spectrum is divided into its incompressible components and

compressible components. The solenoidal spectrum, Ess, is found to scale, as is usual, ��5=3; the

compressible spectrum, for small Mach number, is much steeper and scales as Ecc � ��11=3.

Multiplying by �2 the solenoidal and dilatational dissipations are found to scale as �1=3 and ��5=3.

The negative power law scaling of the dilatational dissipation indicates that, unlike the solenoidal

dissipation, the dilatational spectrum peaks in the lower wavenumber regions of the spectrum.

Such a point of view can also be understood by more heuristic arguments involving a spectral Mach

number, M2

t (�) � E(�)�=c2. Using the incompressible spectrum, as the compressible spectrum

falls o� faster, produces Mt (�) � k�1=3 suggesting that the dilatational dissipation is a result of

a combination or competition of e�ects that are important at di�erent scales of the motion: the

energy in 
uctuating dilatation at the large scales and the sharp gradients necessary for viscous

dissipation at the small scales. This is intuitively consistent with the fact that, for �xed Mt,

increasing Rt by decreasing the viscosity adds more small scales to the �eld that are also more

divergence free. Thus, with the length at which the gradients are strong enough to undergo viscous

dissipation becoming smaller and simultaneously more divergence free, there results a net reduction

of the dilatational dissipation.

These ideas must be tempered with the fact that these results come from a low turbulent Mach

number perturbation method - a linear perturbation about the nonlinear incompressible problem.

This is not to say that physics related linearly to the velocity �eld exhibit a steeper spectral slope

than the energy spectrum. The linearly related spectrum of a passive scalar temperature, which

scales with � ��5=3, Tennekes and Lumley (1972), doesn't. The problem is more complicated than

this and the analogy is inappropriate. While a low turbulent Mach number analysis is expected to be

appropriate for most 
ows of aerodynamic interest, it must be remembered that the nonlinear self-
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interaction terms of the compressible velocity �eld are absent in this analysis. As Mt ! 1 nonlinear

terms and shocklets are expected to become important. This analysis has no relevance to 
ows in

which shocklets are a major portion of the dissipation. On this point the ones attention might go

to the homogeneous shear results done as part of G. Blaisdells thesis, published in Blaisdell et al.

(1993); it was found that shocklets, for moderate turbulent Mach numbers, contributed very little

to the dilatational dissipation. Note the di�erence in de�nition of the turbulent Mach numbers.

Batailles (1994) EDQNM results show that as the Mt increases the slope of Ecc decreases. Though

outside the range of the validity of the simulation, the EDQNM simulation shows that as Mt ! 1,

the slope of Ecc is approaches the slope of Ess. These speculations concern phenomena outside of

the range of validity of the linear theory and the EDQMN; within the range of validity the results

of the perturbation theory are consistent with the EDQNM simulations. These EDQNM results

have been found to be insensitive to the form of the small scale damping terms.

4.2 The physics of the pressure-dilatation covariance representations

The phenomenological implications of the pseudo-sound assumptions for the pressure-dilatation

covariance are now explored. Unlike the compressible dissipation, which represents an irreversible

transfer of energy, the pressure-dilatation represents a reversible transfer of energy between kinetic

and internal modes. This reversible rate of transfer is proportional to the departure of the 
ow

from equilibrium and with a simple rearrangement of terms the pressure-dilatation is seen to be

equivalent to an increase in the 
ows inertia. Subsequent to this discussion the representations

for the pressure-dilatation covariance are further manipulated to produce a �nal expression that is

more easily understood and applied. The pressure-dilatation is seen to be proportional to the net

imbalance of production, transport and dissipation of k and T . The pressure dilatation is also seen

to be a function of the how rapidly the eddy turnover rate, k=�s, tracks then mean deformation

and rotation, S and W .

The pressure-dilatation covariance is a sum of the slow and rapid terms < pd >=< pd >s + < pd >s

already given. The full pressure-dilatation covariance representation can be written as

< pd > = �Ipd
D

Dt
[< � > kM2

t ] � Irpd
D

Dt
[< � > k M2

t T ] (90)

where

T = [3Ŝ2 + 5Ŵ 2]

Ipd =
2

3
Is
1
+ Irpd T

Irpd =
1

30
(
2

3
)3 �2Ir

1
:

29



Let T be called the relative cascade or eddy turnover rate. By expanding the di�erentials according

to the product rule the expression for < pd > can be suggestively rearranged in the k equation to

produces terms representing an \added mass" e�ect as well as two additional source terms:

[1 + IpdM
2

t ] < � >
D

Dt
k = Pk � < � > � � k Ipd

D

Dt
[< � > M2

t ]� < � > k M2

t I
r
pd

D

Dt
T :

The evolution of the kinetic energy experiences additional inertia. The 
ow appears to act with an

added mass equal toM2

t times the weighted sum of the integrals: Ipd and I
r
pd. The additional inertia

is due to the reversible transfer and storage of energy in the internal energy (mean temperature)

�eld. This role of the pressure dilatation, as a transfer between internal and kinetic modes of

energy, appears to have �rst been noticed by Zeman (1991) and explored further in homogeneous

shear by Sarkar et al. (1991a). Thus the e�ect of the pressure-dilatation is to reduce the e�ects of

production and dissipation unbalance by a factor 1 + IpdM
2

t .

Note also the appearance of the nonequilibrium and history e�ect,
�

T and
�

M t. The �rst re
ects how

rapidly the eddy turnover time tracks the mean velocity gradients. While the second,
�

M t re
ects

how rapidly the kinetic energy and mean internal energy adjust to each other. Thus
�

k is in
uenced

by the rate at which the pressure dilatation can equilibrate the \potential" di�erence between the

k and T �elds. The appearance of relaxational e�ects incompressible 
ows have been noted in the

calculations of Abid et al. (1995).

The mean deformation and mean rotation rate Mach numbers play a role in the added mass term.

They appear in the product of IpdM
2

t . Thus, the gradient Mach numbers, as manifested in the

term M2

t T , also e�ects the development of the 
ow by in
uencing the pressure-dilatation terms.

The representation distinguishes the mixing layer and the boundary layer not only through the

substantial derivative terms but also through the mean gradient Mach numbers. These terms are

expected to make a di�erence primarily in 
ows with streamwise variations.

Additional analysis will now produce a �nal form for the pressure-dilatation representation. The fact

that the pressure-dilatation covariance depends on the rate of change of M2

t shows that represen-

tation couples the kinetic energy equation to the internal energy equation. The pressure-dilatation

covariances can be expressed in terms of k and T through the de�nition of M2

t ; this suggests that
�

M2

t in the representation can be eliminated. The substantial derivative of M2

t is easily found from

its de�nition and the ideal gas law to be

�

M2

t = M2

t [

�

k

k
�

�

T

T
]: (91)
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The mean temperature and k equations are, with the assumption of constant cv,

< � > cv
D
Dt

T = PT � < pd > + < � > �s+ < � > �c + TT

< � > D
Dt

k = Pk + < pd > � < � > �s � < � > �c + Tk

will be used to eliminate
�

Mt from the equations. Examination of the two equations for k and T

shows some important e�ects. Both T and k receive energy from the mean 
ows kinetic energy

through the production terms, PT and Pk . The signs of PD and Pk can be of either sign in

which case energy from the mean 
ow can be diminished or increased by interactions with the

turbulence or with the mean internal energy of the 
ow. Note that if one insists on a Boussinesq

eddy viscosity approximation for the Reynolds stresses that Pk allows only a one way transfer of

energy from the mean to the turbulence. The dissipation terms, < � > �s+ < � > �c, are always

positive representing a 
ow of energy from the turbulence to the internal energy of the 
uid. The

pressure-dilatation, exchanging energy between kinetic and internal modes, on the other hand can

be of either sign.

The pressure-dilatation covariance, for a 
ow with negligible mean dilatation, can be written as

< pd > = � < � > IpdM
2

t k [ 2

�

k

k
�

�

T

T
] � < � > k M2

t Irpd
�

T (92)

Using the equations for
�

k and
�

T and the de�nition of the Mach number in terms of temperature,

k
cvT

= 3

2
M2

t 
(
 � 1) produces a simpler and �nal and almost algebraic expression for the pressure-

dilatation covariance:

< pd >= ��pdM
2

t [Pk� < � > � + Tk � 3

4
M2

t 
(
 � 1)(PT+ < � > � + TT )]

� < � > k M2

t �rpd
�

T : (93)

The streamwise adjustment of the eddy turnover time scale to the mean velocity gradients remains.

Here � stands for the combined solenoidal and compressible contributions to the dissipation and

�pd =
2Ipd

1 + 2IpdM
2

t +
3

2
IrpdM

4

t 
(
 � 1)

�rpd =
Irpd

1 + 2IpdM
2

t +
3

2
IrpdM

4

t 
(
 � 1)

The � coe�cients are thus functions of the turbulent Mach number, M2

t , and the relative turnover

rate T through Ipd.

One of the failures of early models for compressibility e�ects in turbulent 
ows is their lack of

universality. Current models capture the compressibility e�ects in the mixing layer, but the same
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models, when applied to the near equilibrium boundary layer, add undesirable compressibility

e�ects. Here the dependence of the results on the mean 
ow parameters, such as the mean strain

and rotation Mach numbers and in D=Dt - as manifested in the production-dissipation balance and

in
�

T - show that the analytical representations do distinguish between these two classes of 
ows.

The e�ects of compressibility have been observed to be negligible in the unidirectional near equi-

librium boundary layer 
ow. In near equilibrium 
ows there is an approximate balance between

production, dissipation and transport and therefore D=Dt ' 0: the model then predicts, consistent

with observations, < pd >' 0. Particularly noteworthy are the predictions for the equilibrium log

layer in which the transport terms negligible: for the log layer Pk '< � > � and < pd >' 0+O(M4

t )

is a further indicating that these compressibility e�ects are not important in equilibrium 
ows. In

the mixing layer or jet, on the other hand, where production is an important quantity, the pressure-

dilatation will shunt energy from the turbulence into the mean temperature thus reducing the level

of the kinetic energy. This has been seen in laboratory experiments an also in calculations done us-

ing these analytical results. These calculations are the subject of studies addressing issues relevant

to turbulence modeling and computations.

For 
ows in which production is not important the analysis indicates that the net e�ect of the

pressure-dilatation is (if the contributions of the dissipation and transport to the energy budget

have the same sign) is to increase the level of the the kinetic energy of the turbulence. Such

situations arise in wake 
ows with and without momentum defects.

Expressions for the pressure-dilatation in two simple 
ows, the isotropic decay and the homoge-

neous shear are worth considering. Consider �rst an isotropic decaying turbulence. The pressure-

dilatation covariance is

< pd >= �pdM
2

t [1 +
3

4
M2

t 
(
 � 1)] < � > �: (94)

It is seen that the pressure-dilatation is positive indicating a net transfer of energy from the internal

modes to the turbulence. After which the energy is, of course, dissipated by viscosity and returned

to the internal energy of the 
uid increasing its temperature. A portion of this energy, proportional

to M2

t and the extent of the departure from equilibrium, can then once again transferred to the

turbulence.

The
�

T and
�

k equations for the case of an isotropic decaying turbulence are written

D

Dt
k = � (1� �pdM

2

t )� +
3

4
�pdM

4

t 
(
 � 1)� (95)

cv
D

Dt
T = + (1� �pdM

2

t )� �
3

4
�pdM

4

t 
(
 � 1)� (96)
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and the dependence on the production-dissipation balance and the turbulent Mach number are more

readily seen. Note that the factor multiplying the dissipation is always positive, 1 � �pdM
2

t > 0.

Here � = �c + �s and that the density has been set to unity for convenience of presentation. Note

that the energy decay rate is explicitly dependent on the Reynolds number through �c. It is, of

course, still implicitly dependent on the Reynolds number by the dependence of �s on the Reynolds

number in a decaying turbulence. This issue has been inconclusively explored in Blaisdell et al.

(1991) in an attempt to assess the e�ects of compressibility on the decay law.

The simulations of the isotropic decay by Blaisdell et al. (1991) and Sarkar et al. (1991) have

indicated a strong dependence on the initial conditions. Neither of these simulations have used

initial conditions consistent with the pseudo-sound analysis. This would require initial conditions

in which 
 < �� >= 


�1

< �� >=< pp > where < pp > is the variance of the incompressible

pressure �eld. Which is to say that the compressible 
uctuations are generated by the turbulence

as opposed to imposed on the 
ow as an arbitrary initial condition. Even the choice of socalled

\incompressible" initial conditions < �� >=< �� >= 0 is asymptotically inconsistent with �nite

initial Mt. This can be veri�ed by expressing 
 < �� >=< pp > in primitive variables in which

pressure is nondimensionalized by �1k.

Blaisdell et al. (1993) has investigated the possibility a polytropic gas law, n < �� >=< pp > where

< pp > is the total pressure variance. It is found that n ' 
 in the homogeneous shear and that, in

the isotropic decay, n is initial condition dependent. One may well conjecture that a set of initial

conditions as speci�ed by this pseudo-sound theory might show n ' 
 subsequent to intialization.

In which case Blaisdell et al. (1993) conclusion that algebraic models for the dilatational dissipation

are inadequate may have to be quali�ed. We do concur with the Blaisdell et al. (1993) conclusion

that in situations where the compressible component of the 
ow is arbitrarily speci�ed by the initial

conditions that such algebraic models will not work.

Sarkar et al. (1991) have modeled � < pd > +�c = �1M
2

t �s and the turbulence energy equation

can be rewritten

< � > D
Dt

k =< pd > � < � > �s � < � > �c = �(1 + �1M
2

t )�s:

Keeping only order M2

t terms the present analysis gives for the turbulence energy equation, in

apparent contradiction

D
Dt

k = � (1� �pdM
2

t )�s :

The pressure-dilatation covariance is more important than the dilatational dissipation and will act

to slow the rate of decrease of k by shunting energy from the internal modes (mean temperature)
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where it is stored into the kinetic modes. The results of the present analysis and Sarkar et al.

(1991) are both internally consistent: they treat two di�erent problems. The present analysis

treats a turbulence in which the compressible portions of the 
ow are generated by the turbulent

motions. Sarkar et al (1991) treat a turbulence on which is superposed, by the initial conditions, an

M2

t compressible velocity �eld. The postulated M2

t initial condition gives rise to anM2

t dilatational

�eld. The e�ects of compressibility will re
ect the evolution of the compressible �eld in the presence

of an incompressible turbulence and the dilatational �eld will then be order M2

t causing an increase

in the k decay. The dilatational �eld is an order M4

t e�ect when the dilatational 
uctuations are

generated, not by the initial conditions, but by the vortical 
uctuations. These very interesting and

potentially contradictory issues need to be investigated more closely with a DNS in which special

care is taken with the implementation of the initial conditions.

Consider now a near equilibrium,
�

T ' 0, homogeneous, Tk = TT = 0, high Reynolds number,

PT ' 0 shear 
ow. In such a 
ow the pressure-dilatation is now

< pd >= ��pdM
2

t [Pk� < � > ��
3

4
M2

t 
(
 � 1) < � > �] : (97)

There are several things worth noting. The �rst is the change of sign of < pd > noted by Sarkar et

al. (1991a). For 
ows with small turbulence production the pressure dilatation is positive. If the

production is large and exceeds dissipation by a certain amount the pressure-dilatation covariance

is negative and there is a net transfer of energy from the turbulence �eld to the mean internal

energy. This is consistent with numerical results of Sarkar et al. (1991a) only here the analysis

indicates when the change of sign of < pd > occurs.

The
�

T and
�

k equations for the homogeneous shear 
ow can be written

D

Dt
k = (1� �pdM

2

t )[Pk � �] +
3

4
�pdM

4

t 
(
 � 1)� (98)

cv
D

Dt
T = �pdM

2

t [Pk � �] + � �
3

4
�pdM

4

t 
(
 � 1)� (99)

and the dependence on the production-dissipation balance and the the turbulent Mach number

are more readily seen. Note that �pdM
2

t < 1. Thus, to lowest order, O(M2

t ), the e�ects of the

compressible dilatation is to reduce the excess production over dissipation in the k equation by a

factor �pdM
2

t ; this energy is transferred to internal modes and the rate of increase of the mean

temperature is ampli�ed by an additive factor �pdM
2

t [Pk � �]. The reduction of the turbulence

related quantities seen in compressible 
ows appears to be attributable to the transfer of energy

from kinetic to internal modes. Computations with this pressure-dilatation representation in the

compressible mixing layer have shown it to be primarily responsible for the substantial reduction

34



in growth rates. Additional contributions come from the
�

T relaxational term not carried in the

equations above. These computations, as they represent the use of these representations for practi-

cal calculations, are the subject of articles now in progress whose objective is to evolve the present

mathematical results into a computational model.

If in the representation for < pd > one sets < pd >= 0 one can predict the critical M2

tc, for a given

shear rate, turbulent Reynolds number and anisotropy, at which the pressure-dilatation changes

sign. Below this critical turbulent Mach number there is a net transfer of energy from the mean

temperature �eld in which it is stored. Above this critical turbulent Mach number there is a transfer

and storage of energy in the temperature of the 
uid rather than increasing the kinetic energy of

the turbulence. Using Pk =
1

2
b12kS and PT = 2 < � > S2 the critical Mach number as a function

of the anisotropy and shear rate can be obtained. To zeroeth-order

M2

t =
4

3

1

2
k b12 S� < � > �


(
 � 1)[2 < � > S2+ < � > �]
(100)

Recall that � = �s + �c and that in fact the equation is a quadratic for M2

t if the dilatational

dissipations contribution is included. If the dilatational dissipation is not distinguished a little

more algebraic manipulation produces

M2

t =
4

3

1

2
b12 Ŝ � 1


(
 � 1)[1 + 18

4Rt
Ŝ2]

(101)

This is essentially a statement of the fact that as long as the production exceeds the dissipation by

and order M2

t quantity

Pk � [1 +
3

4
M2

t 
(
 � 1)] < � > � (102)

that there is a net transfer and storage of energy in the mean temperature �eld. Which immediately

suggests a numerical simulation of a homogeneous shear with an isotropic initial condition. At a

critical Mach number < pd > will change sign as a function of the anisotropy and Reynolds number

of the 
ow.

5. Discussion and clari�cation of limitations and assumptions

A few assumptions have been made to obtain representations for the dilatational covariances. The

assumptions are not in anyway unreasonable but do limit the applicability of the results to speci�c

classes of 
ows. This section is a compendium of the assumptions; it exists in order to insure that

the applications of these representations be made with an awareness of their limitations. It should

also help asses how much of the physics these representations capture or neglect in any speci�c

35




ow. It is hoped that full disclosure of the assumptions will suggest future work to account for

their potential shortcomings.

1) To model the e�ects of compressibility on the turbulence it has been assumed that the turbulent

Mach number of the 
uctuations, M2

t = 2

3

k
c2
, is small. This appears to be the case for several classes

of supersonic 
ows of current engineering interest. The expressions derived are not expected to be

useful for hypersonic 
ows in which eddy shocklets are important; such a 
ow situation will, in all

likelihood, require a very di�erent analysis.

As has been discussed, the low Mt assumption is equivalent to the compact source assumption

of aeroacoustics. In the present context, this means that the correlation length scale of the 
ow

structures producing the dilatational �eld is much smaller than the wavelength of the propagating

�eld produced. This allows the dilatation to be algebraically related to the instantaneous material

derivatives of the pressure 
uctuations of the solenoidal �eld.

The low turbulent Mach number assumption should not be understood to imply a low mean 
ow

Mach number.

It should also not, necessarily, imply a low gradient Mach number. The leading order contribu-

tion to the Reynolds stresses, in the low Mt limit, is from the solenoidal �eld and the lack of

signal communication across an eddy, when the gradient Mach number is high, e�ects higher order

corrections to the Reynolds stresses. The present analysis treats the leading order dilatational


uctuations. The form of the equations derived suggests a 'thermodynamic' rather than signal

propagation interpretation of the the gradient Mach number; the gradient Mach number scales

the relative magnitude of the dilatational 
uctuations to the pressure 
uctuations generated by the

mean velocity gradients. Interpreting it as a quantity characterizing the propagation of information

is expected to be important in large turbulent Mach number situations.

2) The scalings employed imply that the equations derived do not account for e�ects associated

with phenomena that have coherences on much larger length scales. This would include variances

and covariances of quantities that propagate. Such is the case with dilatation which has propagated

into the local turbulence volume from regions more distant than the local integral scale. Though

the correlation with the local turbulence is expected to be negligible, such signals are correlated

with themselves and will make a contribution to the local dilatational dissipation. These e�ects

are not accounted for in the present development; as such the development is limited to turbulence

�elds that are on order of or smaller than the acoustic scale of the 
ow. This is the compact 
ow

assumption, D=� � 1, and constitutes a limitation to the current representation. The limitation
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may be nominal for many 
ows of current engineering interest in which the compact 
ow assumption

is expected to be useful.

The compact 
ow assumption also excludes the cumulative e�ects, over scales large with respect

to the wavelength, the propagating �eld on the turbulence, as sometimes occurs in the sound

generation and propagation problem.

3) The covariances of the 
uctuating dilatational �eld are assumed to be generated by and evolve in

accordance with the turbulence �eld. They do not result from any externally imposed \acoustical"

�elds, or radiation from far �eld turbulence. Nor are they an adjustment of the 
ow to initial

conditions with an acoustical or compressible component not generated by, or otherwise unrelated

to the turbulent 
ow.

The scalings and analysis employed imply that the source of compressibility in the 
ow is due to

the turbulence within an integral scale of the position in question. The e�ects of q2c =q
2 � O(M2

t )

compressible velocity �elds, as seen in Sarkar et al. (1991), superposed on the 
ow by the initial

conditions will produce much higher dilatational dissipation rates. This sensitive dependence of the

dilatational dissipation rates on the initial conditions has been seen in the simulations of Blaisdell

et al (1993). There are, in all likelihood, complex 
ow situations in which sizable compressible

�elds, q2c=q
2 are generated. This, however, is not the situation for which the present pseudo-sound

theory has been developed.

Here compressibility e�ects due to the �nite Mach number of the vortical 
uctuations are studied.

IN studies of such compressibility e�ects resulting from the turbulence appropriate initial conditions

are required for DNS. Consistency requires that the density and temperature variances be related

to the incompressible �eld according to 
 < �� >= 


�1 < �� >=< pp >. Where, in dimensional

terms, for an isotropic turbulence with no mean velocity gradients the pressure variance is

< pp >s =
8

9
�2
1
k2Is

1
(103)

while for a turbulence with divergence free mean velocity gradients, to leading order,

< pp >r =
1

15
�2
1

2k

3
`2 [3S2 + 5W 2] Ir

1
=

1

15
�2
1
(
2

3
)4k2 [3Ŝ2+ 5Ŵ 2] Ir

1
: (104)

Or, in the context of a DNS starting from incompressible initial conditions, a point-wise propor-

tionality between the 
uctuating pressure and the density and temperature is required. The proper

initial condition on the dilatational �eld is more di�cult but may be much less important.

4) The mean pressure and mean density has been assumed locally constant - constant over a length

scale over which the turbulence is correlated. This is also equivalent to the statement that the
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sound speed is also locally constant; the stochastic nature of the 
uctuations in the sound speed

has been neglected. A corollary to the locally constant mean density assumption, is the fact that

the mean dilatation is negligible. Thus, for 
ows in which the mean density and mean pressure

vary appreciably over an integral scale the present representation is only a zeroeth-order theory.

5) The turbulent 
uctuations that contribute to the dilatational covariances have been assumed to

obey the adiabatic gas law. This uncouples the problem from noisentropic aspects of a compressible


ow which may be important in wall bounded 
ows. A scale analysis of the 
uctuating dilatation in

the near wall region does appear to indicate that the nonisentropic contributions are higher order.

This may not be the case for walls with large heat transfer.

6) All the expressions presented have been obtained assuming that the major contribution to the

quantities come from the isotropic portions of the statistics of the 
uctuating �eld. The expres-

sions obtained are the lowest order expressions in a series expansion in powers of the single-point

anisotropy of the turbulence. Higher order terms allowing for contributions from the anisotropy

are straightforward in concept but complicated in execution. This has been found to be the case

in a few cases for which such parameterizations have been worked out. Perhaps, if the results are

to be used for engineering calculations, the constants derived should be viewed as requiring some

modi�cations for the anisotropy of the 
ow. A DNS might be useful to see which of the several

contributions to the dilatational covariances are most sensitive on the anisotropy of the turbulence

�eld.

7) Throughout the development homogeneity has been invoked to make the statistical manipulation

tractable. In practice this requires that the turbulent �eld be homogeneous on a scale `=L < 1

where L is the scale of the inhomogeneity. Clearly few engineering 
ows meet this requirement;

however, any representation that is created must at least be consistent with results obtained using

this state.

8) The assumption of quasi-normality has been made to achieve the statistical closure for the large

scales of the 
ow. This involves the neglect of third-order moments with respect to second and

fourth moments. This is an assumption that is extensively used and discussed throughout the

literature. Corrections to the derived relations including the third-order moments are thought to

be minor.

9) The spectrum of the turbulence is assumed to have a negative power law behavior implying

that a spectral Mach number of the 
uctuations decays with wave number. This suggests that

the portion of the spectrum exhibiting compressibility e�ects are at the lower wave numbers. It
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is for this reason that the viscous e�ects have not been carried in the analysis for the dilatational

covariances. Such e�ects may well need to be incorporated in near wall 
ows.

10) The scale relation � = �(2k
3
)3=2=` has been used several times. While having substantial

empirical support in incompressible 
ows it is now being used in situations in which its validity

must be assessed. Is � = �(2k
3
)3=2=` valid for a compressible turbulence ? If not how must it be

modi�ed ? What is the best de�nition of a length scale with which to de�ne a gradient Mach

number ? Implicit in the present derivations has been a longitudinal length scale. Sarkar (1994)

uses a transverse length scale; how does this compare to the longitudinal length scale of an isotropic

turbulence. Should � in the length scale de�nition include the compressible dilatation �c ? Clearly

since the model is going to be used in sheared 
ows and near walls one must asses how accurate

this relationship is for such situations. Sreenivasan (1984, 1994) has addressed the e�ect of shear

on the relationship.

6. Summary and Conclusions

The mathematical consequences of a few assumptions about the size of the 
uctuating pressure

and density in a compressible turbulence are followed. A low turbulent Mach number singular per-

turbation has produced a diagnostic constitutive relationship relating the 
uctuating dilatation to

the 
uctuating pressure and velocity �elds. This constitutive relation is the lynchpin of the devel-

opment allowing closure for the e�ects of compressibility in terms of the divergence-free portions of

the 
uctuating 
ow �eld. Moments of the constitutive relation produce analytically consistent rep-

resentations for the dilatation variance and the pressure-dilatation covariance in a turbulence �eld

with and without mean velocity gradients. Application of the methods of statistical 
uid mechanics

and the assumptions of quasi-homogeneity, quasi-normal behavior, and isotropy produces expres-

sions for the covariances with the 
uctuating dilatation. Except for the well-established empirical

result, ` � (2
3
k)3=2=�s, used to close the expressions, no additional phenomenological assumptions

are made. The analysis is, in the low Mt limit, exact and produces representations for the e�ects of

compressibility in which there are no unde�ned constants. The constants that appear are known in

terms of integrals of the longitudinal velocity correlation of an incompressible isotropic turbulence.

Both Lele (1994) and Blaisdell et al. (1994) have re
ected that an algebraic closure for the e�ects

of compressibility solely dependent on M2

t appears to be overly restrictive. The present analysis

has quite naturally indicated the importance several additional parameters. The compressible

dissipation is found to be a function of the local values of the turbulent Reynolds number, Rt,

the turbulent Mach number, Mt, the two mean velocity gradient Mach numbers MS and MW ,

and the solenoidal dissipation. The pressure-dilatation is seen to be a nonequilibrium phenomena.
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It is found to be a function of the rate of change of the turbulent Mach number, Mt, the mean

density, < � >, the energy of the turbulence, k, and the two relative time scales Sk=�s and

Wk=�s. Additional manipulations show that it can be expressed as a function of the production,

the dissipation and the transport. There still remain the nonequilibrium e�ects associated with the

adjustment time of the eddy turnover time to the time scale of the mean 
ow.

The analysis has produced a few simple and interesting metaphors for the e�ects of compressibility

on a turbulent 
ows. For classes of turbulent 
ows for which this analysis is relevant, one example

being the compressible mixing layer, the results suggest mechanisms that play a role in the reduction

of the mixing layer growth rate. In short, the pressure-dilatation transfers turbulent kinetic energy

to the internal energy �eld e�ectively reducing the relative excess of production over dissipation by

a factor �pdM
2

t . Further reduction of k occurs through the dilatational dissipation. These e�ects

are dependent on the local mean 
ow gradients and as such suppress growth rates most in regions

of high production.

It is hoped that these results will be of use in further understanding the complex e�ects of com-

pressibility and stimulate additional new investigations including the assessment of the consequences

and utility of the present pseudo-sound development. Some of the results worth noting are now

summarized:

1) Noteworthy is the appearance of two mean 
ow Mach numbers based on the mean velocity

gradients. One based on the mean deformation, MS = S`=c, and another on the mean rotation,

MW = W`=c. These gradient Mach numbers have been identi�ed as important parameters in

assessing the e�ects of compressibility in the numerical experiments of Sarkar (1994).

2) The pressure-dilatation is essentially a reversible nonequilibrium phenomenon acting as a mech-

anism by which the 
uctuating kinetic energy is transferred and stored in the internal energy �eld.

The pressure-dilatation is shown to be interpretable as an added mass e�ect reducing the rate of

change of turbulence quantities by the capacitance of the mean internal energy �eld. As such it

may, in part, be responsible for some of the relaxational e�ects seen in compressible 
ows. This

remains to be seen.

3) The rapid portion of the pressure-dilatation is seen to be a function of the rate of change of

the relative times scales, Sk=�s and Wk=�s. These quantities may be interpreted as indicating

how closely the eddy-turnover time tracks the mean velocity gradient. They occur because of the

evolution of the length scale of the turbulence and its importance to the rapid pressure integral.
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4) Unlike the solenoidal dissipation, the theory predicts that the compressible dilatation is a function

of the Reynolds number and vanishes, for �xed turbulent Mach number, as the Reynolds number

increase. The compressible dilatation, in the low Mt limit, doesn't appear to be interpretable as a

spectral 
ux.

A brief overview of the more speci�c results of the theory can be found in the introductory section.

Limitations and extensions of the theory have been indicated in the previous section. A summary

of the representations is given in the appendix.

This article is a documentation of the physical implications of a pseudo-sound analysis for for the

covariances of the 
uctuating dilatation. The uniqueness of the investigation is the small number

of phenomenological assumptions made. The results are a mathematical consequence of the initial

assumptions. As an analytical investigation the article is complete. The assessment and utility of

these results as models for engineering computations is the subject of several works planned or in

progress, Ristorcelli (1995), Ristorcelli et al. (1995). Preliminary computations in a few simple

benchmark 
ows have been successful.
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Appendix 1: Synopsis of the dilatational covariance representations

The analytical results, and associated mathematical formulae are, as an aid to the user, brie
y

summarized. It should be emphasized that, at this point, the representations do not constitute a

fully developed or tested turbulence model. Testing, verifying and evolving the present analytical

results into a working turbulence model suitable for engineering calculations is the subject of work

now in progress.

The kinetic energy equation for the turbulence is

< � >
D

Dt
k = Pk � < � > �s + < pd > � < � > �c + Tk (105)

where Pk represents the production and Tk represents the transport terms. The e�ects of compress-

ibility are given by the second two terms. The dissipation �s = � < !j!j > is the usual dissipation

associated with the vortical motions of the incompressible turbulence. The dilatational dissipation

or the compressible dissipation and denoted �c =
4

3
� < dd >. There are additional terms repre-

senting the the contraction of the dyad of the mass 
ux on the mean 
ow acceleration. Tk will be

used to represent all such terms as well. Local isotropy has been assumed for the dissipation. The

usual modeled dissipation equation

D=Dt " = � (C"1 < uiuj > Ui;j + C"2") "=k + T� (106)

is carried to describe its evolution. Note that no corrections for compressibility have been made in

this equation. The mean temperature equations , with the assumption of constant cv, is

< � > cv
D
Dt

T = PT � < pd > + < � > �s+ < � > �c + TT

Where TT is the transport of the mean temperature including such e�ects as the mean heat 
ux

and the turbulent or pressure transport. The production for a homogeneous 
ow with homogeneous

mean velocity gradients is PT = �PD + 2 < � > (U1;2 )
2. Here P is the mean pressure and D

is the mean dilatation. Depending on the particular application the temperature equation may

have more or fewer production terms than indicated here. Note that if one carries the total energy

equation in a simulation, rather than the mean temperature, that that the pressure-dilatation only

needs to be carried in the k equation.

The representations for the e�ects of the compressible dissipation are given by the sum of the slow

and rapid portions, �c = �rc + �sc.

�sc =
16

3�2

M4

t

Rt
�s [I

s
2
+ 6Is

1
Is
3
]:

�rc = (
2

3
)5

M4

t

Rt
�s [3Ŝ

2 + 5Ŵ 2][
3

5
Ir
3
+ (

1

15
)2[13Ŝ2+ 15Ŵ 2] �2 Ir

1
]: (107)
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Mt is the turbulent Mach number, M2

t = 2

3
k=c2, where c2

1
= 
 < p > = < � > is the local sound

speed. Note that its de�nition follows that used in the acoustic literature where such a Mach number

is traditionally used to describe the sound generation problem by turbulence. It is the parameter

that arises naturally in nondimensionalization of the equations for a small parameter expansion.

The turbulent Reynolds number is given by Rt =
~u`
�
= 4k2

9��
using the facts that ~u = 2k=3 and �s =

�~u3=` which is used to express the length scale as, ` = �(2k=3)3=2=�s . For simple incompressible

shear 
ows, the constant, �, varies between 1 - 4 depending on 
ow, Sreenivasan (1995). Note that

in the de�nition the characteristic velocity 2

3
k is used; not < u1u1 > as is sometimes the case. The

nondimensional strain and rotation rates are given by: Ŝ2 = (Sk=�s)
2, Ŵ 2 = (Wk=�s)

2 where of

course, S =
p
SijSij and W =

p
WijWij . The strain and rotation tensors are de�ned in analogy

with the incompressible case, ie. traceless Sij =
1

2
[Ui;j +Uj ;i�

2

3
D�ij ], Wij =

1

2
[Ui;j �Uj ;i ]. Note

that Sjj = 0 since D = Uj ;j . In a simple planar shear 
ow, Ui;j = U1;2 �i1�2j that S
2 = W 2 = 1

2
U2

1
;2.

A quick of order of magnitude estimate for the integrals can be made using f = e��
2�=4. The

following values are found: Is
1
= 1

2
; Is

2
= 41�

27
= 4:77; Is

3
= �

4
= 0:785; Ir

1
= 4

�
= 1:273; Ir

3
= 3.

The values found from high Reynolds number wind tunnel data are di�erent: Is
1
= 0:300; Is

2
=

13:768; Is
3
= 2:623; Ir

1
= 1:392; Ir

3
= 3, Zhou (1995). The values given for the integrals re
ect the

assumption of an equilibrium isotropic turbulence and are to be understood as suggestive of the

order of magnitude that they may have in more complex anisotropic and inhomogeneous situations.

The full pressure-dilatation covariance is a sum of two terms, < pd >=< pd >r + < pd >s,

< pd >s = �
2

3
Is
1

D

Dt
[< � > M2

t k]

< pd >r= �
1

30
(
2

3
)3Ir

1
�2

D

Dt
[< � > kM2

t [3Ŝ
2+ 5Ŵ 2] ] (108)

Summing and using the evolution equations for T and k produces the following quasi-algebraic

representation for the full pressure-dilatation covariance,

< pd >= ��pdM
2

t [Pk� < � > �+ Tk �
3

4
M2

t 
(
 � 1)(PT+ < � > �+ TT )]

� < � > k M2

t �rpd
D
Dt
T

�pd =
2Ipd

1 + 2IpdM
2

t +
3

2
IrpdM

4

t 
(
 � 1)

�rpd =
Irpd

1 + 2IpdM
2

t +
3

2
IrpdM

4

t 
(
 � 1)

Ipd =
2

3
Is
1
+ Irpd [3Ŝ

2+ 5Ŵ 2]

Irpd =
1

30
(
2

3
)3 �2Ir

1
: (109)
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Note that � = �s + �c and T = [3Ŝ2 + 5Ŵ 2]. The term inside the inner brackets is the right hand

side of the mean temperature equation.
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