CLIPS Tutorial 4

Modular Design, Execution
Control, and Rule Efficiency

SEG 7450

Deftemplate Attributes

CLIPS provides a number of slot attributes that can be specified when a
deftemplate’s slots are defined.

It 1s possible to define the allowed types and values that can be stored in a
slot.

SEG 7450

The Type Attribute

m The type attribute defines the data types that can be placed in a slot.

m The general format of the type attribute is
(type <type - specification)
m where <type-specification> is either
m ?"VARIABLE or

m one or more of the symbols
= SYMBOL,

STRING,

LEXEME,

INTEGER,

FLOAT,

NUMBER,

INSTANCE-NAME,

INSTANCE-ADDRESS,

INSTANCE,
FACT-ADDRESS, or

EXTERNAL-ADDRESS.

SEG 7450

The Type Attribute

= Example:
(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER)))

= For example, assigning the symbol four to the age slot rather than the integer
4 will cause an error as shown:
CLIPS> (assert (person (name Fred Smith)
(age four)))

[CSTRNCHKI1] A literal slot value found in the assert command does not
match the allowed types for slot age.

CLIPS>

SEG 7450

The Type Attribute

m CLIPS also checks the consistency of bindings in the LHS and RHS of a rule
= Example:
(deftemplate had - a- birthday
(slot name (type STRING)))
m The following will cause an error:
CLIPS> (defrule update - birthday

?fl < - (had - a- birthday (name ?name))
?f2 < - (person (name ?name) (age ?age))
=>
(retract ?f1)
(modify ?f2 (age (+ ?age 1)))

[RULECSTR1] Variable ?name in CE #2 slot name has constraint
conflicts which make the pattern unmatchable.

CLIPS>

SEG 7450

The Allowed Value Attributes

m CLIPS also allows you to specity a list of allowed values for a specific type.

m For example, if a gender slot is added to the person deftemplate, the allowed
symbols for that slot can be restricted to male and female:
(deftemplate person(
multislot name (type SYMBOL))
(slot age (type INTEGER))
(slot gender (type SYMBOL)
(allowed - symbols male female)))

SEG 7450

The Allowed Value Attributes

There are eight different allowed value attributes provided by CLIPS:

= allowed-symbols, allowed-strings, allowed-Lexemes, allowed-integers, allowed-floats,
allowed-numbers, allowed-instance-names, and allowed-values.

For example, (allowed-symbols male female) does not restrict the type of the gender slot
to being a symbol.

m It merely indicates that if the slot’s value is a symbol, then it must be one of the
two symbols: either zale ot female.

® Any string, integer, or float would be a legal value for the gender slot if the (type
SYMBOL) attribute were removed

The allowed-values attribute can be used to completely restrict the set of allowed
values for a slot to a specified list.
(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER))
(slot gender (allowed - values male female)))

SEG 7450

The Range Attribute

m The range attribute allows the specification of minimum and maximum
numeric values.

m The general format of the range attribute is
(range <lower-limit> <upper-limit>)

m where <lower-limit> and <upper-limit> are either PVARIABLE or a numeric
value.

m ?VARIABLE indicates there is either no maximum or minimum value.
m For example, to prevent negative values:

(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER) (range 0 ?VARIABLE)))

SEG 7450

The Cardinality Attribute

The cardinality attribute allows the specification of the minimum and
maximum number of values that can be stored in a multislot.

The general format of the cardinality attribute 1s
(cardinality <lower - limit> <upper - [imit>)

® where<lower-limit> and <upper-limit> are either PVARIABLE or a positive
integet.

m ?VARIABLE indicates there is either no maximum or minimum value.

Note that type, allowed value, and range attributes are applied to every value
contained in a multislot.

Example:
(deftemplate volleyball - team
(slot name (type STRING))
(multislot players (type STRING)
(cardinality 6 6))
(multislot alternates (type STRING)
(cardinality 0 2)))

SEG 7450

The Default Attribute

It 1s often convenient to automatically have a specified value stored in a slot 1f
no value is explicitly stated in an asser# command.

The general format of the default attribute is
(default <default-specification>)
® where<default-specification> 1s either PDERIVE, PINONE, a single expression
(for a single-field slot), or zero or more expressions (for a multifield slot).

If the default attribute is not specified for a slot, then it is assumed to be
(default PDERIVE).

m For a single-field slot, this means that a value is selected that satisfies the type,
range, and allowed values attributes for the slot.

The derived default value for a multifield slot will be a list of identical values that
are the minimum allowed cardinality for the slot (zero by default).

SEG 7450

The Default Attribute

® An example of derived values is the following:
CLIPS> (clear)
CLIPS> (deftemplate example
(slot a)
(slot b (type INTEGER))
(slot c (allowed - values red green blue))
(multislot d)
(multislot e (cardinality 2 2)
(type FLOAT)
(range 3.5 10.0)))
CLIPS> (assert (example))
<Fact - 0>
CLIPS> (facts)
f -0 (example (a nil)
(b 0)
(c red)
©)
(e 3.53.5)
For a total of 1 fact.
CLIPS>

SEG 7450

The Default Attribute

m [f ’NONE is specified in the default attribute. a value must be supplied for the slot
when the fact is asserted.

CLIPS> (clear)

CLIPS>

(deftemplate example

(slot a)

(slot b (default ?NONE)))
CLIPS> (assert (example))
[TMPLTRHS1] Slot b requires a value because of its
(default ?NONE) attribute.
CLIPS> (assert (example (b 1)))
<Fact - 0>

CLIPS> (facts)

f - 0 (example (a nil) (b 1))

For a total of 1 fact.

CLIPS>

SEG 7450

The Default Attribute

= An example using expressions with the defanlt attribute:
CLIPS> (clear)
CLIPS>
(deftemplate example
(slot a (default 3))
(slot b (default (+ 3 4)))
(multi slot c (default a b c))
(multi slot d (default (+ 1 2) (+ 3 4))))
CLIPS> (assert (example))
<Fact - 0>
CLIPS> (facts)
f-0 (example (a3) (b 7) (cabc) (d37))
For a total of 1 fact.
CLIPS>

SEG 7450

The Deffunction Construct

m New functions are defined using the deffunction construct.
m The general format of a deffunction is:

(deffunction <deffunction - name> [<optional - comment>]
(regular - parameter>* [<wildcard - parameter>])
<expression>*)
Where <regular-parameter> 1s a single-field variable and <wildcard-parameter> is
a multifield variable.

The name of the deffunction, <deffunction-name>, must be distinct.

The body of the deffunction, represented by <expression>*, is a series of
expressions similar to the RHS of a rule that are executed in order when the
deffunction is called.

Unlike predefined functions, deffunctions can be delted and the watch command
can be used to trace their execution.

SEG 7450

The Deffunction Construct

m The <regular-parameter> and <wildcard-parameter> declarations
m Specify the arguments that will be passed into the deffunction when it is called.
m A deffunction can return values.
m The return value 1s that value of the last expression evaluated within the body of
the deffunction.
m H.g
(deffunction hypotenuse - length (?a ?b)
(** (+ (* ?a ?a) (* ?b ?b)) 0.5))
m Where the **function with its second argument of 0.5

= compute the square root

m (¥ <numeric-expression> <numeric-expression>) is the first argument raised to
the power of the second argument

SEG 7450

The Deffunction Construct

m [t can be called from the command prompt:
CLIPS> (hypotenuse - length 3 4)
5.0
CLIPS>
®m In a more readable format:
(deffunction hypotenuse - length (?a ?b)
(bind ?temp (+ (* ?a ?a) (* ?b ?h)))
(** ?temp 0.5))

SEG 7450

The Deffunction Construct

m The Return Function
m It allows the currently executing deffunction to be terminated.

m Jts syntax for use with deffunctions:
(return [<expression>])

m [f <expression> 1s specified, the result of its evaluation is used as the return value.
m Eg
(deffunction hypotenuse - length (?a ?b)
(bind ?temp (+ (* ?a ?a) (* ?b ?b)))
(return (** ?temp 0.5)))
OR
(deffunction hypotenuse - length (?a ?b)
(bind ?temp (+ (* ?a ?a) (* ?b ?b)))
(bind ?c (** ?temp 0.5))
(return ?c))

SEG 7450

The Deffunction Construct

m Watching Deffunctions

m When deffunctions are watched using watch command, an informational message
is printed whenever a deffuction begins or ends execution.

CLIPS> (watch deffucntions)
CLIPS> (unwatch deffunctions
m Watch specific deffucntions
CLIPS> (watch deffucntions hypotenuse - length)
CLIPS>
m Wildcard parameter

m [f the last parameter declared in a deffunction is a multifield variable, which is
referred to as a wildcard parameter, then the deffunction can be called with more
arguments than are specified in the parameter list.

SEG 7450

The Deffunction Construct

m Deffunction commands

m Display the text representations of a deffunction:
(ppdeffunction <deffunction-name>)

® Delete a deffunction:
(undeffunction <deffunction-name>)

m Display the list of deffunctions defined:
(list-deffunctions [<module-name>])

® Returns a multifield value containning the list of deffucntions.

(get-deffunction-list [<module-name>])

SEG 7450

The Defglobal Construct

m Global variables:
m CLIPS allows one to define variables that retain their values outside the scope of a

construct

m [ocal variables:
(defrule example-1
(data-1 ?x)
=
(printout t “?x =7 ?x ctlf))
(defrule example-1
(data-2 Px)
=>
(printout t “?x =7 ?x ctlf))

The value of Px in rule example-1 does not constrain in any way the value of ?x in rule

example-2.

SEG 7450

The Defglobal Construct

m The general format of a defglobal is:
(defglobal [<deftmodule-name>] <global-assignment>*)

m Where <global-assignment> is:
<global-variable> = <expression>

® And <global-variable> is:
P*<symbol>*
m Global variable names begin and end with the * character.
m °x is a local variable
m P*x* is a global variable.
m E.g
CLIPS> (defglobal ?7*x* =3
2*y* = (+ 2*x* 1))
CLIPS> ?*x*
3
CLIPS> ?*y*
4

CLIPS>
SEG 7450

The Defglobal Construct

= Example:
CLIPS> (defrule area
(radius ?r)
=>
(bind ?area (* ?*pi* ?*pi* ?r))
(printout t "Area = " ?area crif)
CLIPS> (deffacts area_circle (radius 4))
CLIPS> (reset)
CLIPS> (run)
Area = 39.47841751413609
CLIPS>

®m The value of a defglobal can be changed using the bind command.

SEG 7450

The Defglobal Construct

m Defglobals can be used in expression on the LHS of rules, but changes to
defglobals won’t trigger pattern matching.

= Example:
(defglobal ?*72* = 4)
(defrule global - example
(data ?z&: (> ?z ?*z%))
:>)

SEG 7450

The Defglobal Construct

= When facts are asserted:
CLIPS> (reset)
CLIPS> ?*z*
4
CLIPS> (assert (data 5) (data 6))
<Fact - 2>
CLIPS> (facts)
f-0 (initial - fact)
f-1 (data 5)
f-2 (data 6)
For a total of 3 facts.
CLIPS> (agenda)
0 global -example:f -1
0 global -example:f -2
For a total of 2 activations.
CLIPS> (bind ?*z* 5)
5
CLIPS> (agenda)
0 global -example:f -1
0 global -example:f -2
For a total of 2 activations.
= As pattern matching is complete when facts are asse rted,
changing the value of ?*Z* won ' t cause the pattern to be

reevaluated.
SEG 7450

The Defglobal Construct

m Defglobals are most appropriately used in rules as either
® constants or
® to pass in information that is used only on the RHS of the rule

and should not trigger pattern matching.

SEG 7450

Salience

CLIPS provides two explicit techniques for controlling the execution of rules:
salience and modules.

The use of the keyword sa/ence allows the priority of rules to be explicitly
specified.

Normally the agenda acts like a stack.
m the most recent activation placed on the agenda is the first to fire.

Salience allows more important rules to stay at the top of the agenda,
regardless of when the rules were added.

Salience is set using a numeric value ranging from the smallest value of
-10,000 to the highest of 10,000.

m [f a rule has no salience explicitly assigned by the programmer, CLIPS
assumes a salience of 0.

A newly activated rule 1s placed on the agenda before all rules with equal or
lesser salience and after all rules with greater salience.

SEG 7450

Salience

No salience values are declared:
(defrule fire - first
(priority first)
=>
(printout t "Print first"
(defrule fire - second
(priority second)
=>
(printout t "Print second"
(defrule fire - third
(priority third)
=>
(printout t "Print third"

SEG 7450

Salience

Produce the output shown below:

CLIPS> (unwat ch all)

CLIPS> (reset)

CLIPS> (assert (priority first))
<Fact - 1>

CLIPS> (assert (priority second))
<Fact - 2>

CLIPS> (assert (priority third))
<Fact - 3>

CLIPS> (run)

Print third

Print second

Print first

CLIPS>

SEG 7450

Salience

By declaring salience values:

(defrule fire - first
(declare (salience 30))
(priority first)
=
(printout t "Print first"

(defrule fire - second
(declare (salience 20))
(priority second)
=
(printout t "Print second"

(defrule fire - third
(declare (salience 10))
(priority third)
=

(printout t "Print third" crif)

SEG 7450

Salience

m Produce the following output:

CLIPS> (reset)

CLIPS> (assert (priority second)
(priority first)
(priority third))

<Fact - 3>

CLIPS> (agenda)

30 fire - first: f-

20 fire - second: f-

10 fire - third: f-

For a total of 3 activations.

CLIPS>

SEG 7450

Phases and Control Facts

m For programs involving hundreds or thousands of rules, the intermixing of
domain knowledge and control knowledge makes development and
maintenance a major problem.

m As an example, consider the problem of performing fault detection, isolation,
and recovery of a system such as an electronic device.

m Different Phases for Fault Detection, Isolation, and Recovery Problem

i
{

Isolation

SEG 7450

Phases and Control Facts

m To use salience to organize the rules,

m Assignment of salience for different phases

Isolation I Salience
Recovery I

B two major drawbacks are:

m control knowledge is still being embedded into the rules using salience.

m does not guarantee the correct order of execution.

m Better approach in controlling the flow of execution 1s to separate the control
knowledge from the domain knowledge, as shown in the following figure.

m cach rule is given a control pattern that indicates its applicable phase.

m Control rules are then written to transfer control between the different phases

SEG 7450

Phases and Control Facts

Separation of Expert Knowledge from Control Knowledge
Expert Knowledge

Detection Ruies Recovery Rules

Isolatton Rules

Control Knowledge

Control Rules

SEG 7450

Phases and Control Facts

m Control rules:

(defrule detection - to - isolation
(declare (salience - 10))
?phase < - (phase detection)
=>
(retract ?phase)

(assert (phase isolation)))

(defrule isolation - to - recovery

(declare (salience - 10))
?phase < - (phase isolation)
=>

(retract ?phase)

(assert (phase recovery)))

(defrule recovery -to - detection

(declare (salience S L0)))

?phase < - (phase recovery)
=>

(retract ?phase)

(assert (phase detection)))

SEG 7450

Phases and Control Facts

m Fach of the rules applicable for a particular phase is then given a control
pattern.
(defrule find -fault -location - and-recovery

(phase recovery)
(recovery - solution switch - device

?replacement on)
=>
(printout t "Switch device" ?replacement "on"

crif))

m A salience hierarchy is a description of the salience values used by an expert
system.

m Fach level in a salience hierarchy corresponds to a specific set of rules whose
members are all given the same salience.

SEG 7450

Phases and Control Facts

= While the fact (phase detection) 1s in the fact list, the defection-to-isolation rule

will be on the agenda.
m Since it has a lower salience than the detection trules, it will not fire until all of the
detection rules have had an opportunity to fire.

Salience Hierarchy Using Expert and Control Rules

4
., Expert Rules I :
|
|
|

Salience

Control Rules

SEG 7450

Phases and Control Facts

m The previous rules could be more generally written as:
(deffacts control-information
(phase detection)
(phase-after detection isolation)
(phase-after isolation recovery)
(phase-after recovery detection))
(defrule change-phase
(declare (salience —10))
Pphase <- (phase °current-phase)
(phase-after Pcurrent-phase Pnext-phase)
=>
(retract Pphase)
(assert (phase ?next-phase))

SEG 7450

Phases and Control Facts

= Or as a sequence of phases:
(deffacts control-information
(phase detection)

(phase-sequence isolation recovery detection))
(defrule change-phase

(declare (salience —10))

Pphase <- (phase °current-phase)

rlist <- (phase-sequence ?next-phase Pother-phases)

=>

(retract ?phase rlist)

(assert (phase Pnext-phase))

(assert (phase-sequence Pother-phases Pnext-phase)))

SEG 7450

Phases and Control Facts

m Additional levels can be easily added to the salience hierarchy.

Four-Ievel Salience Hierarchy

= Constraint Rules I

Salience

SEG 7450

Misuse of Salience

m Opveruse of salience results in a pootrly coded program.
= A main advantage of a rule-based program is that the programmer does
not have to worry about controlling execution.
m Salience should primarily be used as a mechanism for
determining the order in which rules fire.

m Salience should not be used as a method for selecting a single rule from a
group of rules when patterns can be used to express the criteria for
selection

SEG 7450

