TCP Congestion Control Fairness
Current Issues and an Economics Proposal

Scott Ainsworth
Department of Computer Science

CS 555: Introduction to Networks and Communications
22 April 2008
Outline

1. Background
 - Jacobson’s Algorithm and Its Descendents
 - Problem, What Problem?

2. What Is “Fair” Anyway?
 - “Traditional” TCP Congestion Control Fairness.
 - “Human” Fairness

3. An Economics Approach
 - Economics?
 - The Wrong Way
 - The Right Way
 - Other Fairness Issues
Outline

1. **Background**
 - Jacobson’s Algorithm and Its Descendents
 - Problem, What Problem?

2. **What Is “Fair” Anyway?**
 - “Traditional” TCP Congestion Control Fairness.
 - “Human” Fairness

3. **An Economics Approach**
 - Economics?
 - The Wrong Way
 - The Right Way
 - Other Fairness Issues
October 1986: Internet experienced as series of congestion-driven meltdowns [?].

1988: Van Jacobson consolidated ideas and changed the BSD UNIX TCP protocol [?]
(TCP Tahoe).

1990: Jacobson added triple duplicate ACK [?]
(TCP Reno).

1994: Brakmo, et. al. added per-segment timeouts, better triple ACKs, congestion detection by expected vs. actual [?]
(TCP Vegas).

Others, ...
TCP congestion control has been evolving with the Internet — so, what is the problem?
It appears to work, but under the covers there are big problems [?, ?].
There is a new breed of application [?]:
- Peer-to-peer is best known.
- BitTorrent.
Problem, What Problem?
TCP Applications: 1986 and Today.

(a) Flow-Rate Fairness with Single-Connection Applications

Note: Illustrations inspired by G. Ou. [?]

Scott Ainsworth TCP Congestion Control Fairness
BitTorrent Screenshot

![Image of µTorrent interface](image-url)

File Information

<table>
<thead>
<tr>
<th>Name</th>
<th>#</th>
<th>Size</th>
<th>Done</th>
<th>Status</th>
<th>Seeds</th>
<th>Peers</th>
<th>Down Speed</th>
<th>Up Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0o_2.4.0_Win32Intel_install_en.exe</td>
<td>1</td>
<td>112 MB</td>
<td>16.9%</td>
<td>Downloading</td>
<td>37 (34+4)</td>
<td>4 (40)</td>
<td>456.0 kB/s</td>
<td>4.0 kB/s</td>
</tr>
<tr>
<td>Ubuntu 9.04 beta desktop 32-bit.iso</td>
<td></td>
<td>680 MB</td>
<td></td>
<td>Seeding</td>
<td>3 (17)</td>
<td>0 (69)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peer Information

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Client</th>
<th>Flags</th>
<th>%</th>
<th>Down Speed</th>
<th>Up Speed</th>
<th>Reqs</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>li12-51.members.linode.com</td>
<td>Mainline 3.4.2</td>
<td>D</td>
<td>100.0</td>
<td>80.5 kB/s</td>
<td>0.1 kB/s</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>c-24-0-106-77.hsd1nj.comcast.net</td>
<td>Transmission 1.06</td>
<td>D IXE</td>
<td>100.0</td>
<td>52.1 kB/s</td>
<td></td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>ip68-100-111-90.dc.dc.cox.net</td>
<td>µTorrent 1.7.7</td>
<td>DX</td>
<td>100.0</td>
<td>38.9 kB/s</td>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>66-231-4-34.hosts.sdnet.net</td>
<td>Azureus 3.0.5.0</td>
<td>DX</td>
<td>100.0</td>
<td>38.1 kB/s</td>
<td></td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>user-120co67.cable.mindspring.com</td>
<td>µTorrent 1.7.7</td>
<td>DX</td>
<td>100.0</td>
<td>30.6 kB/s</td>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>adsf8-39.kln.forthnet.gr</td>
<td>Azureus 3.0.5.0</td>
<td>D I</td>
<td>100.0</td>
<td>26.3 kB/s</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>cust-65-98-143-2.static.o1.com</td>
<td>FDM 2.x</td>
<td>D Ix</td>
<td>100.0</td>
<td>26.2 kB/s</td>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>ip68-3-52-78.ph.ph.cox.net</td>
<td>Azureus/2.5.0.4</td>
<td>D</td>
<td>100.0</td>
<td>24.6 kB/s</td>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>66-207-95-4.cho.dmt.ntelos.net</td>
<td>µTorrent 1.7.7</td>
<td>D H</td>
<td>100.0</td>
<td>19.0 kB/s</td>
<td></td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>dsl-vlan427-66-18-224-177.nucleus.ca</td>
<td>Azureus 3.0.5.0</td>
<td>D</td>
<td>100.0</td>
<td>18.1 kB/s</td>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>s010600179ace4134.cg.shawcable.net</td>
<td>µTorrent 1.7.7</td>
<td>D X</td>
<td>100.0</td>
<td>17.9 kB/s</td>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>modemcable086.246-81-70.mc.videotron.com</td>
<td>µTorrent 1.7.7</td>
<td>D HX</td>
<td>100.0</td>
<td>13.3 kB/s</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>78-69-37-13-no76.tbcn.telia.com</td>
<td>µTorrent 1.7.7</td>
<td>D X</td>
<td>100.0</td>
<td>12.6 kB/s</td>
<td></td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>cpe-065-190-255-147.triad.res.rr.com</td>
<td>µTorrent 1.7.5</td>
<td>D H</td>
<td>100.0</td>
<td>11.9 kB/s</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>user-10mt28.cable.mindspring.com</td>
<td>µTorrent 1.7.7</td>
<td>D HX</td>
<td>100.0</td>
<td>11.3 kB/s</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>host81-159-223-93.range81-159.btexpress.net</td>
<td>µTorrent 1.6.1</td>
<td>D X</td>
<td>100.0</td>
<td>9.8 kB/s</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>c-67-174-194-37.hsd1.ca.comcast.net</td>
<td>µTorrent 1.7.5</td>
<td>D HX</td>
<td>100.0</td>
<td>7.1 kB/s</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>82-69-230-205.dsl.in-addr.zen.co.uk</td>
<td>Mainline 4.4.0</td>
<td>D I</td>
<td>100.0</td>
<td>6.0 kB/s</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>c-71-195-131-156.hsd1.ma.comcast.net</td>
<td>µTorrent 1.7.7</td>
<td>D IX</td>
<td>100.0</td>
<td>6.0 kB/s</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>shadowfax.singhealth.local</td>
<td>FDM 2.x</td>
<td>D IX</td>
<td>100.0</td>
<td>5.2 kB/s</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

- D: 458.7 kB/s
- T: 19.4 MB
- U: 5.5 kB/s
Problem, What Problem?
TCP Applications: 1986 and Today.

(a) Flow-Rate Fairness with Single-Connection Applications

(b) Flow-Rate (Un)fairness with Single- and Multi-Connection Applications

Note: Illustrations inspired by G. Ou. [?]
When traditional network applications and contemporary applications are mixed, the 1988 flow-rate fairness model is inadequate.

TCP Congestion Control is Broken!

It is no longer fair.
Outline

1. Background
 - Jacobson’s Algorithm and Its Descendants
 - Problem, What Problem?

2. What Is “Fair” Anyway?
 - “Traditional” TCP Congestion Control Fairness.
 - “Human” Fairness

3. An Economics Approach
 - Economics?
 - The Wrong Way
 - The Right Way
 - Other Fairness Issues
What is “Fair” Anyway?

“Traditional” TCP Congestion Control Fairness.

- Based on flows.
- Is based on engineering principles.
- Easily subverted by opening multiple or long-running connections.
- But how do humans determine fairness?
 — Certainly not by engineering!
What is “Fair” Anyway?
How do we determine fairness?

- Humans have been studying fairness for millenia.
- But not as an engineering discipline.
- Instead, we study...

Markets & Economics
Economists have been studying fairness for centuries. Kelly was first to proffer an economics solution [?], [?]. Briscoe has taken up the cause [?] and produced draft RFCs.
What is “Fair” Anyway? How do we determine fairness?

- Humans have been studying fairness for millenia.
- But not as an engineering discipline.
- Instead, we study...

Markets & Economics

Economists have been studying fairness for centuries. Kelly was first to proffer an economics solution [?, ?]. Briscoe has taken up the cause [?] and produced draft RFCs.
What Is “Fair” Anyway?
Engineering vs. “human” fairness.

“Traditional” TCP fairness
- Flow-rate parity
- Discrete TCP connections
- Created from an engineering perspective
- Made sense in 1986 — broken in 2008 [?]

“Human” fairness [?]
- Stability is an engineering problem
- Fairness is a philosophy or economics problem
- Current model should be replaced with “human” models
What Is “Fair” Anyway?

Engineering vs. “human” fairness.

“Traditional” TCP fairness
- Flow-rate parity
- Discrete TCP connections
- Created from an engineering perspective
- Made sense in 1986 — broken in 2008 [?]

“Human” fairness [?]
- Stability is an engineering problem
- Fairness is a philosophy or economics problem
- Current model should be replaced with “human” models
1. Background
 - Jacobson’s Algorithm and Its Descendents
 - Problem, What Problem?

2. What Is “Fair” Anyway?
 - “Traditional” TCP Congestion Control Fairness.
 - “Human” Fairness

3. An Economics Approach
 - Economics?
 - The Wrong Way
 - The Right Way
 - Other Fairness Issues
What can economics teach us about fairness?

- Economists study distribution of scarce resources
- Cost and utility closely related in human affairs
- Supply, demand, and equilibrium — Sound familiar?
- Centuries of study — far outdates computer science

 - 362 BCE: Xenophon, *Economicus*
The Wrong Way
Bad assumptions about economic utility.

- Several ISPs experimenting
- Focus on high-visibility streams such as music and video
- COMCAST — negative news for interfering with BitTorrent

These approaches are misguided because

- Assume music and video have high economic utility to all users, which is not the case
- It is impossible to determine economic utility from the data stream alone

Therefore, congestion control algorithms cannot easily consider economic utility
Cost not Benefit
Since utility is not viable...

- Since utility is not a viable option, only cost can be used.
- Cost = total volume of data transmitted — not number of flows!
- Approach: weighted proportional fairness
- Flows are weighted based on importance to the user (Probably automatically by the operating system)
Weighted Proportional Fairness

(a) Weighted TCP Fairness with Single-Connection Applications

(b) Weighted TCP Fairness with Single- and Multi-Connection Applications

Single flow: weight = 64

16 flows: weight = 4 each
The 1986 congestion control model has not stood the test of time
Its insufficiencies are causing ISPs to make bad choices
We need a cost-based solution
Weighted proportional fairness is the approach
Weighted TCP is being championed by Briscoe [?]
Questions?