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AbstractÐSoftware architecture plays an important role in determining software quality characteristics, such as maintainability,

reliability, reusability, and performance. Performance effects of architectural decisions can be evaluated at an early stage by

constructing and analyzing quantitative performance models, which capture the interactions between the main components of the

system as well as the performance attributes of the components themselves. This paper proposes a systematic approach to building

Layered Queueing Network (LQN) performance models from a UML description of the high-level architecture of a system and more

exactly from the architectural patterns used for the system. The performance model structure retains a clear relationship with the

system architecture, which simplifies the task of converting performance analysis results into conclusions and recommendations

related to the software architecture. In the second part of the paper, the proposed approach is applied to a telecommunication product

for which an LQN model is built and analyzed. The analysis shows how the performance bottleneck is moving from component to

component (hardware or software) under different loads and configurations and exposes some weaknesses in the original software

architecture, which prevent the system from using the available processing power at full capacity due to excessive serialization.

Index TermsÐSoftware performance analysis, layered queueing networks, software architecture, architectural patterns, Unified

Modeling Language (UML).
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1 INTRODUCTION

PERFORMANCE characteristics (such as response time and
throughput) are an integral part of the quality attributes

of a software system. There is a growing body of research
that studies the role of software architecture in determining
different quality characteristics in general [12], [1] and
performance characteristics in special [15], [16]. Architec-
tural decisions are made very early in the software
development process, therefore, it would be helpful to be
able to assess their effect on software performance as soon
as possible.

This paper contributes toward bridging the gap between

software architecture and early performance analysis. It

proposes a systematic approach to building performance

models from the high-level software architecture of a

system, which describes the main system components and

their interactions. The architectural descriptions on which

the construction of a performance model is based must

capture certain issues relevant to performance, such as

concurrency and parallelism, contention for software

resources (as, for example, for software servers or critical

sections), synchronization and serialization, etc.

Frequently used architectural solutions are identified in
literature as architectural patterns (such as pipeline and
filters, client/server, client/broker/server, layers, master-
slave, blackboard, etc.) [3], [12]. A pattern introduces a
higher-level of abstraction design artifact by describing a
specific type of collaboration between a set of prototypical
components playing well-defined roles and helps our
understanding of complex systems. The paper proposes a
systematic approach to building a performance model by
transforming each architectural pattern employed in a
system into a performance submodel. The advantage of
using patterns is that they are already identified and
catalogued, so we can build a library of transformation
rules for converting patterns to performance models. If,
however, not all components and interactions of a high-
level architecture are covered by previously identified
architectural patterns, we can still describe the remaining
interactions as UML mechanisms [2] and proceed by
defining ad hoc transformations into performance models.

The formalism used for building performance models is
the Layered Queueing Network (LQN) model [11], [17], [18],
an extension of the well-known Queueing Network model.
LQN was developed especially for modeling concurrent
and/or distributed software systems. Some LQN compo-
nents represent software processes and others, hardware
devices. One of the most interesting performance character-
istics of such systems is that a software process may play a
dual role, acting both as a client to some processes/devices
and as a server to others (see Section 3 for a more detailed
description). Since a software server may have many clients,
important queueing delays may arise for it. The server may
become a software bottleneck, thus limiting the potential
performance of the system. This can occur even if the
devices used by the process are not fully utilized. The
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analysis of an LQN model produces results such as
response time, throughput, queueing delays, and utilization
of different software and hardware components and
indicates which components are the system bottleneck(s).
By understanding the cause for performance limitations, the
developers will be able to concentrate on the system's
ªtrouble spotsº in order to eliminate or mitigate the
bottlenecks. The analysis of LQN models for various
alternatives will help in choosing the ªrightº changes, so
that the system will eventually meet its performance
requirements.

Software Performance Engineering (SPE) is a technique
introduced in [14] that proposes to use quantitative
methods and performance models in order to assess the
performance effects of different design and implementation
alternatives, from the earliest stages of software develop-
ment throughout the whole lifecycle. LQN modeling is very
appropriate for such a use, due to fact that the model
structure can be derived systematically from the high-level
architecture of the system, as proposed in this paper. Since
the high-level architecture is decided early in the develop-
ment process and does not change frequently afterwards,
the structure of the LQN model is also quite stable.
However, the LQN model parameters (such execution
times of the high-level architectural components on behalf
of different types of system requests) depend on low-level
design and implementation decisions. In the early devel-
opment stages, the parameter values are estimations based
on previous experience with similar systems, on measure-
ment of reusable components, on known platform over-
heads (such as system call execution times), and on time
budgets allocated to different components. As the develop-
ment progresses and more components are implemented
and measured, the model parameters become more accurate
and so do the results. In [14] it is shown that early
performance modeling has definite advantages, despite its
inaccurate results, especially when the model and its
parameters are continuously refined throughout the soft-
ware lifecycle.

LQN was applied to a number of concrete industrial
systems (such as database applications [5], web servers
[7], telecommunication systems, etc.) and was proven to
be useful for providing insights into performance limita-
tions at software and hardware levels, for suggesting
performance improvements in different development
stages, for system sizing, and for capacity planning. In
this paper, LQN is applied to a real telecommunication
system. Although the structure of the LQN model was
derived from the high-level architecture of the system,
which was chosen in the early development stage, we
used model parameters obtained from prototype measure-
ments, which are more accurate than the estimated values
available in preimplementation phases. The reason is that
we became involved with the project when the system
was undergoing performance tuning and so we used the
best data available to analyze the high-level architecture
of the system (which was unchanged from the early
design stages). We found some weaknesses in the original
architecture due to excessive serialization and used the
LQN model to assess different architectural alternatives in

order to improve the performance by removing or
mitigating software bottlenecks.

The paper proceeds as follows: Section 2 discusses
architectural patterns and the UML notation [2] used to
represent them. Section 3 gives a brief description of the
LQN model. Section 4 proposes transformations of the
architectural patterns into LQN submodels. Section 5
presents the telecommunication system case study and its
LQN model. Section 6 analyzes the LQN model under
various loads and configurations, showing how the bottle-
neck moves around the system and proposes improvements
to the system. Section 7 gives the conclusions of the work.

2 ARCHITECTURAL PATTERNS

According to [1], a software architecture represents a
collection of computational components that perform certain
functions, together with a collection of connectors that
describe the interactions between components. A
component type is described by a specification defining its
functions and by a set of ports representing logical points of
interaction between the component and its environment. A
connector type is defined as a set of roles explaining the
expected behavior of the interacting parties and a glue
specification showing how the interactions are coordinated.

A similar, even though less formal, view of a software
architecture is described in the form of architectural patterns
[3], [13], which identify frequently used architectural
solutions, such as pipeline and filters, client/server,
client/broker/server, master-slave, blackboard, etc. Each
architectural pattern describes two interrelated aspects: its
structure (what are the components) and behavior (how they
interact). In the case of high-level architectural patterns, the
components are usually concurrent entities that execute in
different threads of control, compete for resources, and
interact in a prescribed manner, which may require some
kind of synchronization. These are aspects that contribute to
the performance characteristics of the system and, therefore,
must be captured in the performance model.

This paper proposes to use high-level architectural
patterns as a basis for translating software architecture into
performance models. A subset of such patterns, which are
later used in the case study, are described in the paper in
the form of UML collaborations (not to be confused with
UML collaboration diagrams, a type of interaction diagrams).
According to the authors of UML, a collaboration is a
notation for describing a mechanism or pattern, which
represents ªa society of classes, interfaces, and other
elements that work together to provide some cooperative
behavior that is bigger than the sum of all of its partsº [2]. A
collaboration has two aspects: structural and behavioral.
Figs. 1 and 2 illustrate these aspects for two alternatives of
the pipeline and filters pattern. Each figure contains a UML
class/object diagram describing the pattern structure, on
the left and a UML sequence diagram illustrating the
pattern behavior on the right. A brief explanation of the
UML notation used in the paper is given below (see [2] for
more details). The notation for a class or object is a rectangle
indicating the class/object name (the name is underlined
for objects); the rectangle may contain optionally a section
for the class/object operations and another one for its
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attributes. The multiplicity of the class/object is represented
in the upper right corner. A rectangle with thick lines
represents an active class/object, which has its own thread
of control, whereas a rectangle with thin lines represents a
passive one. An active object may be implemented either as
a process or as a thread (identified by the stereotype
<<process>> or <<thread>>, respectively). The constraint
{sequential} attached to the operations of a passive object, as
in Fig. 2, indicates that the callers must coordinate outside
the passive object (for example, by the means of a
semaphore) so that only one calls the passive object's
operations at any given time. The UML symbol for
collaboration is an ellipse with a dashed line that may have
an ªembeddedº rectangle showing template classes. The
collaboration symbol is connected with the classes/objects
by dashed lines, whose labels indicate the roles played by
each component. A line connecting two objects, named link,
represents a relationship between the two objects, which
interact by exchanging messages. Depending on the kind of
interacting objects (passive or active), UML messages may
represent either operation calls or actual messages sent
between different flows of control. Links between objects
may be optionally annotated with arrows showing the
name and type of messages exchanged. For example, in
Fig. 1, an arrow with a half arrowhead between the active
objects filter1 and filter2 represents an asynchronous

message, whereas in Fig. 2, the arrows with filled solid
arrowheads labeled ªwrite()º and ªread()º represent syn-
chronous messages implemented as calls to the operations
indicated by the label. When relevant, the ªobject flowº

carried by a message is represented by a little arrow with a
circle (as in Fig. 2), while the message itself is an arrow
without circle. A synchronous message implies a reply,
therefore, it can carry objects in both directions. For
example, in Fig. 2, the object flow carried by the message
read() goes in the reverse direction than the message itself.

A sequence diagram, such as on the right side of Figs. 1
and 2, shows the messages exchanged between a set of
objects in chronological order. The objects are arranged

along the horizontal axis and the time grows along the
vertical axis, from top to bottom. Each object has a lifeline
running parallel with the time axis. On the lifeline, one can
indicate the period of time during which an object is
performing an action as a tall thin rectangle called ªfocus of
control,º or the state of the object as a rectangle with
rounded corners called ªstate mark.º The messages ex-
changed between objects (which can be asynchronous or

synchronous) are represented as horizontal directed lines.
An object can also send a message to itself, which means
that one of its operations invokes another operation of the
same object.
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Architectures using the pipeline and filters pattern
divide the overall processing task into a number of
sequential steps, which are implemented as filters, while
the data between filters flows through unidirectional pipes.
We are interested here in active filters [3] that are running
concurrently. Each filter is implemented as a process or
thread that loops through the following steps: ªpullsº the
data (if any) from the preceding pipe, processes it, then
ªpushesº the results down the pipeline. The way in which
the push and pull operations are implemented may have
performance consequences. In Fig. 1, the filters commu-
nicate through asynchronous messages. A filter ªpullsº an
item by accepting the message sent by the previous filter,
processes the item by invoking its own operation
proc_item(), and passes the data on to the next filter by
sending an asynchronous message, after which, it goes into
a waiting state for the next item. In Fig. 2, the filters
communicate through a shared buffer (one pushes by
writing to the buffer and the other pulls by reading it).
Whereas the filters are active objects with a multiplicity of
one or higher, the buffer itself is a passive object that offers
two operations, read() and write(), which must be used one
at a time (as indicated by the constraint {sequential}).

When defining the transformations from architectural
patterns into LQN submodels, we use both the structural
and the behavioral aspect of the respective collaborations.
The structural part is used directly, in the sense that each
software component has counterpart(s) in the structure of
the LQN model (the mapping is not bijective). However, the
behavioral part is used indirectly, in the sense that it is
matched by the behavior of the LQN model, but is not
represented graphically.

3 LQN MODEL

LQN was developed as an extension of the well-known
Queueing Network (QN) model, at first independently in
[17], [18], and [11], then as a joint effort [4]. The LQN toolset
presented in [4] includes both simulation and analytical
solvers that merge the best previous approaches. The main
difference of LQN with respect to QN is that a server, to
which customer requests are arriving and queueing for
service, may become a client to other servers from which it
requires nested services while serving its own clients. An
LQN model is represented as an acyclic graph whose nodes
(named also tasks) are software entities and hardware
devices and whose arcs denote service requests (see Fig. 3).
The software entities are drawn as parallelograms and the
hardware devices as circles. The nodes with outgoing and
no incoming arcs play the role of pure clients. The
intermediate nodes with incoming and outgoing arcs play
both the role of client and of server and usually represent
software components. The leaf nodes are pure servers and
usually represent hardware servers (such as processors, I/O
devices, communication network, etc.). A software or
hardware server node can be either a single-server or a
multiserver (composed of more than one identical servers
that work in parallel and share the same request queue). A
LQN task may offer more than one kind of service, each
modeled by a so-called entry, drawn as a parallelogram
ªslice.º An entry has its own execution time and demands

for other services (given as model parameters). Although
not explicitly illustrated in the LQN notation, each server
has an implicit message queue, where the incoming
requests are waiting their turn to be served. Servers with
more then one entry still have a single input queue, whereas
requests for different entries wait together. The default
scheduling policy of the queue is FIFO, but other policies
are also supported. Fig. 3 shows a simple example of an
LQN model for a three-tiered client/server system: At the
top there are two client classes, each with a known number
of stochastic identical clients. Each client sends requests for
a specific service offered by a task named Application,
which represents the business layer of the system. Each
Application entry requires services from two different
entries of the Database task, which offers in total three
kinds of services. Every software task is running on a
processor node, drawn as a circle; in the example, all clients
of the same class share a processor, whereas Application
and Database share another processor. Database uses also
two disk devices, as shown in Fig. 3. It is worth mentioning
that the word layered in the name of LQN does not imply a
strict layering of the tasks (for example, a task may call
other tasks in the same layer or skip over layers).

There are three types of LQN messages, synchronous,

asynchronous, and forwarding, whose effect is illustrated in

Fig. 4. A synchronous message represents a request for

service sent by a client to a server, where the client remains

blocked until it receives a reply from the provider of service

(see Fig. 4a). If the server is busy when a request arrives, the

request is queued and waits its turn. After accepting a

message, the server starts to serve it by executing a

sequence of phases (one or more). At the end of phase 1,

the server replies to the client, which is unblocked and

continues its work. The server continues with the following

phases, if any, working in parallel with the client, until the

completion of the last phase. (In Fig. 4a, a case with three

phases is shown). After finishing the last phase, the server

begins to serve a new request from the queue, or becomes

idle if the queue is empty. During any phase, the server may

act as a client to other servers, asking for and receiving so-

called ªincluded services.º In the case of an asynchronous

message, the client does not block after sending the message

and the server does not reply back, instead only executing

its phases, as shown in Fig. 4b. The third type of LQN
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message, named forwarding message (represented as a dotted

request arc) is associated with a synchronous request that is

served by a chain of servers, as illustrated in Fig. 4c. The

client sends a synchronous request to Server1, which begins

to process the request, then forwards it to Server2 at the end

of phase 1. Server1 proceeds normally with the remaining

phases in parallel with Server2, then goes on to another

cycle. The client, however, remains blocked until the

forwarded request is served by Server2, which replies to

the client at the end of its phase 1. A forwarding chain can

contain any number of servers, in which case the client

waits until it receives a reply from the last server in the

chain.
The parameters of an LQN model are as follows:

. customer (client) classes and their associated popu-
lations or arrival rates;

. for each software task entry: average execution time
per phase;

. for each software task entry seen as a client to a
device (i.e., for each request arc from a task entry to a
device): average service time at the device and
average number of visits per phase of the requesting
entry;

. for each software task entry seen as a client to
another task entry (i.e., for each request arc from a
task entry to another task entry): average number of
visits per phase of the requesting entry;

. for each request arc: average message delay;

. for each software and hardware server: scheduling
discipline.

Typical results of an LQN model are response times,

throughput, utilization of servers on behalf of different

types of requests, and queueing delays. The LQN results

may be used to identify the software and/or hardware

bottlenecks that limit the system performance under

different workloads and configurations. Understanding

the cause for performance limitations helps the develop-

ment team to come up with appropriate remedies.

4 TRANSFORMATION FROM ARCHITECTURE TO

PERFORMANCE MODELS

A software system contains many components involved in
various architectural connection instances (each described
by a pattern/collaboration) and a component may play
different roles in connections of various types. The
transformation of the architecture into a performance model
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is done in a systematic way, pattern by pattern. As
expected, the performance of the system depends on the
performance attributes of its components and on their
interactions (as described by patterns/collaborations).
Performance attributes are not central to the software
architecture itself and must be supplied by the user as
additional information. They describe the demands for
hardware resources by the software components: allocation
of processes to processors, execution time demands for each
software component on behalf of different types of system
requests, demands for other resources such as I/O devices,
communication networks, etc. We will specify more clearly
what kind of performance attributes must be provided for
each pattern/collaboration. The tranformations from the
architecture to the performance modeling domain are
discussed next.

LQN model for Pipeline and Filters. Figs. 5 and 6 show

the transformation into LQN submodels of the two Pipeline

and Filters collaborations described in Fig. 1 and 2,

respectively. The translation takes into account, on one

side, the structural and behavioral information provided by

the UML collaboration and on the other side the allocation

of software components to processors, which will lead to

different LQN submodels for the same pattern (see Fig. 6).

The tansformation rules are as follows:

a. Each active filter from Figs. 5 and 6 becomes an LQN
software server with a single entry, whose service
time includes the processing time of the filter. The
filter tasks will receive an asynchronous message
(described in Fig. 4b) and will execute its phases in
response to it. A typical distribution of the work into
phases is to receive the message in phase 1, to
process it in phase 2, and to send it to the next filter
in phase 3.

b. The allocation of LQN tasks to processors mimics the
real system. The way the filters are allocated on the
same or on different processor nodes does not make
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are running on different processor nodes.



any difference for the pipeline with a message (the
reason for which the processors are not represented
in Fig. 5), but it affects the model for a pipeline with
a buffer, as explained below.

c. In the case of a pipeline with a message (Fig. 5), all
aspects related to the pipeline connector between the
two filters are completely modeled by the LQN
asynchronous message. The CPU times for send and

receive system calls are added to the execution times
of the phases in which the respective operations take
place. If we want to model a network delay for the
message, it can be represented by a delay attached to
the request arc.

d. In the case of a pipeline with buffer (Fig. 6), an
asynchronous LQN arc is necessary, but is not
sufficient to model all the aspects concerning the
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pipeline connector. Additional LQN elements are
required to take into account the serialization delay
introduced by the constraint that buffer operations
must be mutually exclusive. A third task that plays the
role of semaphore will enforce this constraint, due to
the fact that any task serializes the execution of its
entries. The task has as many entries as the number of
critical sections executed by the filters accessing the
buffer (two in this case, ªwriteº and ªreadº). Since the
execution of each buffer operation takes place in the

thread of control of the filter initiating the operation,
the allocation of filters to processors matters. If both
filters are running on the same processor node (which
may have more than one processor) as in Fig. 6a, then
the read and write operations will be executed on the
same processor node. Thus, they can be modeled as
entries of the semaphore task that is, obviously,
coallocated with the filters. If, however, the filters
are running on different processor nodes, as in Fig. 6b,
the mutual-exclusive operations read and write will
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be executed on different processor nodes, so they
cannot be modeled as entries of the same task. (In
LQN, all entries of a task are executed on the same
processor node). The solution is shown in Fig. 6b: We
keep the semaphore task for enforcing the mutual
exclusion, but its entries are only used to delegate the
work to two new tasks, each one responsible for a
buffer operation. Each new task is allocated on the
same processor as the filter initiating the respective
operation.

The LQN models for both pipeline and filters collabora-

tions from Figs. 5 and 6 can be generated with a forwarding

message (as in Fig. 4c) instead of an asynchronous one (as in

Fig. 4b), if the source of requests for the first filter in a

multifilter architecture is closed instead of open. A closed

source is composed of a set of client tasks sending

synchronous requests to the first filter and waiting for a

reply from the last filter. Since an LQN task may send a

forwarding message exactly at the end of its phase1, all the

work done by a filter task must take place in the first phase.
Client-Server Pattern is very frequently used in today's

distributed systems. Fig. 7 illustrates a case where the client

communicates directly with the server through synchro-

nous requests (described in Fig. 4a). A server may offer a

wide range of services (represented in the architectural

view as the server's class methods), each one with its own

performance attributes. From a performance modeling

point of view, it is important not only to identify these

services, but also to find out who is invoking them and how

frequently. The UML class diagram contains a single

association between a client and a server, no matter how

many server methods the client may invoke. Therefore, we
indicate here in addition to the line that represents the
client-server association, the messages sent by the client to
the server (used mostly in collaboration diagrams) to
indicate all the services a client will invoke at one time or
another.

There are other ways in which client/server connections
may be realized which are not described in the paper, as
they do not apply to our case study. A well-known example
is the use of midware technology, such as CORBA, to
interconnect clients and servers running on heterogeneous
platforms across local or wide-area networks. CORBA
connections introduce very interesting performance impli-
cations and modeling issues [9].

LQN was originally created to model client/server
systems, so the transformation from the client-server
pattern to LQN is quite straightforward. An LQN server
may offer a range of services (object methods in the
architectural view), each with its own CPU time and
number of visits to other servers (these are performance
attributes that must be provided). Each service is modeled
as an entry of the server task, as shown in Fig. 7, and will
contribute differently to the response time, utilization, and
throughput of the server. A client may invoke more than
one of these services at different times. The performance
attributes for the clients include their average CPU time
demands and the average number of calls for each entry of
the server. As in the pipeline connection case, the CPU time
required to execute the system call for send/receive/reply
is added to the service times of the corresponding entries.
The allocation of tasks to processors is not shown in Fig. 7,
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because the transformation does not depend on it. Each

LQN task is allocated exactly as its architectural component

counterpart.
Critical section. This is a collaboration at a lower-level of

abstraction than the previous architectural patterns, but is

very frequently used. It describes the case where two or

more active objects share the same passive object. The

constraint {sequential} attached to the methods of the

shared object indicates that the callers must coordinate

outside the shared object (for example, by the means of a

semaphore) to insure correct behavior. Such synchroniza-

tion introduces performance delays and must be repre-

sented in the LQN model. For simplicity reasons, Fig. 8

illustrates a case where each user invokes only a method of

the shared object, but this can be extended easily to allow

each user to call a subset of methods.

The transformation of the critical section collaboration
produces either the model given in Fig. 8a or in Fig. 8b,
depending on the allocation of user processes to processor
nodes (similar to the pipeline with buffer case). The premise
is that the shared object operations are mutually exclusive,
that an LQN task cannot change its processor node, and that
all the entries of a task are executed on the task's processor
node. In the case where all users are running on the same
processor node, the shared object operations can be
modeled as entries of a task that plays the role of semaphore
(see Fig. 8a), which is running on the same processor node
as the users. The generalization for allowing a user to call a
subset of operations (entries) is straightforward: The user is
connected by a request arcs to every entry in the subset.

If the users are running on different processor nodes as

in Fig. 8b, then the shared object operations (i.e., critical

sections) are executed by different threads of controls
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Fig. 12. Distribution of the total demand for CPU time per request over different software components.

Fig. 11. LQN base case model of the telecommunication system.



corresponding to different users that are running on

different processors. Therefore, each operation is modeled

as an entry of a new task responsible for that operation that

is running on its user's node. (If a user is to call more shared

operations, its new associated task will have an entry for

every such operation. This means that an operation called

by more than one user will be represented by more than one

entry.) However, these new tasks must be prevented from

running simultaneously, so a semaphore task, with one

entry for each user, is used to enforce the mutual exclusion.

An entry of the semaphore task delegates the work to the

entries modeling the required operations. The performance

attributes to be provided for each user must specify the

average execution times for each user outside and inside the

critical section separately.
Coallocation collaboration. Fig. 9 shows the so-called

coallocation collaboration, where two active objects are

contained in a third active object and are constrained to

execute only one at a time. The container object may be

implemented as a process. This is an example of architec-

tural connection from our case-study system, which is not

necessarily an architectural pattern, but is quite frequently

used. The most obvious solution to model the two

contained objects as entries of the same task presents a

disadvantage: It cannot represent the case where each of the

two contained objects has its own request queue. (An LQN

task has a unique message queue, where requests for all

PETRIU ET AL.: ARCHITECTURE-BASED PERFORMANCE ANALYSIS APPLIED TO A TELECOMMUNICATION SYSTEM 1059

Fig. 14. Task utilizations for 1-processor base case.

Fig. 13. Maximum achievable throughput for different hardware and software configurations and a single class of service requests.



entries are waiting together). One reason for which we may

need separate queues is to avoid cyclic graphs, which could

not be accepted by the LQN solver used for this paper. The

solution presented in Fig. 9 represents each contained active

object as a separate ªdummyº task that delegates all the

work to an entry of the container task, which serializes all

its entries. The dummy tasks are allocated on a dummy

processor (not to interfere with the scheduling of the ªrealº

processor node).

5 LQN MODEL OF A TELECOMMUNICATION SYSTEM

We conducted performance modeling and analysis of an
existing telecommunication system which is responsible for
developing, provisioning, and maintaining various intelli-
gent network services, as well as for accepting and
processing real-time requests for these services. According

to the Software Performance Engineering methodology [14],
we first identified the critical scenarios with the most
stringent performance constraints (which correspond in this
case to real-time processing of service requests). Next, we
identified the software components involved in and the
architectural patterns exercised by the execution of the
chosen scenarios (see Fig. 10).

The real time scenario we have modeled starts from the
moment a request arrives to the system and ends after the
service was completely processed and a reply was sent
back. As shown in Fig. 10, a request is passed through
several filters of a pipeline: from Stack process to IO process
to RequestHandler and all the way back. The main
processing is done by the RequestHandler (as can be seen
from Fig. 12 and Table 1), which accesses a real-time
database to fetch an execution ªscriptº for the desired
service, then executes the steps of the script accordingly.
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Fig. 16. Task utilization for 6-processor base case.

Fig. 15. Task utilizations for 4-processor base case.



The script may vary in size and types of operations
involved and, hence, the workload varies largely from one
type of service to another (by one or two orders of
magnitude). Based on experience and intuition, the de-
signers decided from the beginning to allow for multiple
replications of the RequestHandler process in order to
speed up the system. Two shared objects, ShMem1 and
ShMem2, are used by the multiple RequestHandler replica-
tions. The system was intended to be run either on a single-

processor, or on a multiprocessor with shared memory.
Processor scheduling is such that any process can run on
any free processor (i.e., the processors were not dedicated to
specific tasks). Therefore, the processor node was modeled
as a multiserver. By systematically applying the

transformation rules described in the previous section to

the architectural patterns/collaborations used in the sys-
tem, as shown in Fig. 10, the LQN model shown in Fig. 11

was obtained.
The next step was to determine the LQN model

parameters (average service time for each entry and average

number of visits for each request arc) and to validate the

model. We have made use of measurements using Quantify

[19] and the Unix utility top. The measurements with

Quantify were obtained at very low arrival rates of around a
couple of requests/second. Quantify is a profiling tool

which uses data from the compiler and run-time informa-

tion to determine the user and kernel execution times for

test cases chosen by the user. Since we wanted to measure
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Fig. 18. Contributions to the utilization of a RH copy when the system is saturated in function of the RH replication level.

Fig. 17. Contributions to IOout utilization when the system is saturated in function of the RH replication level.



average execution times for different software components

on behalf of a system request (see Table 1), we have

measured the execution of 2,000 requests repeated in a loop,

then computed the average per request. Although we

have not computed confidence intervals on the measure-

ments, repeated experiments were in close agreement. The

top utility provided us with utilization figures for very

high loads of hundreds of requests/second, close to the

actual operating point. These measurements were done on

a prototype in the lab for two different hardware

configurations, with one and four processors. Again,

repeated measurements were in close agreement. We

have used the execution times measured with Quantify

(given in Table 1) to determine the model parameters and

the utilization results from top to validate our model. The

utilization values obtained by solving the model were

within five percent of the measured values. Unfortunately,

a more rigorous validation was hindered by the lack of

response time measurements.

6 PERFORMANCE ANALYSIS OF THE

TELECOMMUNICATION SYSTEM

Although the LQN toolset [4] offers both analytical and
simulation solvers, the model results used in this section
were obtained by simulation. The reason is that one of the
system features, namely, the scheduling policy by polling
used for the RequestHandler multiserver, could not be
handled by the analytical solver. All the simulation results
were obtained with a confidence interval of plus/minus
1 percent at the 95 percent level.

The first question of interest to developers was to find

the ªbestº hardware and software configuration that can

achieve the desired throughput for a given mix of services.

By ªconfigurationº we understand more specifically the

number of processors in the multiprocessor system and the

number of RequestHandler software replications. We tried

to answer this question by exploring a range of

configurations for a given service mix, determining for

each the highest achievable throughput (as in Fig. 13). Then
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Fig. 20. Task utilizations for the 4-processor halfway modified system.

Fig. 19. LQN model of the modified system.



the configurations with a maximum throughput, lower then
the required values, are discarded. The cheapest configura-
tion that can insure satisfactory throughput and response
time at an operating point below saturation will be chosen.
Solving the LQN model is a more efficient way to explore
different configurations under a wide range of workloads

then to measure the real system for all these cases.
Although we have modeled the system for two classes of

services, we selected to report here only results for a single
class because they illustrate more clearly how the bottleneck
moves around from hardware to software for different
configurations. The model was analyzed for three hardware

configurations: with one, four, and six processors, respec-

tively. We chose one and four processors, since the actual

system had been run for such configurations, and six

processors to see how the software architecture scales up.
When running the system on a single processor (see

Fig. 14), the replication of the RequestHandler does not

increase the maximum achievable throughput. This is due

to the fact that the processor is the system bottleneck. As

known from [8], the replication of software processes brings

performance rewards only if there is unused processing

capacity (which is not the case here).
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Fig. 22. Task utilization for the 6-processor fully modified system.

Fig. 21. Task utilizations for the 4-processor fully modified system.



A software server is said to be ªutilizedº when it is doing
effective work and when it is waiting to be served by lower
level servers (including the queueing for the included
services). Figs. 17 and 18 show different contributions to the
utilization of two tasks, IOout and RH, when the system is
saturated (i.e., works at the highest achievable throughput
given in Fig. 13) for different numbers of RH replications. It
is easy to see that for more than five RH copies, one task
(i.e., IOout) has a very high utilization even though it does
little useful work, whereas at the same time another task
(i.e., a RH copy) has a lower utilization and does more
useful work.

Interestingly enough, in the case of four-processor
configuration, we notice that with more processing capacity
in the system, the processors do not reach the maximum
utilization level, as shown in Fig. 15. Instead, two software
tasks IOout and IOin (which are actually responsible for
little useful work on behalf of a system request) reach
critical levels of utilization due to serialization constraints in
the software architecture. There are two reasons for serial-
ization: IOin and IOout are 1) executed by a single thread of
control (which in LQN means waiting for task IOexec), and
2) contend for the same buffer. Thus, with increasing
processing power, the system bottleneck is moving from
hardware to software. This trend is more visible in the case
of six-processors configuration, where the processor utiliza-
tion reaches only 86.6 percent, as shown in Fig. 16. The
bottleneck has definitely shifted from hardware to software,
where the limitations in performance are due to constraints
in the software architecture.

We tried to eliminate the serialization constraints in two
steps: first by making each filter a process on its own (i.e.,
by removing StackExec and IOexec tasks in the LQN
model), then by splitting the pipeline buffer sitting between
IO process and RequestHandler in two buffers. The LQN
model obtained after the two-step modifications is shown in
Fig. 19. The results of the ªhalfwayº modified system (after
the first step only) are given in Fig. 20 and show no major
performance improvement (the processor is still used below
capacity). By examining again the utilization components of
IOin and IOout (which are still the bottleneck) we found
that they wait most of the time to gain access to the Buffer
(IOout is waiting about 90 percent of the time and IOin

80 percent). After applying both modification steps, though,

the software bottleneck, due to excessive serialization in the

pipeline, was removed and the processor utilization went

up again, as shown in Fig. 21 for the four-processor and in

Fig. 22 for the six-processor configuration.
As expected, the maximum achievable throughput

increased as well. The throughput increase was rather

small in the case of four processors (only 2.7 percent), and

larger in the case of six processors (of 10.3 percent), where

there was more unused processing power. We also realized

that in the case of six processors a new software bottleneck

has emerged, namely the Database process (which is now

100 percent utilized). The new bottleneck, caused by a low-

level server, has propagated upwards, saturating all the

software processes that are using it (all RequestHandler

replications).

The final conclusion of the performance analysis is that
different configurations will have different bottlenecks and
by solving the bottleneck in one configuration, we shift the
problem somewhere else. What performance modeling has
to offer is the ability to explore a range of design
alternatives, configurations and workload mixes, and to
detect the causes of performance limitations just by
analyzing the model, before proceeding to change the real
system.

7 CONCLUSIONS

This paper contributes toward bridging the gap between
software architecture and performance analysis. It proposes
a systematic approach to building performance models
from the high-level software architecture of a system, by
transforming each architectural pattern employed in the
system into a performance submodel. There is ongoing
work to formalize the kind of transformations presented in
the paper from the architecture to the performance domain
by using formal graph transformations based on the graph-
grammar formalism [9].

The paper illustrates the proposed approach to building
LQN models by applying it to an existing telecommunica-
tion system. The performance analysis exposes weaknesses
in the original architecture due to excessive serialization,
which show up when more processing power is added to
the system. Surprisingly, software components that do
relatively little work on behalf of a system request can
become the bottleneck in certain cases, whereas components
that do most of the work do not. After removing the
serialization constraints, a new software bottleneck
emerges, which leads to the conclusion that the software
architecture, as it is, does not scale up well. This case study
illustrates the usefulness of applying performance modeling
and analysis to software architectures.
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