CS 455/555

Intro to Networks and Communications

The Network Layer: Routing Algorithms

Dr. Michele Weigle

Department of Computer Science

Old Dominion University
mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13/

The Network Layer: Routing & Addressing

Outline
application
L 2 Transport
network
¢ link
physiml
*
*

»

+ Routing algorithms

» Least cost path computation
algorithms

¢ Hierarchical routing

» Connecting networks of networks
+ Routing on the Internet

» Intra-domain routing

» Inter-domain routing

application

Transport

network

link

physical

2

Routing Algorithms

Least-cost path computation

UUNET’s North America Internet rrnetwork

¢ Goal: To determine a
"good" path through the
network from source to
destination

¢ Graph abstraction for
routing algorithms:
» Nodes are routers

¢ "Good" path typically means
minimum cost path

» Also shortest path, ...
« Cost can be delay, ¢ (But often ISPs define "good"

of congestion, efc.

» Edges are physical links
» Edges have a "cost" metric

Routing Algorithms

Taxonomy

¢ Global or decentralized
information?

¢ Global — all routers have
complete graph (topology,

costs)
» "Link state" algorithms
Decentralized — router ¢ Static or dynamic?
knows link costs to physically » Sltatlf . [outes change
connected adjacent nodes > OWLY OVErHINe
)) i » Dynamic — routes change more
» Run iterative algorithm to quickly
exchange information with < Periodic updates, or
adjacent nodes < Updates in response to link

» "Distance vector" algorithms outages or cost changes

Global Routing Algorithms

A link-state routing algorithm

Uses Dijkstra's shortest path graph algorithm
¢ Complete network topology and link costs known at
all nodes
» Accomplished via link state flooding
» All nodes learn the "same" topology and cost data
¢ Each node computes least cost paths from itself to all
other nodes
» Produces a routing table for that node

» All nodes compute consistent
routing tables

¢ Algorithm complexity:
» N nodes (routers) in the network
» N X (N+1)/2 comparisons
» (More efficient implementations

possible)
Link State Routing
Dijkstra's Algorithm
1 Initialization: N is the set of nodes to
2 N={A) which we have computed
B the minimum cost path
3 forall nodes v D(x) is the current minimum
4 if v adjacent to A cost path to x
5 then D(v) = c(A,v) c(n,m) is the cost of the link from
6 else D(v) = infinity rntom

7

8 Loop

9 find node w not in N such that D(w) is a minimum

10 addnodewtoN
11 update D(v) for all nodes v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,Vv))

13 /* new cost to node v is either old cost to v or known
b4 shortest path cost to w plus cost fromw tov */

15 until all nodes in N

Animation: http://en.wikipedia.org/wiki/File:Dijksta Anim.qgif

Link State Routing

Dijkstra's algorithm: example

Link State Routing

Dijkstra's algorithm: example

Step start N D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
A 2,A 5A 1,A infinity infinity

QB[N |=|[O

N is the set of nodes to
which we have computed
the minimum cost path

D(x) is the current minimum
cost path to x

p(x) is the predecessor of x on
the current minimum cost
path to x

Link State Routing

Dijkstra's algorithm: example

Step start N D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F).p(F)
0 A 2,A 5A 1,A infinity infinity
1 AD 2,A 4.D 2,D infinity
2 ADE 2,A 3.E 4,E
3 ADEB 3.E 4.E
4 ADEBC 4.E
5 ADEBCF

N is the set of nodes to
which we have computed
the minimum cost path

D(x) is the current minimum
cost path to x

p(x) is the predecessor of x on
the current minimum cost
path to x

-

/ destination

Link State Routing
Link state routing table
Link State Routing \
Table for 4
first node in least
cost path
B| B ,
Cc|D .
D|D / Link State Routing N
E|D Table for D
FID 1 first node in least
/ cost path
c AlA
S
s B|B
2 C|E
) Tl .

Link State Routing
Link State Flooding Algorithm

The data stored for an edge in the graph (the link between nodes
X and Y) consists of:
» Cost from X to Y (X-Y) and from Y to X (Y-X)
» A unique timestamp for the last update to each cost

+ A node that discovers a change in cost for one of its attached
links forwards the update to all adjacent nodes

A node receiving an update forwards it based on a comparison of
{hekupdate timestamp and the timestamp on its local data for the
1NK:
» Update is later (or new): Forward to all adjacent nodes (except sender)
and update local data
» Update is earlier: Send local data back to sender
» Update is equal: Do nothing

Link State Flooding Algorithm

Example

Step 1: Link C-D fails

Step 2: C sends C->D=» to A,B.E,F
D sends D->C=x to A,B,E

Step 3: A sends C->D=x to B,D Step 4: C sends D->C= to B,E,F

D->C=x to B,C (received from A)
B sends C->D=w to A,D D sends C->D=x to B,E

D->C=xto A,C (received from A)
E sends C->D= to D,F F sends D->C=w to C

D->C=x to C,F (received from E)

F sends C->D=x to E

Link State Flooding Algorithm

Example

C>D=o D->C =

revr | Step 2 | Step 3 Step 4 Step 2 Step 3 Step 4
© B ®) B
© A D ®) A C
@ B, E F

(A)B,E
© | F D ®©
© | E ® C

Notation: Letter in cell indicates the sender of the message.
Circle around letter indicates the receipt of this message triggered a broadcast.

H E| TS Al W

Link State Routing

Oscillating routes

¢ "Route oscillations" are possible in link state algorithms

¢ Let the link cost equal the amount of carried traffic
» Assume the link cost is updated as traffic changes

Initially recompute recompute recompute

1

Routing Algorithms

Taxonomy

¢ Global or decentralized
information? 5

¢ Global — all routers have
maintain the complete graph
of the network (topology, costs) 1
» "Link state" algorithms

¢ Decentralized — router knows link costs to physically
connected adjacent nodes

» Run iterative algorithm to exchange information with adjacent
nodes

» "Distance vector" algorithms

Decentralized Routing Algorithms

Distance Vector Routing

¢ Iterative:

» Nodes exchange cost information
until each node has the current
route costs

» The algorithm is self-terminating
— there's no explicit stopping point

¢ Asynchronous:
» Nodes need not exchange information and iterate in lock step
» Intermediate results may be inconsistent across nodes

¢ Distributed:

» Each node communicates only with directly-attached
adjacent nodes

» (But there is no flooding of cost information)

Decentralized Routing Algorithms

Distance Vector Routing

Bellman-Ford equation

d(Y) = cost of least-cost path from X to Y
= min, {c¢(X,v) + d(Y)}
c(x,y) =costof linkxtoy v= {neighbors of X}

oL et's calculate this for source A and destination F.

» A has 3 neighbors (B, C, D)

» c(A,B)=2 » dp(F)=5
» c(A,C)=5 » de(F)=3
» c(A,D)=1 » dp(F)=3

od,(F) = min {2+5, 5+3, 143} = 4

Distance Vector Routing
Algorithm

¢ [terative, asynchronous Each node:

Each local iteration caused by:
»Local link cost change, or

»Message from adjacent node that
its least cost path to some
destination has changed

¢ Distributed:

»Each node notifies adjacent
nodes only when its least cost path
to some destination changes

»Adjacent nodes then notify their

wait for change in local
link cost or message from
adjacent node

|

recompute distance table

l

if least cost path to any
destination has changed,
notify adjacent nodes

adjacent nodes if this update
changes a least cost path

Distance Vector Routing
Algorithm

¢ Initialization phase: At all nodes X:

for all destinations V in N {

Dy(V) = "oo" /* the cost to reach all destinations is infinite */
}
for each neighbor V {

Dy(V) = c(X,V) /* record the cost to reach each adjacent node
} (cost from X to each V) */

for each neighbor V {
send D, = [Dy(y): yin N]to V /* send current minimum costs for all
} destinations to all neighbors */

Distance Vector Routing
Algorithm main loop (at node X)

loop

wait until (receive link cost change to adjacent node v
or receive distance vector from some neighbor v)

for each y in N:
Dx(y) = minv{c(x,v) + DV(Y)}

if D, (y) changed for any destination y
send distance vector D, = [Dx(y): y in N] to all neighbors

forever

20

Distance Vector Algorithm
Example

node X ;10
table |x Z 2
Ex
gy 00 00 00 1

ZOOOOOO

nOde y cost to
table | x

21

Distance Vector Algorithm
Example

node X ustt0
table |x

g

S
&

nOdey cost to
table | x y z

Xoooo°0

22

Distance Vector Algorithm
Example

node X o510

table |x Z 2
X
§y 0 00 ©0 1
Z o0 o0 [o0]
nodey .,
table xcos ’ 7

D,(y) = min{c(x,y) + Dy(y), ¢(x,z) + D,(y)}
= min{2+0, 7+1} = 2

D\(z) = min{c(x,y) + D\(z), ¢(x,z) + D (2)}
=min{2+1,7+0} =3

23

Distance Vector Algorithm
Example

node X cost to cost to

7

Done sending?

24

Distance Vector Algorithm

Link cost changes

¢ When a node detects a local link cost
change:
» The nodes updates its distance table

» If the least cost path (i.e., distance vector)
changes, the node notifies its neighbors

50

t,: Y detects link-cost change, updates its DV,
informs its neighbors.

t;: Zreceives update from Y, updates its table, computes new
least cost to X, sends its neighbors its DV.

t,: Y receives Z's update, updates its distance table. Y's least
costs do not change, so Y does not send a message to Z.

25

Distance Vector Algorithm

. 1
Link cost changes
t 4 t 1
cost to cost to cost to
node x _ X Z Xy z 50
X0 1.2 x|0 12
gy|1 01 Sy|1 01
21510 zl210
cost to cost to
node_xcostto 5 N tt
_ X 045 X
gydo D &
zI510 z
nodez_xcostto - N
< X 045 X
£y|4 01 gy
ZI1510 Z(

26

Distance Vector Algorithm

Link cost changes

¢ Good news travels fast, but...

¢ "Bad news" travels slow!
» The "count to infinity" problem

Distance Vector Algorithm
Link cost changes

to
cost to

nodey |x y z (and not 607?)

Routing Loop!
Does it Terminate?

60

50

27

Routing Loop!
Does it Terminate?

60

50

Why does Y to X change from 4 to 6

x/ 045
EY(60 D D (x)=min{c(yx) + D,(x), c(y2) + D,(x)}
21510 = min{60+0, 145} = 6

28

Distance Vector Algorithm Routing Loop!

Link cost changes Does it Terminate?
t, t, 60
node X cost to _Xcost to 2
X 51 50
gy|6 0 1 50
Z|510

v D) =minfe(xy) + Dy(y), c(x.2) + D,(y)}

cost to y = min{60+0, 50+1} =51

D,(z) = min{c(x,z) + D,(2), c(x,y) + Dy(2)}
= min{50+0, 60+1} = 50

D,(x) = min{c(z,x) + D(x), c(z,y) + Dy(x)}
=min{50+0, 1+6} =7

D,(y) = min{c(z,y) + Dy(y), ¢(z.x) + D,(y)}
=min{1+0, 50+4} =1

29

Distance Vector Aleorithm
Dy(x) = min{c(yx) + D,(x), c(y,z) + D,(x)}

Link cost changes — min{6040, 147) = 8
tO t1 tz 60
cost to cost to cost to
node x p’ Z Xy z
X0 91 5 x|0 51 50
£y|6 0 1 S5y 60 1 50
zI510 “zl710
cost to cost fo cost to
nodey x vy z Xy Z Xy z
x 045 x045
fy6o D Y601 -
ZI510 215610 What happens next?
cost fo cost to How long to stabilize?
nodez x v 7 Xy z
< X 045 X045
£Yy|l4 0 1 g£y|6 0 1
zl510 z(7 1 0>

30

The Count to Infinity Problem

The "poisoned reverse" technique

+ If Z routes through Y to get to X:
» Then Z tells Y that Z's distance to X is infinite

t, costto

The Count to Infinity Problem

The "poisoned reverse" technique

¢ Will this completely solve the problem?

t
0 cost to

= min{60+0, 1+%} = 60

50

31

50

D, (x) = min{c(y,x) + D,(x), c(y,z) + D,(x)}

32

The Count to Infinity Problem

The "poisoned reverse" technique

60

¢ Will this completely solve the problem?

t
0 cost to

50

cost to

Xy z
0 51 50

501 0

cost to

Xy z
0

8 O
o0 8
o~ U,

(@)
o

33

Least Cost Path Computations

Comparison of the link-state & distance vector algorithms

¢ Message complexity:

» LS: With N nodes, £ links,
O(NXE) messages sent for
flooding

» DV: Exchange between

neighbors only (may trigger
further exchanges)

+ Speed of Convergence:

» LS: O(N?) algorithm and
O(NxE) messages

<+ May have oscillations

» DV: Convergence time varies
< Routing loops possible
« Count-to-infinity problem

¢ Robustness: what happens

if there are failures?

» LS: Node can advertise
incorrect link cost

Each node computes only its
own table

» DV: Node can advertise
incorrect path cost

Each node's table used by
others

< Errors propagate through
network

34

The Network Layer: Routing & Addressing

Outline
application
2 Transport
network
¢ link
physiml
*
*
»
*

»

Hierarchical routing

» Connecting networks of networks
+ Routing on the Internet

» Intra-domain routing

» Inter-domain routing

application

Transport

network

link

physical

35

