
Int J Digit Libr (2016) 17:95–117
DOI 10.1007/s00799-015-0140-8

The impact of JavaScript on archivability

Justin F. Brunelle · Mat Kelly · Michele C. Weigle ·
Michael L. Nelson

Received: 7 November 2013 / Revised: 12 January 2015 / Accepted: 14 January 2015 / Published online: 25 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Asweb technologies evolve,web archivistswork
to adapt so that digital history is preserved. Recent advances
in web technologies have introduced client-side executed
scripts (Ajax) that, for example, load data without a change
in top level Universal Resource Identifier (URI) or require
user interaction (e.g., content loading via Ajax when the
page has scrolled). These advances have made automat-
ing methods for capturing web pages more difficult. In an
effort to understand why mementos (archived versions of
live resources) in today’s archives vary in completeness and
sometimes pull content from the live web, we present a study
of web resources and archival tools. We used a collection of
URIs shared over Twitter and a collection of URIs curated by
Archive-It in our investigation.We created local archived ver-
sions of the URIs from the Twitter and Archive-It sets using
WebCite, wget, and the Heritrix crawler. We found that only
4.2 % of the Twitter collection is perfectly archived by all of
these tools, while 34.2 % of the Archive-It collection is per-
fectly archived.After studying the quality of thesemementos,
we identified the practice of loading resources via JavaScript
(Ajax) as the source of archival difficulty. Further, we show
that resources are increasing their use of JavaScript to load
embedded resources. By 2012, over half (54.5 %) of pages
use JavaScript to load embedded resources. The number of
embedded resources loaded via JavaScript has increased by

J. F. Brunelle (B) · M. Kelly · M. C. Weigle · M. L. Nelson
Department of Computer Science, Old Dominion University,
Norfolk, VA 23529, USA
e-mail: jbrunelle@cs.odu.edu

M. Kelly
e-mail: mkelly@cs.odu.edu

M. C. Weigle
e-mail: mweigle@cs.odu.edu

M. L. Nelson
e-mail: mln@cs.odu.edu

12.0 % from 2005 to 2012. We also show that JavaScript
is responsible for 33.2 % more missing resources in 2012
than in 2005. This shows that JavaScript is responsible for
an increasing proportion of the embedded resources unsuc-
cessfully loaded by mementos. JavaScript is also responsible
for 52.7 % of all missing embedded resources in our study.

Keywords Web architecture · Web archiving ·
Digital preservation

1 Introduction

How well can we archive the web? This is a question that
is becoming increasingly important and more difficult to
answer. Additionally, this question has significant impact on
web users [40,43] and commercial and government compli-
ance [52,53,66].

The web has gone through a gradient of changes fueled by
increasing user demand for interactivity. Early websites were
relatively static, while continued adoption of web technolo-
gies has made the pages personalized and more interactive.
JavaScript, which executes on the client, provides additional
features for the web user, enabling or increasing interactivity,
client-side state changes, and personalized representations.
These additional features offer an enhanced browsing expe-
rience for the user.

JavaScript has enabled a wide-scale migration from web
pages toweb applications. Thismigration continuedwith the
introduction of Ajax (first introduced in 2005 [28]), which
combined multiple technologies to give web pages the abil-
ity to perform asynchronous client–server interactions after
the HTML is loaded. The first wide-scale implementation of
Ajax was in Google Maps in 2005, but Ajax was officially
added as a standard in 2006 [70]. While archival tools per-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-015-0140-8&domain=pdf

96 J. F. Brunelle et al.

(a) (b)

(c)

Fig. 1 Google Maps as it exists live and as a memento a live version, b archived Dec. 1, 2012, c archived Apr. 30, 2012

formed satisfactorily when the web consisted almost entirely
of static resources, archival tools (e.g., Heritrix [51,65],
WebCite [22], and the wget application [29]) cannot capture
themore complex, feature-rich pagesmaking up today’sweb.

The ease of archiving a web page (henceforth the archiv-
ability) is impacted by the migration from web pages to web
applications. Over the years the web has shifted from a web
of documents to a web of applications, and these applica-
tions require execution by the client to render what the user
experiences. Client-side rendering has not historically been
part of the archival process. Even if it were, the applica-
tions depend on client-side inputs that increase the variability
betweenwhat is archived andwhat the user experienced [60].

Because of the advancement and increasing adoption of
web technologies, the web is composed of an increasing pro-
portion of personalized resources that are difficult to archive.

We discuss how these technologies impact archivability in
Sect. 9. Many culturally significant artifacts (such as Google
Maps, shown in Fig. 1) are unable to be unarchived. Even
if resources are archived, they sometimes become tempo-
rally inconsistent because JavaScript may load content from
the live web (referred to as the live web “leaking” into the
archive and discussed in more detail in Sect. 6.4) instead of
only loading temporally appropriate content.

Throughout this paper we use Memento Framework ter-
minology. Memento [68] is a framework that standardizes
Web archive access and terminology. Original (or live web)
resources are identified by URI-R, and archived versions of
URI-Rs are called mementos and are identified by URI-M.
Memento TimeMaps are machine-readable lists of memen-
tos (at the level of single-archives or aggregation-of-archives)
sorted by archival date.

123

The impact of Javascript on archivability 97

This paper makes two contributions. The first contribution
is a study of live resources and mementos to provide insight
into what makes a resource archivable. We studied two col-
lections of resources and measured them for archivability.
Heritrix, WebCite, and wget are all used to capture a set of
resources shared via Twitter and a set of Archive-It curated
resources with the intent to determine how well each tool
archives the resources. These tools, collections, and result-
ing mementos are compared, and the results are discussed in
depth to show that Twitter resources are less archivable than
Archive-It resources, and Heritrix is the best archival tool
of the three observed. In culmination, the first contribution
provides an analysis of how well we can archive the web.

The second contribution is a study of how archivability has
changed over time. We study the mementos of the URI-Rs
in our collections for archival quality and cause of missing
embedded resources. We show that resources are becoming
less archivable over time due to the increasing prevalence of
JavaScript. In short, the second contribution provides insight
into how well archival tools have performed in the past.

2 Deferred representations

According to theweb architecture [10,23,32], servers deliver
web resources to requesting clients such as a web browser
(controlled by a user, such as Firefox [24]) or a web crawler
(e.g., Heritrix or other robot). The content delivered to the
client by the server is the representation of the web resource
(e.g., HTML, PDF). The representation may also include a
client-side programming language such as JavaScript which
will execute when the representation is rendered by a web
browser and the client-side code is run by a local compiler
or—in the case of JavaScript [25]—an engine.

Executing a technology like JavaScript on the client can
potentially cause the representation to changewith orwithout
subsequent requests to a server for additional resources. Ajax
is often used to request additional resources to be embedded
or used in a representation after the initial page load. This
sequence is outlined in Fig. 2.

We define deferred representations as representations of
resources that are difficult to archive because of their use
of JavaScript and other client-side technologies. Deferred

Fig. 2 Ajax interactions modify the DOM after the original page load

refers to the final representation that is not fully realized
and constructed until after the client-side representation is
rendered; the representation’s final state is deferred until after
client-side code and events have finished executing.

As we have mentioned, web browsers use an engine to
run client-side JavaScript. Web crawlers often do not pos-
sess such an engine and, therefore, do not have the ability
to execute JavaScript during the archival process. In other
words, archival crawlers are not equipped with the features
necessary to execute JavaScript. If Ajax requests additional
resources to be embedded in the representation, crawlers will
be unaware of the extra resources required to properly ren-
der the representation and, ultimately, will not archive these
embedded resources.

Because most web crawlers do not have the ability to exe-
cute embedded JavaScript or other client-side technologies,
the resulting mementos may only be partially operational or
incomplete. We discuss crawlers’ current capabilities further
in Sect. 4.

Google Maps is an example of a resource with a deferred
representation andwhere the lackof completeness ofmemen-
tos is easy to observe. Figure 1a shows the live page, con-
tainingmultiple interactive UI elements. Themap in themid-
dle is draggable, allowing the user to pan. An archived ver-
sion (from April 30, 2012) of this page in Fig. 1c is missing
UI elements and functionality (circled), and the interaction
(e.g., panning and zooming) does not function. This is due
to resources that would be loaded when the user clicks, but
that are not preserved by the crawler. Figure 1b shows an
archived (December 1, 2012) version that gives the façade
of functionality when, in fact, resources on the live web are
being loaded.

Figure 2 outlines the role Ajax plays in loading a resource
like Google Maps. When a crawler fetches a web page (1),
it waits for the page and all of the embedded resources to
load to consider it fully rendered. At this point, the crawler
preserves (2) all of the content on the web page (A). After the
page has loaded, the page can request further resources (3),
evenwithout user interaction. The resource is then returned to
the web page to be rendered (4) producing the final intended
result (Ab). Because the crawler preserved the page prior
to the page being fully loaded, the secondary content is not
preserved and the archived version of the web page is not
complete.

3 Prior work

Research relating to JavaScript and archivability has dis-
cussed the influences of web technologies and multiple
client-side states. Likarish [38] developed a means of detect-
ing JavaScript with certain facets (namelymalicious code via
deobfuscation) usingMachine Learning techniques and Her-

123

98 J. F. Brunelle et al.

itrix. Archive.today [4] is a page-at-a-time crawler that exe-
cutes client-side code before saving the HTML (and is now
Memento compliant [55]). Archive.today renders the repre-
sentation, including content loaded from JavaScript, using
headless browsing, a method that renders a representation
and executes client-side events before capturing thefinal page
code and representation.

Several efforts have performed analysis of personalized
content and how to capture such content, although not with
archival intent. These efforts, however, contribute greatly to
the understanding of how personalized resources can change
on the client. Livshits et al. at Microsoft Research have per-
formed extensive research in the monitoring and capture of
client-side JavaScript [36,37,39,47,49]. Most of this work
has targeted debugging and securitymonitoring. Otherworks
have included the interpretation of client-side state for crawl-
ing purposes [7,20,21,45,48]. Bergman, in a seminal work,
described the quantity of resources we are unable to index
(the “deep web”) [9], a subset of which is due to person-
alized content. Ast extended Bergman’s work by proposing
approaches using a conventional web crawler (i.e., one not
used for preservation) to capture content not linked to by indi-
vidual URIs [5]. Other efforts have focused on monitoring
Web 2.0 resources on the client [8,16,50,56] for user activity
recording.

Archive-It has recently added Umbra to Heritrix in their
archival process to help archive a pre-selected set of domains
that are known to use JavaScript [59]. Heritrix also peeks
into JavaScript of crawled resources and attempts to extract
embedded URIs to be added to the frontier [31]. Google’s
crawler has also made attempts to index representations
reliant on JavaScript [12].

McCown performed several comprehensive studies
involving reconstructing web pages from the archives’ offer-
ings [42,43]. He created theWarrick program [41] as a result
of his work.

Several survey papers have identified the roles of
JavaScript and other Web 2.0 technologies in a social web
environment that is becoming increasingly unarchivable
[18,26,46,58,71]. The Smithsonian’s blog offers tips on
designing archivable resources and how to use ArchiveFace-
book to archive a subset of one’s social web presence [19].
ArchiveFacebook [27] is a Mozilla Firefox add-on that cap-
tures the user’s Facebook profile and information in its native
format with all embedded resources and content but is suit-
able for personal archiving only; it cannot be used in larger
shared archives.

There have been prior attempts to quantify preservation.
The PRISM project [35] assessed the practices threatening
the preservation of web resources as they relate to accessibil-
ity (such as not using modern tools or having out of date soft-
ware). Virtual Remote Control [44] created a framework for
identifying archival targets and managing at-risk resources.

Our previouswork investigated the impact ofmissing embed-
ded resources on users’ perceived utility of web resources,
quantifying the impact of missing embedded resources in
mementos [13,14].

A more recent contribution is Archiveready [6], which
provides an interpretation and numerical measure of archiv-
ability. The Archiveready service analyzes compliance to
standards, number of externally hosted resources, and for-
mat of the resource HTML and CSS to establish an archiv-
ability measure. Our work extends the theories behind the
Archiveready measures to include client-side technologies
and supports these claims with a comparison of live and
archived resources.

Ainsworth et al. investigated the question “How much
of the Web is archived?” [2]. They sampled from larger
collections and found that archival coverage varies depen-
dent upon the sample source. For example, URIs shortened
by Bitly users were most often newer and less frequently
archived than those indexed by other services like DMOZ.
In a follow-on experiment, SalahEldeen studied the decay
of shared data on Twitter [63] and found that up to 11 %
of content shared over Twitter disappears after 1 year, and
25 % disappears after 2 years. SalahEldeen also showed that
mementos disappear from the archives, and content that was
observed as missing can reappear in the future [64]. These
studies highlight the ephemeral nature of shared content and
demonstrate that shared links are often not archived, while
the work described in this paper shows why these resources
are difficult to archive. Our work builds on each of these two
studies by determining what makes things harder or more
difficult to archive and how collections can differ in archiv-
ability. We also extend our previous work [33] measuring
the change in archivability over time by calculating content
missing from mementos due to the use of JavaScript.

4 Current state of the art

As mentioned in the “Prior work” (Sect. 3), several promi-
nent archival services exist and attempt to handle JavaScript-
dependent representations. In this section, we briefly dis-
cuss the approaches that each of these archival services or
tools take to archive web resources. For a more complete list
of archival services, along with their archival performance,
please refer to our prior work that developed an Acid Test
to evaluate mementos created by archival tools and services
[34].

4.1 Heritrix

The Heritrix Web Crawler [51] is the Internet Archive’s pri-
mary archival tool [54]. Heritrix begins with a set of seed
URI-Rs as its frontier (set of URI-Rs to archive), derefer-

123

The impact of Javascript on archivability 99

ences each URI-R in the frontier, and extracts embedded
URIs from the resource to add to the frontier. Heritrix can
be configured to spider into the broader web or focus on a
bounded seed list. The crawler captures all of the requisite
resources and stores them in Web ARChive (WARC) files
which are then ingested and viewed through the Wayback
Machine [67].

Heritrix also peeks into embedded JavaScript files and
code to extract any URIs that it can recognize in the code.

In the interest of performance, Heritrix does not use a
headless browsing technology and only archives the con-
tent returned when the URI-R is dereferenced. As we men-
tioned in Sect. 3, Archive-It uses Heritrix and has added
Umbra to its archival process. Umbra specializes in archiving
resources with representations dependent upon JavaScript. A
human-specified set of URI-Rs or resources within a speci-
fied domain is archived by Umbra when the URI appears in
the frontier [11].

In short, Heritrix does not handle deferred representations,
but instead, attempts to mitigate the impacts of JavaScript
by extracting URIs from the embedded JavaScript code and
using Umbra to archive a subset of the frontier.

4.2 WebCite

WebCite is a page-at-a-time archival service. Users submit
a URI, and WebCite archives the resource and all embed-
ded resources. WebCite does not use headless browsing and
makes no attempt to mitigate the impacts of JavaScript on
the memento representation.

4.3 wget

The wget command is a command-line tool that dereferences
a URI and provides the option to store the resulting con-
tent. Users can also set flags to instruct wget to download
all embedded resources, create WARC files, and other use-
ful archival activities. However, wget operates at the HTTP-
level only, and does not use headless browsing or make other
attempts to execute client-side scripts.

4.4 Archive.today

Similar to WebCite, Archive.today is a page-at-a-time
archival service in which users submit URIs for archiving.
Archive.today uses headless browsing to recordwhat embed-
ded resources need to be captured to provide a high-quality
memento, as well as takes a PNG snapshot of the represen-
tation to provide a static and non-interactive visualization of
the representation. Because of the tools Archive.today uses,
it offers the best handling of JavaScript and creates high-
quality mementos.

4.5 PhantomJS

Even though it is not an archival tool, we used PhantomJS1

throughout this study to load content in a headless browser
and measure the HTTP headers involved with loading the
resource. PhantomJS is a JavaScript API that runs from the
command line. It implements headless browsing,which loads
the entire page using WebKit.2 It also offers screen capture,
network monitoring, and page automation (the page automa-
tion is not used in this study). Because PhantomJS uses head-
less browsing, it executes client-side code like JavaScript and
provides itself as a technology suitable for supplementing
archival efforts.

In this article, we discuss the difficulties these archival
tools and services have when encountering resources that
rely on JavaScript. A utility like PhantomJS can mitigate
the impact of JavaScript on memento quality. However, the
challenge that JavaScript creates for archival institutions
and tools is an open problem for which a solution does
not currently exist. Our initial investigations indicate that
there is a performance trade-off between Heritrix (which
crawls veryquicklybutmaymiss embedded resources depen-
dent upon JavaScript) and PhantomJS (which crawls very
slowly but can discover embedded resources dependent upon
JavaScript).

There will likely be no single solution to the open chal-
lenge of archiving JavaScript. Our future work will focus on
understanding the performance trade-offs of using a headless
browsing tool and using Heritrix. Our preliminary investi-
gation has shown that Heritrix runs 12.15 times faster than
PhantomJS.

5 Motivating examples

Resources that rely heavily on JavaScript to embed repre-
sentations from other URIs—such as images, text in HTML
iframes, etc.—are inherently difficult to archive because they
are not knownuntil after the resource is renderedon the client.
Figures 4, 5, 6, 7 demonstrate this phenomenon.We archived
versions of the resources in Figs. 3, 4, and 6 with wget,
WebCite, and Heritrix and compared the resulting archived
representation to the live representation of the resource . For
the wget capture, we show the replay of the memento stored
on localhost bothwith andwithout access to the Internet.
Viewing the resource without Internet connectivity ensures
that only content that is locally archived is loaded into the
site (i.e., no leakage of the live web into the memento). This
simulates the absence of the live web version of the resource.

1 http://phantomjs.org/.
2 https://www.webkit.org/.

123

http://phantomjs.org/
https://www.webkit.org/

100 J. F. Brunelle et al.

Fig. 3 The live version of http://www.albop.com/main.html (from the
Archive-It collection) is perfectly archived using Heritrix, wget, and
WebCite

Fig. 4 Live version of http://www.desbarresmanor.com/daytouring/
history.html from the Twitter collection

Figure 3 shows a resource perfectly archived by the
archival tools we examined. There is no leakage from the
live web, and all requisite resources are captured by each
tool. There is no JavaScript in this page, and the resources
loaded into the page all originate from the same host. This
can be considered the best-case archival scenario.

Figures 4 and 5 demonstrate a memento that is not per-
fectly archived but is “good enough”. All of the “important”
content—the content contributing to human understanding
of the page—was captured; however, there were slight repre-
sentation and stylistic issues. As an example, we have added
red circles in the representations to highlight changes in con-
tent availability. The live representation (Fig. 4) has links and
icons for sharing the resource over social media services, as
well as a Facebook “Like” icon. The socialmedia links disap-
pear in the mementos (Fig. 5), and the Facebook “Like” icon
disappears in the localhostwithout access to the Internet
(Fig. 5b) and WebCite (Fig. 5c) versions. This issue with the
representation is caused by leakage from the liveweb into our
archives. Leakage is evidenced by thememento with Internet
connectivity having the “Like” iconwhile themementowith-
out Internet connectivity does not, because the JavaScript that
loads the icon requests it from the live web. This means yes-

(a) (b)

(c) (d)

Fig. 5 As shown by these mementos, the site http://www.
desbarresmanor.com/daytouring/history.html is mostly archived with
minor content leakage a Localhost version captured with wget, with
access to the Internet b Localhost version captured with wget, with-
out access to the Internet cWebCite version dWayback version

Fig. 6 Live version of http://perezhilton.com/2009-06-11-world-
premiere-gaga-manson from the Twitter collection

terday’s HTML page has today’s “Like” icon. In this case
there is likely no problem, but this temporal inconsistency
could be unacceptable in other cases (e.g., legal scenarios).
Additionally, the WebCite memento (Fig. 5c) is missing a
stylesheet, causing the background to be a dark red instead
of the tan color of the other mementos and live version. This
resource is an example of leakage from the live web and of
the problems introduced by Ajax in a web page.

The example in Figs. 6 and 7 is poorly archived by
most of the tools. The reader can see that the live and the
localhost version with access to the Internet (Fig. 7a) are
nearly identical,with the only difference being amissing ban-
ner at the top of the page. When observing the localhost
version without access to the Internet (Fig. 7b), there are

123

http://www.albop.com/main.html
http://www.desbarresmanor.com/daytouring/history.html
http://www.desbarresmanor.com/daytouring/history.html
http://www.desbarresmanor.com/daytouring/history.html
http://www.desbarresmanor.com/daytouring/history.html
http://perezhilton.com/2009-06-11-world-premiere-gaga-manson
http://perezhilton.com/2009-06-11-world-premiere-gaga-manson

The impact of Javascript on archivability 101

(a) (b)

(c) (d)

Fig. 7 As shown by these mementos, the site http://perezhilton.
com/2009-06-11-world-premiere-gaga-manson is extremely difficult
to archive a Localhost version captured with wget, with access to

the Internet b Localhost version captured with wget, without access
to the Internet cWebCite version dWayback version

many more missing embedded resources. The missing con-
tent highlights the fact that a large number of files are not
actually archived and cannot be loaded without the live web
leaking into the memento. The WebCite (Fig. 7c) capture
seems to be loaded properly. However, there is a significant
amount of leakage including many of the JavaScript files that
load content and several of the image files being imported
into this page. The Wayback (Fig. 7) memento makes sev-
eral requests for content that was not captured (as noted by
the “Resource not in archive” messages), and the content
on the page, particularly the personalized content, was cor-
rupted during the archival process and displays as code. The
resource consists almost entirely of JavaScript that loads con-
tent into the page dynamically, resulting in the reliance on
leakage to load the requisite resources.

6 Experiment design

This experiment observes how well current web capture and
archival tools can archive content and to identify characteris-
tics of resources that are difficult to archive. Specifically, we
study the completeness of the mementos captured by these
tools and the impact that JavaScript has on archivability. We
studied two sets ofURIswith respect to archivability; the first
is a set of Bitlys (shortenedURIs shared in tweets) taken from
Twitter, and the second is a set of human-curated URIs from
Archive-It.

Each set of resources is captured with a set of archival
tools, observed in their archived state, and eachof thememen-
tos is compared to the live gold standard version for com-
pleteness and, implicitly, archivability. The web page in its

123

http://perezhilton.com/2009-06-11-world-premiere-gaga-manson
http://perezhilton.com/2009-06-11-world-premiere-gaga-manson

102 J. F. Brunelle et al.

live, native environment is the best version possible, and if an
archival tool replicates the live web, it has perfectly captured
and archived that resource. Each of the tools are compared
to one another, and each of the datasets are compared and
contrasted.

The secondgoal of our experiment is to study the evolution
of archivability over time to determine the past and current
trends. We observed the effects of JavaScript on archivabil-
ity over time by loading mementos from the Internet Archive
with PhantomJS and recording the HTTP response codes of
the embedded resources.Wedeterminedwhether thememen-
tos were loaded from HTML or JavaScript. From this, we
analyze, in depth, the nature of the memento and its archiv-
ability over time.

6.1 Datasets

This experiment utilizes two different datasets presented for
comparison. The first dataset, theTwitter set, consists ofBitly
URIs shared overTwitter. ShortenedURIs are popular among
social network services and the resources to which they redi-
rect vary in expected life span [3]. The second dataset, the
Archive-It set, was sampled from Archive-It collections. The
Archive-It collections are created and curated byhumanusers
often corresponding to a certain event (e.g., National Septem-
ber 11Memorial Museum) or a specific set of web sites (e.g.,
City of San Francisco). The Twitter and Archive-It sets are
made up of fundamentally different resources, as shown in
Tables 2 and 3; the differences are investigated in Sect. 6.1.3.
There is no overlap between the two sets.

We discarded non-HTML representations (e.g., JPEG and
PDF) from both sets. The purpose of this study is to observe
how well the embedded resources are converted from live
to archived. Non-HTML representations do not contribute to
this study and are assumed to be perfectly archived by all
tools.

6.1.1 Twitter

We collected the Twitter URIs through the Twitter Garden
Hose3 in October 2012. This set consists of 1,000 URIs
and represents resources that Twitter users thought to be
important enough to share with others on social media but
which have not necessarily been actively archived. With the
non-HTML representations removed, the Twitter set has 901
URIs.

6.1.2 Archive-It

TheArchive-It set consists of the entire set ofURIs belonging
to the collections listed on the first page of collections at

3 https://dev.twitter.com/docs/streaming-apis/streams/public.

Table 1 Example URIs

URI Delimiter Example URI

URI Fragment #
http://www.example.com/index.
html#fragment

URI Parameter ?
http://www.example.com/index.
php?key1=value1

HashBang URI #!
http://www.example.com/index.
php#!state1

Archive-It.org4 as of October 2012. This resulted in 2,093
URIs that represent a collection of previously archived and
human-curated URIs. To make the datasets equal in size,
we randomly sampled 1,000 URIs from the set of 2,093. As
shown in Table 2, the Archive-It set has a lower proportion
of non-HTML content than the Twitter set. With the non-
HTML representations removed from the randomly sampled
set of 1,000 this collection has 960 URIs.

6.1.3 Collection differences

In addition to the different collection venues, the datasets also
differ in the server-side and client-side values passed to the
resource via URI as parameters and fragments, respectively.
URI fragments (first row of Table 1) identify a point or por-
tion of content within the resource and are processed by the
client (after the HTTP response), not sent to the server when
dereferencing the URI. Instead, they are an offset applied
to the representation returned by the server and depend on
MIME type, such as a tag within the HTML or a specific
second in an audio file. Server-side parameters (second row
of Table 1) identify values for use in constructing the repre-
sentation (before the HTTP response) using key-value pairs
and are passed to the server when dereferencing the URI.

The Twitter set has more URIs containing fragments than
the Archive-It set. Additionally, there are far more URIs
with parameters in the Twitter set. Our complexity measure
(defined in Sect. 7.1) has UCTwitter = 1.76 and UCTwitterσ =
0.312meaning there are nearly 2URI parameters in the Twit-
ter data set for each URI, while the complexity of Archive-It
URIs has UCArchive-It = 0.16, UCArchive-Itσ = 0.174 mean-
ing they are mostly without parameters. Note that only 3
URIs from the Twitter data set had both parameters and frag-
ment identifiers (0.3 % of the collection). Only 2 URIs from
the Archive-It data set had both parameters and fragment
identifiers (0.2 % of the collection).

Additionally, 93.1 % of URIs in the Archive-It set are
top-level URIs whereas (in an aesthetically pleasing coinci-
dence) 93.1 % of the Twitter set is several levels away—or

4 http://www.archive-it.org/explore/?show=Collections.

123

https://dev.twitter.com/docs/streaming-apis/streams/public
http://www.example.com/index.html#fragment
http://www.example.com/index.html#fragment
http://www.example.com/index.php?key1=value1
http://www.example.com/index.php?key1=value1
http://www.example.com/index.php#!state1
http://www.example.com/index.php#!state1
http://www.archive-it.org/explore/?show=Collections

The impact of Javascript on archivability 103

Table 2 Content features of each collection

Collection Statistical breakdown of content

PDF (%) Images (%) Other content (%) HTML (%) HTML content contain-
ing JavaScript (%)

Twitter n = 901 0.3 1.3 3.7 84.8 98.7

Archive-It n = 960 4.4 0.6 1.3 93.7 97.1

Table 3 URI features of each collection

Collection Statistical breakdown of URIs

COM (%) EDU (%) ORG (%) GOV (%) Other domains (%) With fragments (%) With parameters (%) Top-level URIs (%)

Twitter 81.6 0.3 3.5 0.2 14.1 1.4 30.5 6.9

Archive-It 47.9 7.7 10.9 12.7 20.6 0.8 41.2 93.1

deep links—fromeachURI’s respective top level domain.We
explore URI depth further in Sect. 6.3. The Twitter set con-
tains slightly more personalized client-side content than the
Archive-It set, as suggested by the features of each set’sURIs.
Twitter URIs have more client-side parameters as observed
by the 0.6 % more fragments than the Archive-It set. These
fragments specify client-side parameters that are presumably
used for client-side processing. There are also 2 hash-bang
URIs [69] (third row in Table 1) in the Twitter set and 5 in the
Archive-It set. These URIs identify parameters for automatic
client-side processing by JavaScript.

The HTML of each set is measured and compared using
several different metrics as discussed in Sect. 6.3. Each set
consists mostly of resources containing JavaScript (98.7 and
97.1 % of the Twitter and Archive-It sets, respectively, con-
tain JavaScript) (Table 2).

While the .com, .edu, .org, and .gov top level domains
(TLD) are defined in Table 3, the “Other Domains” are not.
These include TLDs such as .tv or .im, as in these URIs:

http://www.geekbrief.tv/best-ad-from-
microsoft-ever

http://tr.im/lPRA#user1244749838078

Governmental web sites comprise 57.6 % (533) of the
Archive-It collection. Governmental URIs are not limited to
the .gov TLD (such as http://www.ethics.alabama.gov) but
can include other suffixes (such as http://ali.state.al.us/). The
Twitter collection only has three government-owned sites
(0.3 % of the collection). Governmental websites are man-
dated to conform to web accessibility standards for content
but commercial websites do not have this restriction. The
government and non-government sites perform nearly iden-
tically in our measurements—differing only by a maximum
of 6 % across all metrics and a Chi-square test provided

a p = 0.22 showing no statistical significance across our
measurements—so we have opted to measure the collections
in their entirety instead of measuring only the government
and non-government URIs independently.

6.2 Archiving the resources

We archived each URI from the two datasets with a suite of
tools, including submitting toWebCite, capturing with wget,
and archiving with Heritrix. The method we used to access
the resulting mementos depended on the archival tool. We
viewed the WebCite-captured mementos using the WebCite
web service, Heritrix-capturedmementos via a local installa-
tion of the Wayback Machine, and wget-captured mementos
through a client (browser) from the localhost server. We
also captured each URI in its native live-web environment to
establish a baseline.

In our figures, we label the WebCite mementos as
“WebCite” (playback via the WebCite web service), wget
mementos as “Disconnected” (playback via a server with
no out-bound Internet access), Heritrix mementos as “Way-
back” (viewed through the Wayback machine), and live-web
resources a “live” (viewed through a client).

In the remainder of this section,wedetail themethods used
to archive the resources in the dataset and view the resulting
mementos. We measure leakage in the mementos (Sect. 6.4),
which only occurs when replaying the mementos in a client,
and not during the archival process. Because a primary goal
of this research is to establish the impact of JavaScript on the
mementos created by the tools, we classify the mementos
according to the environment in which they are viewed. That
is, we label the mementos created by Heritrix as “Wayback”
mementos because the mementos are viewed via the Way-
back Machine. Similarly, we label the WebCite mementos
(viewed in a client through the WebCite web service), live

123

http://www.ethics.alabama.gov
http://ali.state.al.us/

104 J. F. Brunelle et al.

(live-web resources viewed through a client), and localhost
mementos (archived with wget and viewed through a client
from the localhost server on which the resources are stored).

We loaded the Twitter and Archive-It live-web resources
using PhantomJS to establish the baseline to which all our
mementos were compared.WebCite and wget do not employ
PhantomJS or other headless browsing techniques during
archiving.

Using PhantomJS, we downloaded each of the resulting
representations in its native format (such as HTML) and gen-
erated a PNG screenshot of the representation. We also cap-
tured and logged the HTTP response codes generated during
the load and viewing of each URI. These logs establish a set
of resources required to view the page and also to identify
whether or not the capturing tool was successful in capturing
all necessary resources to create a complete memento. The
HTTP response logs from a memento are compared to the
response logs from the live viewing to establish the degree
of completeness of the memento.

6.2.1 Heritrix 3.0.1 and the Wayback Machine

We installed a local version of Heritrix 3.0.1 and used it to
crawl each of the URIs in this study. A local instance of
the Wayback Machine was installed on localhost so the
resulting WARC files could be viewed. Archival resources
should load embedded resources from the local instance of
the Wayback Machine. In a scenario such as this, the proxy
mode is normally run with the Wayback Machine to prevent
leakage but was omitted from this experiment since we were
monitoring header values for leakage at load time and this
Wayback instance was limited to a target crawl.

6.2.2 wget

The wget application was used to archive content from the
live web onto the localhost machine. Our goal was to
make sure the entire site was captured, complete with requi-
site resources and converting the links to be relative to the
local directory. The following command was used to down-
load the content:

wget -k -p -E -H -w 10 -o ./logs/$i.log
-D $theDomain $toGet

This command captures the header logs in the ./logs/
$i.log file (where $i is the identifier for the log file),
limits the wget capture to the target domain identified
by $theDomain, and captures the target site $toGet.
The locally captured content can then be viewed from
localhost and measured against the native, live version
of the resource.

Fig. 8 URI re-writing inWebCite converts embedded URI-Rs to URI-
Ms

6.2.3 WebCite

WebCite is an on-line, on-demand archival tool that offers
real-time archiving of content. When WebCite archives a
URI-R, it opaquely rewrites embedded URI-Rs to URI-Ms
but does not maintain the semantics of the URI-Rs. The
semantics are not required for WebCite’s page-at-a-time
archival practices to be successful. For example (Fig. 8),
when WebCite archives a URI-R, the embedded image iden-
tified by a URI-R is rewritten to point to a URI-M.

6.3 Resource metrics

We measure resource complexity based on the HTML rep-
resentation and the URI identifying the resource.

6.3.1 URI complexity

The complexity of a URI is measured through the depth
(URI’s number of levels down—ordistance—from theTLD),
the number of client-side parameters, and the number of
server-side parameters. The client- and server-side parame-
ters are measured by Eq. 1. The arithmetic mean of the sum
of these measures is taken to give a URI complexity measure
(UC) as noted in Eq. 2.

F = max(|client-side parameters|,
|server-side parameters|) (1)

UC = |Depth| + F

2
(2)

123

The impact of Javascript on archivability 105

For example, a URI such as

\url{http://www.tennessee.gov/ecd/}

from the Archive-It collection has a complexity of 0.5. The
depth is 1 (/ecd/), and there are no server- or client-side
parameters. Alternatively, a URI such as

http://edition.cnn.com/2009/SPORT/
football/
06/11/ronaldo.real.madrid.manchester/
index.html?eref=edition

from theTwitter collection has a complexity of 3.5. The depth
is 6 (/2009/SPORT/football/06/11/ronaldo.real.madrid.
manchester/), there is one server-side parameter but no client-
side parameter (max(1, 0) = 1), which totals to 7/2 = 3.5.
The URI

http://www.tridentgum.com/#/trident
cares4kids/

has a client-side parameter that does not have a corresponding
anchor in the HTML (max(1, 0) = 1) and has a complexity
of 3/2 = 1.5.

6.3.2 Content complexity

Content complexity can be measured in many different ways
(e.g., number of HTML tags or presence of multimedia).
This experiment focuses on JavaScript, since we suspect it
is the major contributor to dynamically requested resources.
Content complexity in this experiment is measured as the
number of < script > tags loading JavaScript, defined
as CC in Eq. 3. This is the number of JavaScript files or
code segments being loaded and the number of occurrences
of embedded JavaScript code occurring in the resource code.
Intuition suggests that the more JavaScript embedded in a
page, the more likely it will change its state on the client, and
the more difficult it is to archive. Our previous attempts at
assessing content complexity focused on lines of JavaScript,
but this metric was misleading (for example, due to mini-
mized files or from including external libraries like jQuery),
so we opted instead for a count of < script > tags.

CC =
∑

script tags ∈ HTML (3)

6.4 Requests from HTML and JavaScript

We compare the number of requests for resources referenced
in the HTML to the number of requests coming from run-
time sources, such as JavaScript. We compared the URI-
Ms referenced in the HTML and the requests observed by
PhantomJS. Requests for URI-Ms referenced directly in the

Fig. 9 URI complexity measure (UC)

HTMLare classified asHTML-loaded resources,while those
not referenced in the HTML have been loaded at run-time by
JavaScript. We define JavaScript-loaded resources according
to Eq. 4 and use this method of measurement when refer-
ring to the number of resources loaded by JavaScript versus
HTML.

JS Resources = Resources Loaded − Resources in

HTML Tags and CSS
(4)

7 Resource set analysis

The nature of the resources in each set is fundamentally dif-
ferent. We analyzed the complexities of the two datasets.

7.1 URI complexity

The links shared over Twitter tend to be deep links, with
many layers of separation between the TLD and the shared
resource. Additionally, the Twitter URIs tend to have client-
or server-side parameters, which are assumed to identify a
specific set of information or a special representation of the
resource for the users’ followers. Alternatively, the Archive-
It collection, which has seedURIs chosen by human curators,
tends to be made of more top-level domains and have fewer
parameters and fragments.

The UC (Eq. 2) of the Twitter collection is 0.377 with
UCσ = 0.3110. The Archive-It collection has a UC = 0.166
with UCσ = 0.2341. The Archive-It collection is a lower
UC than the Twitter collection (as seen in Fig. 9), supporting

123

106 J. F. Brunelle et al.

Fig. 10 CC of the HTML

the theory that the human-curated Archive-It collection deals
more with higher-level URIs than the shared links of Twitter.

7.2 Content complexity

The Twitter set has a CC = 4.78 with CCσ = 16.23. The
Archive-It set has an average of CC = 2.16 with CCσ =
6.87. The Archive-It set has, on average, approximately half
as many< script > tags as the Twitter set and a CCσ that
is half that of the Twitter set (as shown in Figs. 10, 11).

We created a list of resources referenced in theHTML tags
and CSS. The difference between the total set of resources
loaded and the resources referenced in the HTML and
CSS are assumed to come from JavaScript. The compari-
son of JavaScript and HTML requested resources is shown
by dataset and archival tool in Fig. 11. As expected, the
CC measure is directly related to the number of JavaScript
requests to external resources. By taking the average across
all environments, we found that the Twitter set resources
load 16.3 % of the requisite resources through JavaScript
(presumably Ajax), whereas 18.7 % of resources are loaded
via JavaScript in the Archive-It set. This is contrary to our
hypothesis that increased CC will produce more resource
requests from JavaScript. The Twitter set, which has more
embedded JavaScript (CC = 4.78), makes fewer requests
to content with JavaScript than the seemingly less complex
Archive-It set (CC = 2.16). As discussed in Sect. 8.2, the
nature of the JavaScript requests plays a more important role
in archivability.

Fig. 11 Percentage of resource requests from JavaScript show patterns
similar to CC

8 Archiving experiment discussion

In this study, a perfectly archived resource has all of its con-
stituent resources copied into the archive environment and is
independent from the live web. Failure to satisfy this capture
will result in two possible outcomes. The first is an HTTP
400 or 500 class (non-200) of response header when access-
ing the missing resource(s). The second is leakage, which
occurs when archived resourcesmake requests to and include
content from the live web when they should be accessing
archived content only. We have provided an example in our
research blog [15]. As such, the archivability of a resource is
measured by the number of embedded resources that archival
tools can capture.

8.1 Missing resources

Theperformanceof each archival tool and each collection can
be analyzed with several metrics. Most important is the num-
ber of resources missing from the mementos. The average
number of missing responses is expressed as the percentage
of non-200 responses returned when requesting the requisite
resources. AnHTTP 200 response indicates a successful load
of a resource into the page, while a non-200 response indi-
cates amissing resource (300-style redirects are omitted from
this calculation). These averages for each collection and tool
are shown in Fig. 12. Each bar represents a collection and an
environment. The bars representing the live web establish the
gold standard, or “best case”, archival goal. Live resources
are not perfect—they sometimes request resources that are
unavailable and do not receive 200 responses for 100 %
of their requests. However, they do establish a ceiling of pos-
sible performance. The Archive-It set receives an HTTP 200

123

The impact of Javascript on archivability 107

Fig. 12 The HTTP 200 response codes for embedded resources

response for 93.5%of all requests and theTwitter set receives
an HTTP 200 response for 87.1 % of all requests.

There is a clear difference between the archival tools used
and the number of resources successfully loaded. The percent
ofHTTP200 responses from theWaybackMachine across all
collections is 69.1 % per page, meaning roughly two-thirds
of all resources needed by the page to provide a complete rep-
resentation (as compared to the live version) were archived
by the Heritrix crawl and viewed in the Wayback Machine.
The WebCite service results in 45.2 % of all resources being
captured. The wget tool (labeled as “Disconneted”) captures
51.8 % of the resources.

We can demonstrate trends when analyzing the statistics
in further depth. The resources in the Twitter collection, on
average across all archived environments, produced 38.2 %
more HTTP non-200 response headers as mementos than the
live state. The Archive-It set fares slightly better, with 37.7
% more HTTP non-200 responses in their archived state.
However, the WebCite results show the greatest difference
between the Twitter and Archive-It sets (59.7 % HTTP 200
responses vs. 42.8 % 200 responses, respectively). If this
difference is excluded, theArchive-It set performs betterwith
only a reduction of 30.9%HTTP200 responses, as compared
to the Twitter collection’s 36.5 % reduction.

8.2 Leakage

In an archive, mementos’ HTTP requests differ from that of
the live web; the WebCite, wget, and Wayback tools reduce
the number of HTTP requests to different domains in order to
change all of the external requests to requests for mementos
within the archive. Resources referenced in HTML should be
rewritten to reference a URI-M instead of a URI-R. Failure

Fig. 13 A temporal inconsistency created by leakage in this cnn.com
memento

to rewrite the URI-R to a URI-M will result in a reference to
an external domain when the memento is loaded. Archival
services cannot always predictwhat embedded resourceswill
be loaded (such aswhen loadedvia JavaScript) and are unable
to perform a rewrite of the URI-R to a URI-M, resulting in
leakage. Leakage is particularly problematic since it portrays
live resources as archived.

As an example, we can observe a cnn.com memento from
the Wayback Machine at URI-M

http://web.archive.org/web/
20080903204222/http://www.cnn.com/

(Fig. 13). This memento from September 2008 includes
links to the 2008 presidential race between McCain–Palin
and Obama–Biden. However, this memento was observed
on September 28, 2012—during the 2012 presidential race
between Romney–Ryan and Obama–Biden. The memento
includes embedded JavaScript that pulls advertisements from
the live web. The advertisement included in the memento
is a “zombie” resource that promotes the 2012 presidential
debate between Romney and Obama. The memento attempts
to load 144 embedded resources, 133 of which (92.4 %) suc-
cessfully return a 200 response. The memento also attempts
to load four resources from the live web. This drift from the
expected archived time seems to provide a prophetic look at
the 2012 presidential candidates in a 2008 resource.

The proportion of requests to different domains decreases
when an archival tool captures the embedded resources and
makes them local to the archive. The amount of requests to
different domains (and therefore leakage) in the Twitter sets
decreases by 43.2, 22.5, and 71.2 % for the WebCite, wget,
and Wayback tools, respectively. The Archive-It domain
observes decreases of external requests of 32.3, 1.5, and 42.6
% for the WebCite, wget, and Wayback tools, respectively.
This shows that the archival tool affects the number of exter-
nal HTML requests, with the wget tool doing the least to
mitigate leakage and the views in theWaybackMachine lim-

123

108 J. F. Brunelle et al.

Fig. 14 Percentage of resource requests going to remote hosts from
both HTML and JavaScript

iting leakage the most. As shown by Fig. 14, each archival
tool impacts the target location of the requests for content the
same way for each collection.

As in Sect. 7.2, we averaged across all environments
shown in Fig. 14 and found that 62.0 % of Twitter resources
loaded by HTML come from the host domain, while 38.0
% come from an external source. This is roughly similar to
the Archive-It set, which loads 74.7 % from the host domain
and 25.3 % from external domains. The Archive-It resources
are more centrally organized, loading fewer resources from
external domains. This analysis of resource requests shows
that JavaScript and HTMLmake requests for content in sim-
ilar patterns, with the ratio of local versus external con-
tent following the same pattern. Additionally, the increased
JavaScript requests to external content increases the oppor-
tunity for leakage and therefore decreases the archivability
of a resources.

The JavaScript requests to local vs. external resources are
similar to that of the HTML requests (Fig. 11). The Twitter
set gets 52.2 % of its JavaScript-requested resources from
external domains, while the Archive-It set gets 70.1 % of its
JavaScript-requested resources from external domains, sug-
gesting that JavaScript is a source of leakage.We observe the
modification of external requests for resources in the Twitter
set as a reduction by 42.8, 9.8, and 78.0 %, respectively. The
Archive-It set’s capture by the WebCite, wget, and Wayback
tools reduce the number of JavaScript requests to different
domains by 33.5, 0.6, and 48.0 %, respectively. Again, this
shows that the wget tool does little to mitigate leakage, and
the Wayback Machine performs best by reducing requests to
the live web. Heritrix provides the most complete collection

and performs the best in this analysis. Since Heritrix uses
PhantomJS to identify resources for archiving, it can limit
leakage by anticipating JavaScript requests from mementos.

The percentage of external requests is highest in resources
captured with WebCite with 14.6 % of all resource requests
resulting in leakage. This holds true regardless of dataset.
Thewget tool captures are secondwith 14.2% of all resource
requests resulting in leakage. The Wayback captures expe-
rience the least leakage with only 7.1 % of all resources
requests resulting in leakage.

The Twitter set observes the most leakage (as seen in Fig.
14).When the Twitter resourceswere capturedwith thewget,
WebCite, andHeritrix tools, the leakage observed is (on aver-
age), 49.9, 8.6, and 1.3 %, respectively. The Archive-It set
only sees an average leakage of 44.1, 4.7, and 1.9 % for each
tool.

As shown, the Archive-It set is more easily archived, pro-
vides more complete mementos, and has fewer instances of
leakage than the Twitter set.

The Archive-It set has many resources that are perfectly
archived. The Twitter set only had 4.2 % of the resources
that were perfectly archived by each tool, while 34.2 % of
the Archive-It set was perfectly archived by each tool. This
shows that the Archive-It set is much more archivable than
the Twitter set. The resources shared over Twitter were much
more difficult to capture than the content humans identify as
historically or socially important. Twitter-shared resources
are important enough to share with online acquaintances but
cannot be effectively captured with current technologies. As
shown, the Twitter set contained more JavaScript than the
Archive-It set.As such,we conclude that resources relying on
JavaScript to render a final representation are less archivable
than those that are pure HTML.

9 Archivability over time

As we begin to discuss our second contribution—measuring
the migration toward JavaScript and its impact on archiv-
ing over time—we must first understand the evolution of
JavaScript. Web browsers render the structural HTML of
a resource, a stylistic portion (implemented via CSS) and
enable client-side behavior and state change (implemented
via JavaScript). JavaScript code—which is embedded in the
HTML—must be executed by the client after the representa-
tion has been returned by the server. To optimize execution,
many crawlers do not include a JavaScript rendering engine,
focusing only on the structural HTML and other embed-
ded resources. This is problematic in that some resources’
URIs might be determined at runtime or included in the
page because of JavaScript’s manipulation of the Document
Object Model (DOM), and crawlers may not archive these
resources because they were the output of unexecuted code.

123

The impact of Javascript on archivability 109

Early versions of Heritrix had limited support for
JavaScript. The crawler’s parsing engine attempted to detect
URIs in scripts, fetch the scripts, and recursively repeat this
process with the intention of ensuring maximum coverage
with the archive creation process. Recently, Heritrix was
rewritten to be built on top of PhantomJS, a headless WebKit
with JavaScript support, increasing the archiving resources
loaded through JavaScript. At the time of authoring this
paper, version 3.0.1 was currently in production at the Inter-
net Archive and targeting the incorporation of a headless
browser like PhantomJS [61].

With the exception of the recent versions of Heritrix
(i.e., the inclusion of Umbra and production version 3.0.1),
crawlers do not execute the client-side JavaScript and, there-
fore, have no way of determining what resources JavaScript
will load. We investigate the performance of Heritrix over
time by collecting and measuring the completeness of
mementos in the Wayback Machine.

9.1 Impact of accessibility

Many factors can impact archivability. As we have shown,
current tools can capture Archive-It resources more com-
pletely than Twitter resources. The nature of the collec-
tions may impact this behavior. For example, the Archive-It
set contains more government-owned URI-Rs. Government
URIs are often perfectly archived, with 85 of the 124 gov-
ernment URIs being perfectly archived (68.5 %). This shows
that government URIs aremore frequently perfectly archived
than the rest of themementosmeasured (the entire Archive-It
collection was archived perfectly 34.2 % of the time).

Section 508 [1] gives suggestions on howwebsites should
comply to be considered accessible. Also, the World Wide
Web Consortium (W3C) through the Web Content Acces-
sibility Guidelines (WCAG) gives concrete ways for devel-
opers to evaluate their creations to make them more acces-
sible [17]. Hackett et al. detail the accessibility of archives
on a pre-Ajax corpus (from 2002) and enumerate specific
features that make a page accessible in the legal sense [30].
Much of this information is beyond the scope of this study
(e.g., animated GIFs). Other efforts were made following the
document’s release on a metric to evaluate web accessibility
[57], but also fail to consider an asynchronous web, which
was less prevalent at the time.

All United States government sites are advised to com-
ply with Section 508. These mandates guide content authors
by limiting embedded programming languages and multi-
state client-side representations. It stands to reason that pages
adhering to Section 508 are easier for tools like Heritrix to
capture in their entirety, which may influence the archivabil-
ity of the Archive-It set.

In much of the same way that accessibility guidelines
encourage content to be accessible to the end-user, comply-

ing with the guidelines also facilitates accessibility of the
content (displayed by default or as the result of a JavaScript
invocation) to the user agent. Conventional web browsers
(e.g., Google Chrome,Mozilla Firefox) are capable of retain-
ing this content in memory, even if not displayed. Browsers
render a representation of a web resource. Contrary to mod-
ern browsers (e.g., Safari), archival crawlers like Heritrix;
are not equipped with the capability to access, process, and
capture JavaScript-dependent representations that use poten-
tially inaccessible (in the WCAG sense) features.

Conventional web browsers are usually the first to imple-
ment inaccessible features. These features often are imple-
mented in conventional web browsers using JavaScript and
often disregard accessibility standards for the goal of enticing
users withmore personalzied and interactive representations.
Because the content reliant on JavaScript is not accessible to
archival crawlers, requiring content on the web to be more
accessible would prevent JavaScript-dependent content and
newer browser features frombeing used.Additionally, avoid-
ing JavaScript-dependent content will reduce the ability for
web resources to provide personalized and interactive content
to users, presumably resulting in a less appealing represen-
tation.

9.2 Fetching data

We investigate the archivability of our resources over time by
looking at the captures by the Internet Archive. In effect, this
is a black-box test of archiving by examining the output of the
archival process over time. Since application technologies
have increased in prevalence over time, we expect to see
memento completeness decrease (and therefore, memento
quality decrease) as time progresses.

When considering the age and longevity of resources in
the archives, it is useful to understand how the different col-
lections differ in age. We used the carbon dating service [62]
to estimate the age of the URI-Rs in our collections. The
results are presented in Fig. 15. The carbon dating service
was unable to reliably determine a creation date for 35.5 %
of our collection, so the sample size in this graph has been
reduced to include only the URI-Rs with reliably determined
creation dates. Note that the Archive-It set is evenly distrib-
uted over time, while the Twitter resources are younger. This
is intuitively satisfying given the different purposes of the
Archive-It and Twitter services.

To increase the heterogeneity of our dataset (mitigating
the impact of accessibility standards and the age of URI-Rs),
from here onwewill combine the Twitter andArchive-It data
sets.

To empirically observe the change in archivability over
time of each of the URI-Rs in our collections, we acquired
the TimeMap of each URI from the Internet Archive to pro-
duce output like Fig. 16.We captured screen shots and HTTP

123

110 J. F. Brunelle et al.

Fig. 15 The Twitter collection (n = 596) is, on average, younger than
the Archive-It collection (n = 590)

requests for one memento per year of each URI in our col-
lections in an effort to analyze the results of archival efforts
performed in the past.

The http://www.doc.alabama.gov/ resource (CC = 0.43)
appears to be perfectly archived throughout time in the Inter-
net Archive. This holds true when accessing the mementos
with and without JavaScript enabled. The mementos are vis-
ible in Fig. 17. All mementos from 2007 to 2013 neither
request a resource nor receive a non-200 HTTP response
through JavaScript with the exception of a single memento
with an archival date time of October 21st, 2011 that requests
and misses 6 resources via JavaScript.

The http://www.cmt.com/ resource (CC = 0.87) varies in
archivability (seen in Fig. 18l), with an increase in miss-
ing resources over time. The mementos from 2009–2013
(Fig. 18l–p) are missing almost all central article and image
content; this is when CMT.com implemented content load-
ing through jQuery and Ajax, resulting in an average of
9.7 % of all URI-Ms requested to be missed because of
JavaScript. CMT.com’s addition of Ajax and associated tech-
nologies drastically increased the feature gap between the
resource and the crawlers performing the archiving, while
the doc.alabama.gov site limits its use of JavaScript and is
more complete over time.

9.3 Challenges in measuring past performance

In our research, we have omitted calculating CC and other
archivability metrics frommementos in our collections since
we do not have the correspondingURI-R fromwhich to com-
pute a baseline. Several scenarios could take place that impact
our archivability metrics:

– mementos may have been damaged (missing embed-
ded resources) after the archival process took place due
to implementations of the robots protocol (eliminating
mementos from external domains) or limited by policy
(such as the case with Archive-It);

– inavailability of embedded resources due to server-side
failures or transient errors in the archives;

– embedded resources may not have been available to the
crawler at archival time.

Without an understanding of the state of the live resource
at archival time, we cannot accurately assign archivability
metrics to the mementos.

<http:///www.doc.alabama.gov/>; rel="original",
<http://web.archive.org/web/timemap/link/http:///www.doc.alabama.gov/>; rel="self";
type="application/link-format"; from="Mon, 08 Jan 2007 17:48:19 GMT"; until="Sun, 28 Jul 2013 15:16:29 GMT",

<http://web.archive.org/web/http:///www.doc.alabama.gov/>; rel="timegate",
<http://web.archive.org/web/20070108174819/http://www.doc.alabama.gov/>; rel="first memento";
datetime="Mon, 08 Jan 2007 17:48:19 GMT",

<http://web.archive.org/web/20070113182156/http://www.doc.alabama.gov/>; rel="memento";
datetime="Sat, 13 Jan 2007 18:21:56 GMT",

<http://web.archive.org/web/20070118175605/http://www.doc.alabama.gov/>; rel="memento";
datetime="Thu, 18 Jan 2007 17:56:05 GMT",

<http://web.archive.org/web/20070123202638/http://www.doc.alabama.gov/>; rel="memento";
datetime="Tue, 23 Jan 2007 20:26:38 GMT",

<http://web.archive.org/web/20070519200310/http://www.doc.alabama.gov/>; rel="memento";
datetime="Sat, 19 May 2007 20:03:10 GMT",

<http://web.archive.org/web/20070617053244/http://www.doc.alabama.gov/>; rel="memento";
datetime="Sun, 17 Jun 2007 05:32:44 GMT",

<http://web.archive.org/web/20070621140945/http://www.doc.alabama.gov/>; rel="memento";
datetime="Thu, 21 Jun 2007 14:09:45 GMT",

Fig. 16 An abbreviated TimeMap for http://www.doc.alabama.gov/

123

http://www.doc.alabama.gov/
http://www.cmt.com/
http://www.doc.alabama.gov/

The impact of Javascript on archivability 111

(a) 2007 (b) 2008 (c) 2009 (d) 2010 (e) 2011 (f) 2012 (g) 2013

Fig. 17 The http://www.doc.alabama.gov/ mementos are perfectly archived through time since they limit their reliance on JavaScript to load
embedded resources a 2007 b 2008 c 2009 d 2010 e 2011 f 2012 g 2013

(a) 1996 (b) 1997 (c) 1998 (d) 1999 (e) 2002 (f) 2003 (g) 2004 (h) 2005 (i) 2006

(j) 2007 (k) 2008 (l) 2009 (m) 2010 (n) 2011 (o) 2012 (p) 2013

Fig. 18 CMT.com over time. Changes in design and thus the technolo-
gies used are easily observable after mementos archived in 2009–2013
(Fig. 18l–p), which is when jQuery is introduced into the page and used

to load embedded resources a 1996 b 1997 c 1998 d 1999 e 2002 f 2003
g 2004 h 2005 i 2006 j 2007 k 2008 l 2009 m 2010 n 2011 o 2012 p
2013

While calculating archivability metrics, wemust also con-
sider the practices used by each archival tool. For exam-
ple, the Wayback Machine inserts additional JavaScript and
other content to generate the banner and headers to appear in
the mementos. Other archival services have similar practices
for which we must account. It becomes difficult to measure
the original resource when HTML is modified after archiv-
ing and during the dereferencing of mementos. This after-
archiving injection and loading of scripts and other embed-
ded resources by the archives will impact the calculations
we have performed in this research such as CC. The live
resources may have also been bound to different standards,
and we have no a priori knowledge of these standards or their
implementations. As such,we have omitted thesemetrics and
measurements.

We instead investigate the availability of constituent
mementos within our collection over time. The complete-
ness of the memento as it existed at observation time and the
source of the embedded resources (either from the HTML
or JavaScript) provide a measurement of how JavaScript
impacts memento archivability. We loaded all URI-Ms listed
in the InternetArchiveTimeMaps ofURI-Rs in our collection
and recorded the resources loaded and their HTTP response
codes. We also recorded the origin of the request; specifi-
cally, we note whether the resources were loaded because of
inclusion in the HTML or as a request from JavaScript. We
did not track availability of each embedded resource within
a URI-M over time during this experiment, but rather con-
sidered just the response codes generated from individual
URI-M accesses.

123

http://www.doc.alabama.gov/

112 J. F. Brunelle et al.

Fig. 19 Resources are using more JavaScript to load embedded
resources over time

10 The impact of JavaScript on memento completeness

JavaScript is increasing in prevalence over time.We observed
the embedded resources loaded from each memento in our
collection from2005–2012 to determine howmany resources
are being loaded from JavaScript. As shown in Fig. 19, more
resources are using JavaScript to load embedded resources
over time. In 2005, 39.7 % of our collection uses JavaScript
to load at least one embedded resource, and continues to
increase to 54.5 % of the collection using JavaScript to load
at least one embedded resource. That is an increase of 14.7%
of resources using JavaScript between 2005 and 2012.

These resources are not only increasinglyusing JavaScript,
but also are more heavily relying on JavaScript to load
embedded resources. In Fig. 20a, we plot the percent of
requests that come from JavaScript from each URI-M in blue
as well as a fitted curve in black.Mementos load 24.5% of all
embedded resources through JavaScript in 2005, and 36.5 %
in 2012 for an increase of 12.0 % in 7 years. As shown in
Fig. 20b, yearly averages also increase from 2005 to 2012.
Over our seven year window, mementos load 37.7 % of all
resources via JavaScript (σ = 23.6%).

These increases show that resources are loading a higher
proportion of their embedded resources by JavaScript instead
of HTML (potentially to provide a more personalized expe-
rience to the users). These embedded resources are loaded
at run-time by JavaScript instead of during the dereferencing
process when loaded byHTML. Embedded resources loaded
by JavaScript are harder for Heritrix to archive (since they
may not be known during crawl-time), and potentially result

(a) More embedded resources are being loaded via
JavaScript over time.

(b) On average, resources are increasingly being loaded
by JavaScript per year.

Fig. 20 JavaScript is responsible for loading an increasing proportion
of mementos over time. a More embedded resources are being loaded
via JavaScript over time. bOn average, resources are increasingly being
loaded by JavaScript per year

in missing content when accessing the mementos from the
Wayback Machine.

As we discussed in Sect. 8.1, not all resources are
loaded properly when archived. JavaScript is responsible
for an increasing proportion of missing embedded resources

123

The impact of Javascript on archivability 113

(a) JavaScript is responsible for an increasing proportion
of missing embedded resources over time.

(b) Mementos are binned by archive year to provide a
yearly summary of archive performance.

Fig. 21 JavaScript is responsible for an increasing proportion of miss-
ing resources. a JavaScript is responsible for an increasing proportion
of missing embedded resources over time. b Mementos are binned by
archive year to provide a yearly summary of archive performance

(Fig. 21b). We observed that JavaScript accounts for 39.9 %
of all missing embedded resources in 2005, but is responsi-
ble for 73.1 % of all embedded resources in 2012. A more
detailed analysis is provided in the box plots of Fig. 21b with

Table 4 Number of requests per memento by archive year

Request type 2005 2006 2007 2008 2009 2010 2011 2012

JavaScript misses 1.7 2.3 2.1 2.3 3.3 3.5 5.8 4.9

HTML misses 0.9 1.9 1.3 1.5 1.5 2.3 3.0 2.3

All HTTP 200s 19.4 21.7 30.8 45.1 31.1 30.6 29.8 38.1

the missing resources binned according the memento archive
year. Box plots provide the calculated 25th percentile as the
bottom of the box, the 50th percentile as the horizontal line
within the box, and the 75th percentile as the top line of the
box. The “whiskers” establish the lower and upper bounds
of the data. The dots (for example, those in the box plot of
2008 in Fig. 21b) in a box plot are outliers in the data.

JavaScript is responsible for 52.7 % of all missing embed-
ded resources from 2005 to 2012 (σ = 28.9) which is 33.2
% more missing resources in 2012 than in 2005, showing
JavaScript is responsible for an increasing proportion of the
embedded resources unsuccessfully loaded by mementos.
JavaScript is increasingly requestingmementos that are not in
the archives and is responsible for attempting to load over half
of all missing resources in our collection. This suggests that
further increasing utilization of mementos to load embedded
resources via JavaScript, and further increasing failures to
dereference those resources will result in further reduction
in memento completeness.

Over time, mementos are increasingly constructed with
embedded resources and are requesting and missing an
increasing number of embedded resources to render a final
representation. Table 4 andFig. 22provide the number of suc-
cessfully dereferenced URI-Ms, unsuccessful dereferences
originating in HTML, and unsuccessful dereferences origi-
nating from JavaScript for each memento for each year.

While it is uninteresting that more total attempted derefer-
ences result in more successful andmore failed dereferences,
the breakdown of how the failed dereferences were loaded
provides insight into the source of reduced memento com-
pleteness. As the number of requested resources increases,
the number of resources unsuccessfully loaded by HTML
increases, and the number of unsuccessfully loaded
JavaScript resources increases, as well. However, the
JavaScript requested resources increase at a higher rate
(ΔHTML = 1.4 requests vs ΔJavaScript = 3.2 requests from
2005 to 2012). This suggests that resources will continue to
unsuccessfully load embedded resources via JavaScript as
time progresses.

The collections are not dominated by perfect (0 % miss-
ing resources from JavaScript) mementos or completely
JavaScript reliant (100%missing resources from JavaScript)
as shown in Fig. 23. The 0 and 100 % mementos are approx-
imately equal to each other for every year, meaning the sta-

123

114 J. F. Brunelle et al.

Fig. 22 Number of requests per memento by archive year

Fig. 23 Percent of missing resources from JavaScript by year

tistics reflect the performance of those resources that load at
least (but limited to) a portion of their embedded resources
from JavaScript.

As we have hypothesized previously, an increasing num-
ber of requests originating from JavaScript will result in an
increased proportion of missing embedded resources. We
show the number of requests from JavaScript and the result-
ing proportion of missing mementos for each URI-M in our

Fig. 24 As JavaScript is relied on more heavily to load embedded
resources, more resources are missed

collection in Fig. 24. The fitted line in black shows the corre-
lation between the two statistics. As the number of requests
from JavaScript increases, the number of missing embedded
resources increases. This trend is supported by a moderate
Kendall Tau-b correlation with τ = 0.36 and p < 0.01. This
correlation suggests that the current trend of relying increas-
ingly on JavaScript to load embedded resources will result
in a higher proportion of missing embedded resources and
reduced memento completeness.

We began this contribution with the hypothesis that
increasing reliance on JavaScript results in an increase in
missing embedded resources in our archives. From the graphs
in Figs. 19, 20, 21, 22, 23, 24 we made four findings:

– More resources are using JavaScript over time, and those
resources aremore heavily relied on bymementos to load
embedded resources as time progresses;

– JavaScript is responsible for an increasing proportion of
missing resources in the archives.

– The number of missing resources loaded by JavaScript
is increasing at a higher rate than the number of missing
resources loaded by HTML over time;

– The proportion of missing embedded resources is moder-
ately correlated to the number of resources loaded from
JavaScript.

These findings support our hypothesis and suggest that
increased JavaScript in the archives will result in decreased
memento completeness. As time progresses, an increasing
number of resources will rely more heavily on JavaScript,

123

The impact of Javascript on archivability 115

resulting in more missed content in the archives. Based on
these findings, we recommend that crawlers adapt to han-
dle embedded JavaScript to increase the completeness of
mementos.A two-tiered crawling approach should be studied
further, as recommended in Sect. 4.5.

11 Conclusions

Thiswork observed a set ofURIs shared overTwitter and a set
of URIs previously archived byArchive-It. The Twitter URIs
are twice as complex as the Archive-It URIs; the Archive-
It URIs are closer to top-level domains (UCArchive-It =
0.166, UCTwitter = 0.377). The Twitter content contains
twice asmuch JavaScript as theArchive-It set (CCArchive-It =
2.16, CCTwitter = 4.78). This shows that the resources
humans actively curate and archive are easier to capture with
today’s tools than URI-Rs being shared over Twitter. The
personalized, shared resources are more difficult to archive
and experience much more leakage (between 0.6 % if using
Heritrix to 5.8 % more if using wget) than their Archive-It
counterparts. Only 4.2 % of the Twitter collection was per-
fectly archived by each archival tool in our experiment, while
34.2 % of the Archive-It set was perfectly archived by each
tool.

The archivability of websites is changing over time
because of an increasing reliance on JavaScript to load
resources. JavaScript is responsible for 33.2 % more miss-
ing resources in 2012 than in 2005 meaning JavaScript is
responsible for an increasing proportion of the embedded
resources unsuccessfully loaded by mementos. Javascript is
also responsible for 52.7 % of all missing content in our
collection. This trend is expected to increase as time pro-
gresses since the number of embedded resources loaded
via JavaScript is moderately correlated to the proportion of
missing content in mementos. This supports our theory that
as resources continue to more heavily utilize and rely on
JavaScript to load resources, the completeness of mementos
will decrease.

Acknowledgments This work was supported in part by the NSF (IIS
1009392) and the Library of Congress.

References

1. Access Board: The Rehabilitation Act Amendments (Section 508).
http://www.access-board.gov/sec508/guide/act.htm (1998)

2. Ainsworth, S., Alsum, A., SalahEldeen, H., Weigle, M.C., Nelson,
M.L.: How much of the Web is archived? In: Proceedings of the
2011 IEEE/ACM Joint Conference on Digital Libraries (JCDL),
pp. 133–136 (2011). doi:10.1145/1998076.1998100

3. Antoniades, D., Polakis, I., Kontaxis, G., Athanasopoulos, E., Ioan-
nidis, S., Markatos, E.P., Karagiannis, T.: we.b: the web of short
URLs. In: Proceedings of the 20th International Conference on

World Wide Web, WWW ’11, pp. 715–724 (2011). doi:10.1145/
1963405.1963505

4. Archive.today: Archive.today. http://archive.today/ (2013). http://
archive.today/

5. Ast, P., Kapfenberger, M., Hauswiesner, S.: Crawler Approaches
And Technology. (online). Graz University of Technology,
Styria, Austria (2008). http://www.iicm.tugraz.at/cguetl/courses/
isr/uearchive/uews2008/Ue01

6. Banos, V., Yunhyong, K., Ross, S., Manolopoulos, Y.: CLEAR:
a credible method to evaluate website archivability. In: Proceed-
ings of the 9th International Conference on Preservation of Digital
Objects (2013)

7. Benjamin, K., von Bochmann, G., Dincturk, M., Jourdan, G.V.,
Onut, I.: A strategy for efficient crawling of rich internet appli-
cations. In: Proceedings of Web Engineering, Lecture Notes in
Computer Science, vol. 6757, pp. 74–89. Springer, Berlin (2011).
doi:10.1007/978-3-642-22233-7_6

8. Benson, E., Marcus, A., Karger, D., Madden, S.: Sync kit: a persis-
tent client-side database caching toolkit for data intensivewebsites.
In: Proceedings of the 19th International Conference on World
WideWeb,WWW’10, pp. 121–130 (2010). doi:10.1145/1772690.
1772704

9. Bergman, M.K.: Deep web: Surfacing hidden value. J. Electron.
Publ. 7(1) (2001). doi:10.3998/3336451.0007.104

10. Berners-Lee, T.: Informationmanagement: a proposal. http://www.
w3.org/History/1989/proposal.html (1990)

11. Bragg, M., Rollason-Cass, S.: Archiving Social Networking Sites
w/ Archive-It. https://webarchive.jira.com/wiki/pages/viewpage.
action?pageId=3113092 (2014)

12. Brunelle, J.F.: Google and JavaScript. http://ws-dl.blogspot.com/
2014/06/2014-06-18-google-and-javascript.html (2014)

13. Brunelle, J.F., Kelly, M., SalahEldeen, H., Weigle, M.C., Nelson,
M.L.: Not all mementos are created equal: measuring the impact
of missing resources. In: Proceedings of the 2014 IEEE/ACM
Joint Conference onDigital Libraries (JCDL), pp. 321–330 (2014).
doi:10.1109/JCDL.2014.6970187

14. Brunelle, J.F., Kelly, M., SalahEldeen, H., Weigle, M.C., Nelson,
M.L.: Not all mementos are created equal: measuring the impact
of missing resources. Int. J. Digit. Libr. (2014) (accepted for pub-
lication)

15. Brunelle, J.F., Nelson, M.L.: Zombies in the archives. http://ws-
dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
(2012)

16. Chakrabarti, S., Srivastava, S., Subramanyam, M., Tiwari, M.:
Memex: A browsing assistant for collaborative archiving and min-
ing of surf trails. In: Proceedings of the 26th VLDB Conference,
26th VLDB (2000)

17. Chisholm, W., Vanderheiden, G., Jacobs, I.: Web content accessi-
bility guidelines 1.0. Interactions 8(4), 35–54 (2001). doi:10.1145/
379537.379550

18. Crook, E.: Web archiving in a Web 2.0 world. In: Proceedings
of the Australian Library and Information Association Biennial
Conference, pp. 1–9 (2008)

19. Davis, R.C.: Five tips for designing preservable websites. http://
blog.photography.si.edu/2011/08/02/five-tips-for-designing-pres-
ervable-websites/ (2011)

20. Dincturk, M.E., Jourdan, G.V., Bochmann, G.V., Onut, I.V.: A
model-based approach for crawling rich internet applications.
ACM Trans. Web 8(3), 19:1–19:39 (2014). doi:10.1145/2626371

21. Duda, C., Frey, G., Kossmann, D., Zhou, C.: AjaxSearch: crawl-
ing, indexing and searchingWeb 2.0 applications. In: The Proceed-
ings of the Very Large Database Endowment (VLDB) Endowment
(PVLDB) 1, 1440–1443 (2008). doi:10.14778/1454159.1454195

22. Eysenbach, G., Trudel, M.: Going, going, still there: using the
WebCite service to permanently archive cited web pages. J. Med.
Internet Res. 7(5) (2005). doi:10.2196/jmir.7.5.e60

123

http://www.access-board.gov/sec508/guide/act.htm
http://dx.doi.org/10.1145/1998076.1998100
http://dx.doi.org/10.1145/1963405.1963505
http://dx.doi.org/10.1145/1963405.1963505
http://archive.today/
http://archive.today/
http://archive.today/
http://www.iicm.tugraz.at/cguetl/courses/isr/uearchive/uews2008/Ue01
http://www.iicm.tugraz.at/cguetl/courses/isr/uearchive/uews2008/Ue01
http://dx.doi.org/10.1007/978-3-642-22233-7_6
http://dx.doi.org/10.1145/1772690.1772704
http://dx.doi.org/10.1145/1772690.1772704
http://dx.doi.org/10.3998/3336451.0007.104
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
https://webarchive.jira.com/wiki/pages/viewpage.action?pageId=3113092
https://webarchive.jira.com/wiki/pages/viewpage.action?pageId=3113092
http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://dx.doi.org/10.1109/JCDL.2014.6970187
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://dx.doi.org/10.1145/379537.379550
http://dx.doi.org/10.1145/379537.379550
http://blog.photography.si.edu/2011/08/02/five-tips-for-designing-pres-ervable-websites/
http://blog.photography.si.edu/2011/08/02/five-tips-for-designing-pres-ervable-websites/
http://blog.photography.si.edu/2011/08/02/five-tips-for-designing-pres-ervable-websites/
http://dx.doi.org/10.1145/2626371
http://dx.doi.org/10.14778/1454159.1454195
http://dx.doi.org/10.2196/jmir.7.5.e60

116 J. F. Brunelle et al.

23. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P., Berners-Lee, T.: RFC 2616. http://tools.ietf.org/html/rfc2616
(1999)

24. Firefox: Firefox. http://www.mozilla.org/en-US/firefox/new/
(2013)

25. Flanagan, D.: JavaScript: the definitive guide. O’Reilly Media
(2001)

26. Fleiss, B.: SEO in the web 2.0 era: the evolution of search engine
optimization. http://www.bkv.com/redpapers-media/SEO-in-the-
Web-2.0-Era (2007)

27. Fuhrig, L.S.: The Smithsonian: using and archiving Facebook.
http://blog.photography.si.edu/2011/05/31/smithsonian-using-
and-archiving-facebook/ (2011)

28. Garrett, J., et al.: Ajax: a new approach to web appli-
cations. http://www.adaptivepath.com/ideas/ajax-new-approach-
web-applications (2005)

29. GNU: Introduction to GNU wget. http://www.gnu.org/software/
wget/ (2013)

30. Hackett, S., Parmanto, B., Zeng, X.: Accessibility of internet web-
sites through time. In: Proceedings of the 6th International ACM
SIGACCESS Conference on Computers and Accessibility, (77–
78), pp. 32–39 (2003). doi:10.1145/1029014.1028638

31. Jack, P.: Extractorhtml extract-javascript. https://webarchive.jira.
com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
(2014)

32. Jacobs, I., Walsh, N.: Architecture of the world wide web, vol.
1. In: Proceedings of Technical Report W3C Recommendation 15
December 2004, W3C (2004). http://www.w3.org/TR/webarch/

33. Kelly, M., Brunelle, J.F., Weigle, M.C., Nelson, M.L.: On the
change in archivability of websites over time. In: Proceedings of
the Third International Conference on Theory and Practice of Digi-
tal Libraries, pp. 35–47 (2013). doi:10.1007/978-3-642-40501-3_
5

34. Kelly,M., Nelson,M.L.,Weigle,M.C.: The archival acid test: eval-
uating archive performance on advanced HTML and JavaScript.
In: Proceedings of the 2014 IEEE/ACM Joint Conference on Dig-
ital Libraries (JCDL), pp. 25–28 (2014). doi:10.1109/JCDL.2014.
6970146

35. Kenney, A.R., McGovern, N.Y., Botticelli, P., Entlich, R., Lagoze,
C., Payette, S.: Preservation risk management for web resources.
D-Lib Mag. 8(1) (2002). doi:10.1045/january2002-kenney

36. Kiciman, E., Livshits, B.: AjaxScope: a platform for remotelymon-
itoring the client-side behavior ofweb2.0 applications. In: Proceed-
ings of The 21st ACM Symposium on Operating Systems Princi-
ples, SOSP ’07 (2007). doi:10.1145/1841909.1841910

37. Vikram, K., Prateek, A., Livshits, B.: Ripley: Automatically secur-
ing web 2.0 applications through replicated execution. In: Proceed-
ings of the Conference onComputer andCommunications Security
(2009)

38. Likarish, P., Jung, E.: A targeted web crawling for building mali-
cious javascript collection. In: Proceedings of the ACM First Inter-
national Workshop on Data-Intensive Software Management and
Mining, DSMM ’09, pp. 23–26. ACM, New York (2009). doi:10.
1145/1651309.1651317

39. Livshits, B., Guarnieri, S.: Gulfstream: incremental static analysis
for streaming JavaScript applications. In: Proceedings of Technical
Report MSR-TR-2010-4, Microsoft (2010)

40. Marshall, C.C., Shipman, F.M.: On the institutional archiving of
social media. In: Proceedings of the 12th ACM/IEEE-CS Joint
Conference on Digital Libraries, pp. 1–10 (2012). doi:10.1145/
2232817.2232819

41. McCown, F., Brunelle, J.F.: Warrick. http://warrick.cs.odu.edu/
(2013)

42. McCown, F., Diawara, N., Nelson, M.L.: Factors affecting website
reconstruction from the web infrastructure. In: JCDL ’07: Pro-

ceedings of the 7th ACM/IEEE-CS Joint Conference on Digital
Libraries, pp. 39–48 (2007). doi:10.1145/1255175.1255182

43. McCown, F., Marshall, C.C., Nelson, M.L.: Why web sites are
lost (and how they’re sometimes found). Commun. ACM 52(11),
141–145 (2009). doi:10.1145/1592761.1592794

44. McGovern, N.Y., Kenney, A.R., Entlich, R., Kehoe,W.R., Buckley,
E.: Virtual remote control. D-Lib Mag. 10(4) (2004). doi:10.1045/
april2004-mcgovern

45. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling Ajax by infer-
ring user interface state changes. In: Proceedings of Web Engi-
neering, 2008. ICWE ’08. Eighth International Conference, pp.
122–134 (2008). doi:10.1109/ICWE.2008.24

46. Mesbah, A., van Deursen, A.: An architectural style for ajax. In:
Proceedings of Software Architecture, Working IEEE/IFIP Con-
ference, pp. 1–9 (2007). doi:10.1109/WICSA.2007.7

47. Mesbah, A., van Deursen, A.: Migrating multi-page web applica-
tions to single-page ajax interfaces. In: Proceedings of the 11th
European Conference on Software Maintenance and Reengineer-
ing, CSMR ’07, pp. 181–190. IEEE Computer Society, Washing-
ton, DC, USA (2007). doi:10.1109/CSMR.2007.33

48. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based
web applications through dynamic analysis of user interface state
changes. ACM Trans. Web 6(1), 3:1–3:30 (2012). doi:10.1145/
2109205.2109208

49. Meyerovich, L.A., Livshits, B.: Conscript: Specifying and enforc-
ing fine-grained security policies for javascript in the browser. In:
Proceedings of the 2010 IEEE Symposium on Security and Pri-
vacy, SP ’10, pp. 481–496. IEEE Computer Society, Washington,
DC, USA (2010). doi:10.1109/SP.2010.36

50. Mickens, J., Elson, J., Howell, J.: Mugshot: deterministic capture
and replay for JavaScript applications. In: Proceedings of the 7th
USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’10, pp. 159–173 (2010)

51. Mohr, G., Kimpton, M., Stack, M., Ranitovic, I.: Introduction to
Heritrix, an archival quality web crawler. In: Proceedings of the
4th International Web Archiving Workshop (2004)

52. National Archives and Records Administration: NARA code
of federal regulations-36 CFR subchapter B: records man-
agement. http://www.archives.gov/about/regulations/subchapter/
b.html (2011)

53. National Archives and Records Administration: NARA code
of federal regulations-36 CFR subchapter B part 1236: Elec-
tronic Records Management. http://www.archives.gov/about/
regulations/part-1236.html (2011)

54. Negulescu, K.C.: Web Archiving @ the internet archive. Pre-
sentation at the 2010 Digital Preservation Partners Meeting
(2010). http://www.digitalpreservation.gov/meetings/documents/
ndiipp10/NDIIPP072110FinalIA.ppt

55. Nelson, M.L.: 2013–07-09: Archive.is supports memento. http://
ws-dl.blogspot.com/2013/07/2013-07-09-archiveis-supports-
memento.html (2013)

56. @NesbittBrian: Play framework sample application with JWe-
bUnit and synchronous ajax (2011). http://nesbot.com/2011/10/
16/play-framework-sample-app-JWebUnit-synchronous-ajax

57. Parmanto, B., Zeng, X.: Metric for web accessibility evaluation.
J. Am. Soc. Inf. Sci. Technol. 56(13), 1394–1404 (2005). doi:10.
1002/asi.20233

58. Pierce, M.E., Fox, G., Yuan, H., Deng, Y.: Cyberinfrastructure and
web 2.0. In: Proceedings of High Performance Computing and
Grids in Action, pp. 265–287 (2008)

59. Reed, S.: Introduction toUmbra. https://webarchive.jira.com/wiki/
display/ARIH/Introduction+to+Umbra (2014)

60. Rosenthal, D.S.H.: Talk on harvesting the future web at IIPC2013.
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.ht-
ml (2013)

123

http://tools.ietf.org/html/rfc2616
http://www.mozilla.org/en-US/firefox/new/
http://www.bkv.com/redpapers-media/SEO-in-the-Web-2.0-Era
http://www.bkv.com/redpapers-media/SEO-in-the-Web-2.0-Era
http://blog.photography.si.edu/2011/05/31/smithsonian-using-and-archiving-facebook/
http://blog.photography.si.edu/2011/05/31/smithsonian-using-and-archiving-facebook/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.gnu.org/software/wget/
http://www.gnu.org/software/wget/
http://dx.doi.org/10.1145/1029014.1028638
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
http://www.w3.org/TR/webarch/
http://dx.doi.org/10.1007/978-3-642-40501-3_5
http://dx.doi.org/10.1007/978-3-642-40501-3_5
http://dx.doi.org/10.1109/JCDL.2014.6970146
http://dx.doi.org/10.1109/JCDL.2014.6970146
http://dx.doi.org/10.1045/january2002-kenney
http://dx.doi.org/10.1145/1841909.1841910
http://dx.doi.org/10.1145/1651309.1651317
http://dx.doi.org/10.1145/1651309.1651317
http://dx.doi.org/10.1145/2232817.2232819
http://dx.doi.org/10.1145/2232817.2232819
http://warrick.cs.odu.edu/
http://dx.doi.org/10.1145/1255175.1255182
http://dx.doi.org/10.1145/1592761.1592794
http://dx.doi.org/10.1045/april2004-mcgovern
http://dx.doi.org/10.1045/april2004-mcgovern
http://dx.doi.org/10.1109/ICWE.2008.24
http://dx.doi.org/10.1109/WICSA.2007.7
http://dx.doi.org/10.1109/CSMR.2007.33
http://dx.doi.org/10.1145/2109205.2109208
http://dx.doi.org/10.1145/2109205.2109208
http://dx.doi.org/10.1109/SP.2010.36
http://www.archives.gov/about/regulations/subchapter/b.html
http://www.archives.gov/about/regulations/subchapter/b.html
http://www.archives.gov/about/regulations/part-1236.html
http://www.archives.gov/about/regulations/part-1236.html
http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt
http://www.digitalpreservation.gov/meetings/documents/ndiipp10/NDIIPP072110FinalIA.ppt
http://ws-dl.blogspot.com/2013/07/2013-07-09-archiveis-supports-memento.html
http://ws-dl.blogspot.com/2013/07/2013-07-09-archiveis-supports-memento.html
http://ws-dl.blogspot.com/2013/07/2013-07-09-archiveis-supports-memento.html
http://nesbot.com/2011/10/16/play-framework-sample-app-JWebUnit-synchronous-ajax
http://nesbot.com/2011/10/16/play-framework-sample-app-JWebUnit-synchronous-ajax
http://dx.doi.org/10.1002/asi.20233
http://dx.doi.org/10.1002/asi.20233
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.ht-ml
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.ht-ml

The impact of Javascript on archivability 117

61. Rossi, A.: 80 Terabytes of archived web crawl data available
for research. http://blog.archive.org/2012/10/26/80-terabytes-of-
archived-web-crawl-data-available-for-research/ (2012)

62. SalahEldeen, H.: Carbon dating the web. http://ws-dl.blogspot.
com/2013/04/2013-04-19-carbon-dating-web.html (2013)

63. SalahEldeen, H.M., Nelson, M.L.: Losing my revolution: how
many resources shared on social media have been lost? In: Pro-
ceedings of the Second international conference on Theory and
Practice of Digital Libraries, pp. 125–137 (2012). doi:10.1007/
978-3-642-33290-6_14

64. SalahEldeen, H.M., Nelson, M.L.: Resurrecting my revolution:
using social link neighborhood in bringing context to the disap-
pearing web. In: Proceedings of the Third International Conference
on Theory and Practice of Digital Libraries, pp. 333–345 (2013).
doi:10.1007/978-3-642-40501-3_34

65. Sigursson, K.: Incremental crawling with Heritrix. In: Proceedings
of the 5th International Web Archiving Workshop (2005)

66. Thibodeau, K.: Building the archives of the future: advances
in preserving electronic records at the national archives and
records administration. D-Lib Mag. 7(2) (2001). doi:10.1045/
february2001-thibodeau. http://www.dlib.org/dlib/february01/
thibodeau/02thibodeau.html

67. Tofel, B.: ‘Wayback’ for accessing web archives. In: Proceedings
of the 7th International Web Archiving Workshop (2007)

68. Van de Sompel, H., Nelson, M.L., Sanderson, R., Balakireva, L.L.,
Ainsworth, S., Shankar, H.: Memento: time travel for the web. In:
Proceedings of Technical Report, Los AlamosNational Laboratory
(2009). arXiv:0911.1112

69. W3C staff andworking group participants: hash URIs. http://www.
w3.org/QA/2011/05/hash_uris.html (2011)

70. Wikipedia: ajax (programming). http://en.wikipedia.org/wiki/
Ajax_(programming) (2013)

71. Zucker, D.F.:What does ajax mean for you? Interactions 14, 10–12
(2007). doi:10.1145/1288515.1288523

123

http://blog.archive.org/2012/10/26/80-terabytes-of-archived-web-crawl-data-available-for-research/
http://blog.archive.org/2012/10/26/80-terabytes-of-archived-web-crawl-data-available-for-research/
http://ws-dl.blogspot.com/2013/04/2013-04-19-carbon-dating-web.html
http://ws-dl.blogspot.com/2013/04/2013-04-19-carbon-dating-web.html
http://dx.doi.org/10.1007/978-3-642-33290-6_14
http://dx.doi.org/10.1007/978-3-642-33290-6_14
http://dx.doi.org/10.1007/978-3-642-40501-3_34
http://dx.doi.org/10.1045/february2001-thibodeau
http://dx.doi.org/10.1045/february2001-thibodeau
http://www.dlib.org/dlib/february01/thibodeau/02thibodeau.html
http://www.dlib.org/dlib/february01/thibodeau/02thibodeau.html
http://arxiv.org/abs/0911.1112
http://www.w3.org/QA/2011/05/hash_uris.html
http://www.w3.org/QA/2011/05/hash_uris.html
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)
http://dx.doi.org/10.1145/1288515.1288523

	The impact of JavaScript on archivability
	Abstract
	1 Introduction
	2 Deferred representations
	3 Prior work
	4 Current state of the art
	4.1 Heritrix
	4.2 WebCite
	4.3 wget
	4.4 Archive.today
	4.5 PhantomJS

	5 Motivating examples
	6 Experiment design
	6.1 Datasets
	6.1.1 Twitter
	6.1.2 Archive-It
	6.1.3 Collection differences

	6.2 Archiving the resources
	6.2.1 Heritrix 3.0.1 and the Wayback Machine
	6.2.2 wget
	6.2.3 WebCite

	6.3 Resource metrics
	6.3.1 URI complexity
	6.3.2 Content complexity

	6.4 Requests from HTML and JavaScript

	7 Resource set analysis
	7.1 URI complexity
	7.2 Content complexity

	8 Archiving experiment discussion
	8.1 Missing resources
	8.2 Leakage

	9 Archivability over time
	9.1 Impact of accessibility
	9.2 Fetching data
	9.3 Challenges in measuring past performance

	10 The impact of JavaScript on memento completeness
	11 Conclusions
	Acknowledgments
	References

