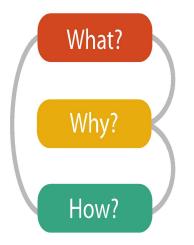
Intro to Data Visualization

Dr. Michele C. Weigle REU Site 2022 Old Dominion University

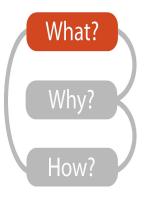
Many slides courtesy Tamara Munzner, VAD minicourse, June 2014, <u>http://www.cs.ubc.ca/~tmm/talks.html#minicourse14</u> Based on Tamara Munzner, <u>Visualization Analysis and Design</u>, AK Peters / CRC Press, Oct 2014

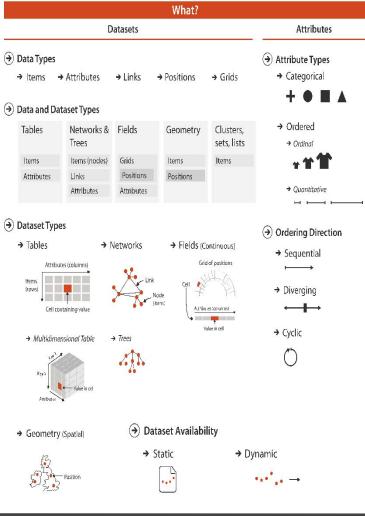
Slides adapted from Module-03 InfoVis from ODU CS 432/532 Web Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

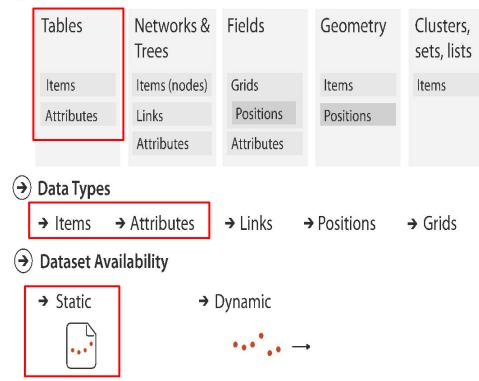

Roadmap

- Data and Basic Principles
- Intro to Creating Charts in Python
- Chart Types (Idioms) w/example code and exercises


VAD book available via ODU login, https://learning.oreilly.com/library/view/visualization-analysis-and/9781466508910/

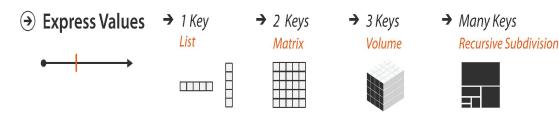

Analysis: What, why, and how

- what is shown?
 - data abstraction
- why is the user looking at it?
 - task abstraction
- how is it shown?
 - idiom: visual encoding and interaction

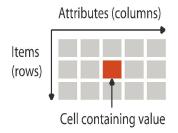

 what-why-how analysis framework as scaffold to think systematically about design space

Dataset and data types

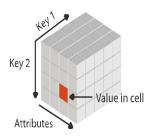
→ Data and Dataset Types



Keys and values


- key
 - independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
 - multidimensional tables: multiple keys

value


- dependent attribute, value of cell
- classify arrangements by key count - 0, 1, 2, many...

→ Tables

→ Multidimensional Table

Attribute types

Attribute Types

→ Categorical

 $+ \bullet \blacksquare \blacktriangle$

→ Ordered

→ Ordinal

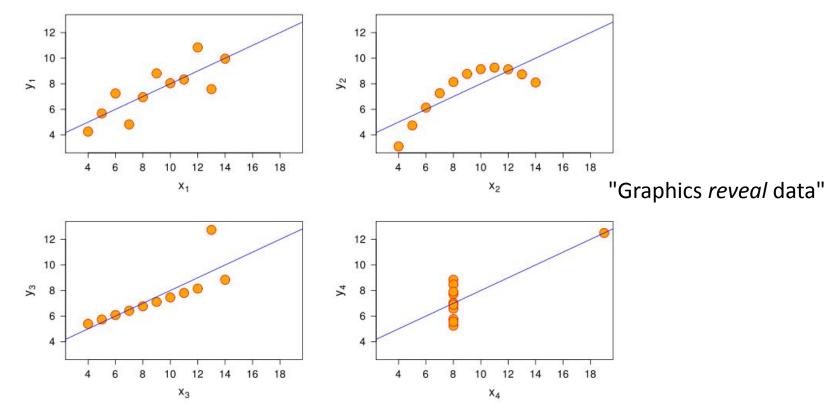
→ Quantitative

Identify items, attributes, keys, types

date	precipitation	temp_max	temp_min	wind	weather
2012-01-01	0.0	12.8	5.0	4.7	drizzle
2012-01-02	10.9	10.6	2.8	4.5	rain
2012-01-03	0.8	11.7	7.2	2.3	rain
2012-01-04	20.3	12.2	5.6	4.7	rain
2012-01-05	1.3	8.9	2.8	6.1	rain
2012-01-06	2.5	4.4	2.2	2.2	rain
2012-01-07	0.0	7.2	2.8	2.3	rain

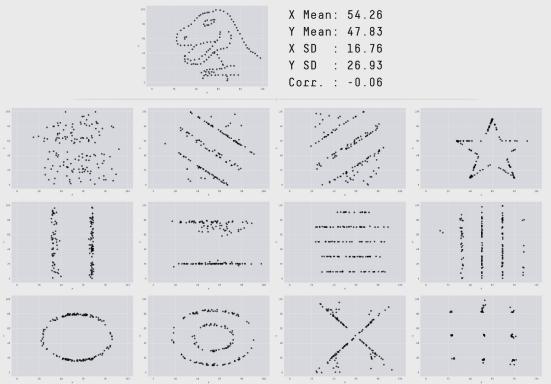
https://github.com/vega/vega-datasets/blob/next/data/seattle-weather.csv

"Graphics reveal data" -Edward Tufte

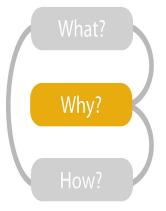

- Vis tools can allow people to explore data to find patterns or to determine if a statistical model actually fits the data
- But, look out for questionable data
 - "just because it's numbers doesn't mean it's true"
 - is it a typo or something interesting?
 "make sure you know which one it is"

Anscombe's Quartet

10	1	200	Ш		Ш		IV	
100	x	У	х	У	x	У	x	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03


F.J. Anscombe, "Graphs in Statistical Analysis", *American Statistician*, Feb 1973 Image from <u>https://medium.com/datadriveninvestor/anscombes-quartet-12649db7eac0</u>, Munzner, Figure 1.3

The four data sets are not the same



http://en.wikipedia.org/wiki/File:Anscombe.svg

Datasaurus Dozen

Justin Matejka, George Fitzmaurice, "Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing", ACM SIGCHI 2017, <u>https://www.autodeskresearch.com/publications/samestats</u>

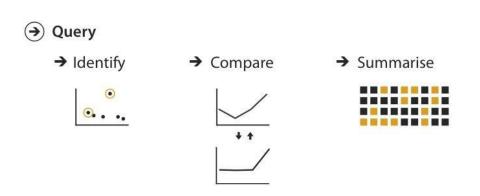
- {action, target} pairs
 - discover distribution
 - compare trends
 - locate outliers
 - browse topology


Why?				
🕫 Actions		15	Targets	
→ Analyze			→ All Data	
→ Consur → Discov	er → Present	→ Enjoy	→ Trends → Outliers → Features ✓ ✓	
→ Produc	e		→ Attributes	
→ Annota	ate → Record	→ Derive	→ One → Many → Distribution → Dependency → Correlation → Similarity	
	Target known	Target unknown	_itho_	
Location known	·.·· Lookup	· . Browse	→ Network Data	
Location unknown	< : Ocate	< O > Explore	→ Topology	
Query → Identify	→ Compare	→ Summarise	→ Paths → Paths → Paths → Spatial Data → Shape ↓ ↓ ↓ ↓ ↓ What? Why? How?	

High-level actions: Analyze

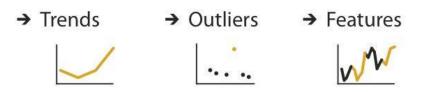
- consume
 - -discover vs present
 - aka explore vs explain
 - -enjoy
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - create new *derived* attributes based on existing attributes

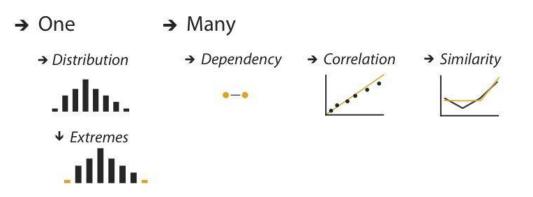
→ Consume



Actions: Mid-level search, low-level query

- what does user know?
 - -target, location
- how much of the data matters?
 - one, some, all

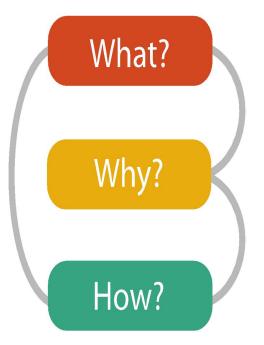




Why: Targets

→ ALL DATA

➔ ATTRIBUTES

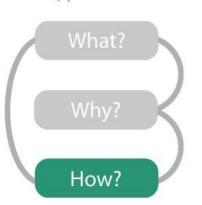


Workflow

- What
 - data gathering
 - $\circ~$ data wrangling

• Why

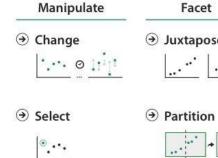
- developing questions
- $\circ~$ initial analysis
- How
 - $\circ~$ charts for analysis
 - charts for presentation

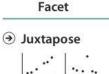

How?

Encode

→ Separate

→ Align


- - → Express
 - → Order
 -
 - → Use



- (\mathbf{a}) Map from categorical and ordered attributes → Color → Hue \rightarrow Saturation \rightarrow Luminance iii iii 📰 📰 🎫 → Size, Angle, Curvature, ...
 - 2 III. → Shape
 - → Motion Direction, Rate, Frequency, ...

+ . . .

...

Reduce

- < >
- ** 1..... ** * **

+

....

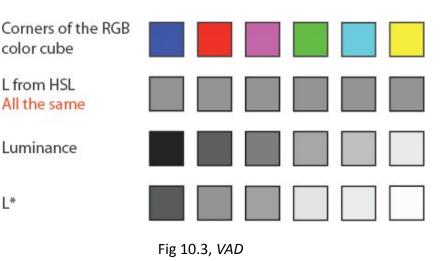
..... 🖌 հետև

Definitions: Marks and channels

- marks
 - geometric primitives
- channels
 - control appearance of marks
 - can redundantly code with multiple channels
- interactions
 - point marks only convey position; no area constraints
 - can be size and shape coded
 - line marks convey position and length
 - can only be size coded in 1D (width)
 - area marks fully constrained
 - cannot be size or shape coded

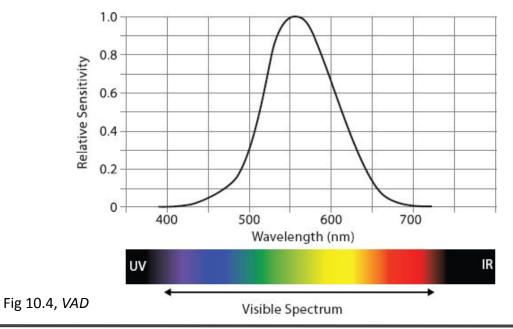
Color: Luminance, saturation, hue

- 3 channels
 - identity channel for categorical
 - hue
 - magnitude channels for ordered
 - luminance
 - saturation

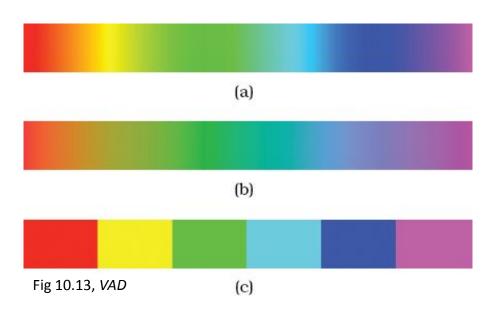


Hue

Color Spaces


- Six different hues ordered by luminance
 - computed lightness L values same (HSL color space)
 - true luminance is closer to what we perceive
 - L^* is computed perceptually linear luminance - best match to what we see (L*a*b* color space, aka CIELAB)

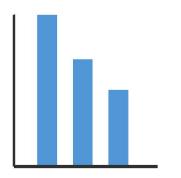
L*

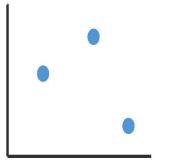

Spectral Sensitivity to Luminance

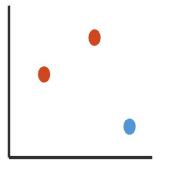
We are much more sensitive to middle wavelengths of green and yellow than to outer wavelengths of red and blue

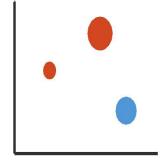
Rainbow Colormaps

- Standard rainbow colormap is perceptually non-linear
- Perceptually linear rainbow colormap
 - seems dingy, rarely used
- Segmented rainbow, good for categorical data

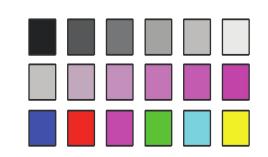

Channels: Expressiveness types and effectiveness rankings

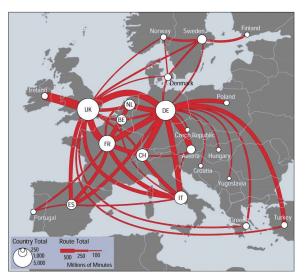

⊙ Magnitude Channels: Ordered Attributes	
Position on common scale	Spatial region 📲 🔳
Position on unaligned scale	Color hue
Length (1D size) – — —	Motion
Tilt/angle	Shape + • ■ ▲
Area (2D size)	reness -
Depth (3D position) $\mapsto \bullet \mapsto \bullet$	- Effectiveness
Color luminance	
Color saturation	
Curvature	
Volume (3D size)	▲ Least


Effectiveness and expressiveness principles


- effectiveness principle
 - encode most important attributes with highest ranked channels
- expressiveness principle
 - -match channel and data characteristics
 - identity channel for categorical
 - magnitude channels for ordered

Visual encoding

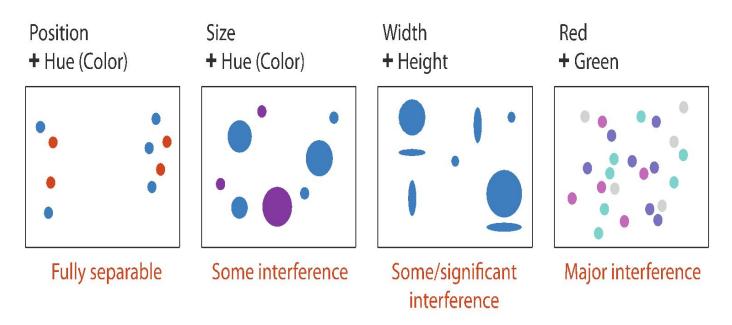



1: 2: 3: 4: vertical position vertical position vertical position vertical position horizontal position horizontal position horizontal position color hue color hue size (area) mark: point mark: line mark: point mark: point

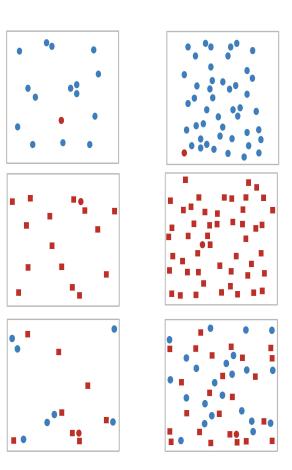
Discriminability

In a single channel, how many bins (distinguishable steps/levels) are there?

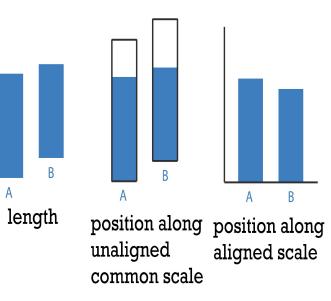
- luminance: < 5
- saturation: about 3
- hue: 6-7
- linewidth: only a few



source: Telecommunications Traffic Flow Map


Separability vs. Integrality

When combining multiple channels, can the viewer separate the values mapped to each channel?


Popout

- find the red dot
 - how long does it take?

Relative vs. absolute judgments

- perceptual system mostly operates with relative judgments, not absolute
 - accuracy increases with common frame/scale and alignment
 - adding frame allows us to judge the length of the unfilled bar
 - sizes have a larger difference than the filled bars
 - aligning achieves the same effect without using a frame

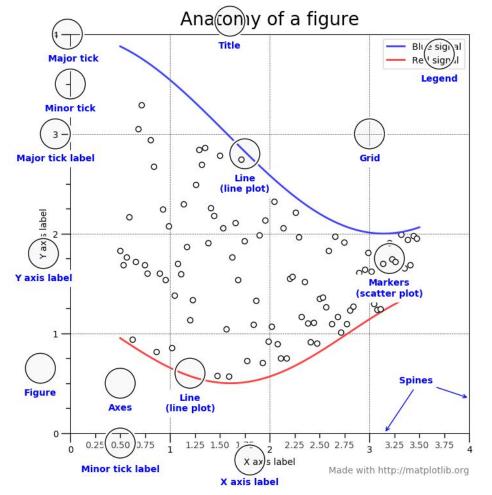
after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.]

How?

Encode	6
 → Express → Separate → ■ ■ 	 Map from categorical and order attributes
→ Order → Align	→ Color → Hue → Saturation →
→ Use	→ Size, Angle, Curvature, .
What?	 → Shape + ● ■ ▲ → Motion Direction Rate Frequency
Why?	Direction, Rate, Frequency,
How?	

	Manipulat
rical and ordered	
→ Saturation → Luminance	→ Select
e, Curvature,	••••
//_ I)))	
A	< <u>``</u> >

Manipulate	Facet	Reduce
		 ④ Filter ■■■■■ + ■■■■
→ Select	Partition	
 ⊙ Navigate < ∴ → 	 → Superimpose ↓ ↓ ↓ ↓ 	• Embed

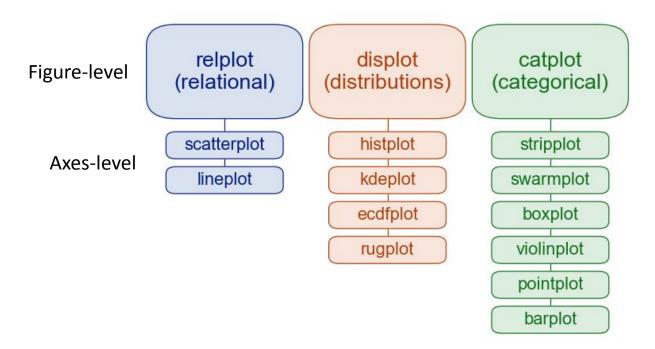

Creating Charts in Python

- Matplotlib, <u>https://matplotlib.org/</u>
 - most popular Python plotting library, similar to MATLAB
 - provides full control over the plot
 - developed way before Pandas, so harder to integrate
- Pandas, https://pandas.pydata.org/docs/user_guide/visualization.html
 - visualization in Pandas is a wrapper around Matplotlib
- Seaborn, <u>https://seaborn.pydata.org/</u>
 - high-level interface to Matplotlib
 - closely integrated with Pandas
 - allows for more complex charts than Pandas plot()
 - can still use Matplotlib for advanced chart customization

https://towardsdatascience.com/matplotlib-seaborn-pandas-an-ideal-amalgamation-for-statistical-data-visualisation-f619c8e8baa3

A Few Python Charting Resources

- Matplotlib API reference, <u>https://matplotlib.org/stable/api/index</u>
- Matplotlib Tutorials, <u>https://matplotlib.org/stable/tutorials/index.html</u>
- Seaborn API reference, <u>https://seaborn.pydata.org/api.html</u>
- Seaborn user guide and tutorial, <u>https://seaborn.pydata.org/tutorial.html</u>
- Pandas plot API reference, <u>https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html</u>
- Matplotlib + Seaborn + Pandas: An Ideal Amalgamation for Statistical Data Visualisation, <u>https://towardsdatascience.com/matplotlib-seaborn-pandas-an-ideal-amalgamation-for-statistical-dat</u> <u>a-visualisation-f619c8e8baa3</u>
- Visualization with Seaborn, <u>https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html</u>
- Data Visualization with Pandas and Seaborn, <u>https://levelup.gitconnected.com/data-visualization-with-pandas-and-seaborn-5de444b567a0</u>



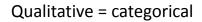
- Figure
 - \circ the whole figure
- Axes
 - $\circ \quad$ an actual plot in the figure
 - can be multiple of these
 (subplots) in a single figure
- Axis
 - an actual x/y axis in a specific plot

Functions in Seaborn are either **Figure**-level or **Axes**-level

https://towardsdatascience.com/matplotlib-seaborn-pandas-an-ideal-amalgamation-for-statistical-data-visualisation-f619c8e8baa3

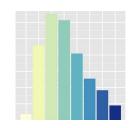
Seaborn Figure-Level vs. Axes-Level

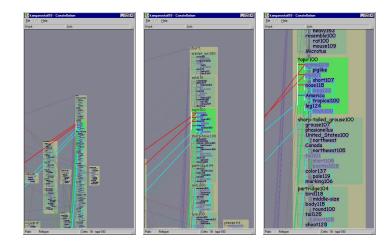
https://seaborn.pydata.org/tutorial/function_overview.html#figure-level-vs-axes-level-functions


Colormaps in Matplotlib

Perceptually Uniform Sequential colormaps

 Pastel1
 Oualitative colormaps

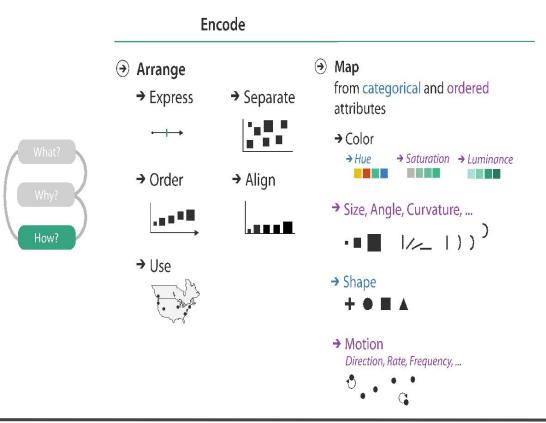

 Pastel2
 Paired
 <td



https://matplotlib.org/stable/tutorials/colors/colormaps.html

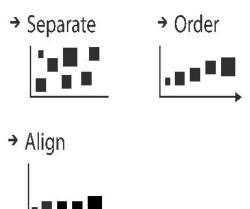
Idiom design space

- idiom: distinct approach to creating or manipulating visual representation
 - how to draw it: visual encoding idiom
 many possibilities for how to create
 - how to manipulate it: interaction idiom
 - even more possibilities
 - make single idiom dynamic
 - link multiple idioms together through interaction



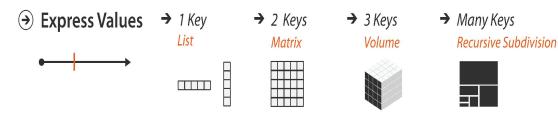
[A layered grammar of graphics. Wickham. Journal of Computational and Graphical Statistics 19:1 (2010), 3–28.]

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. thesis, Stanford University Department of Computer Science, 2000.]

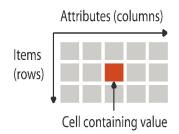

Idiom design choices: Part 1

Arrange tables

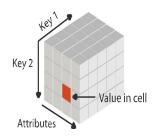
 ${oldsymbol{ \ni}}$ Separate, Order, Align Regions



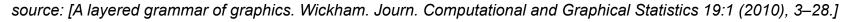
Reminder: Keys and values


- key
 - independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
 - multidimensional tables: multiple keys

value


- dependent attribute, value of cell
- classify arrangements by key count - 0, 1, 2, many...

→ Tables

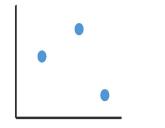


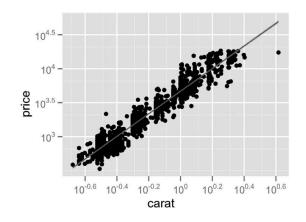
→ Multidimensional Table

Idiom: scatterplot

- express values
 - quantitative attributes
- no keys, only values
 - data:
 - 2 quant attribs
 - mark: points
 - channels
 - horiz + vert position
 - tasks
 - find trends, outliers, distribution, correlation, clusters
 - scalability: hundreds of items

carat

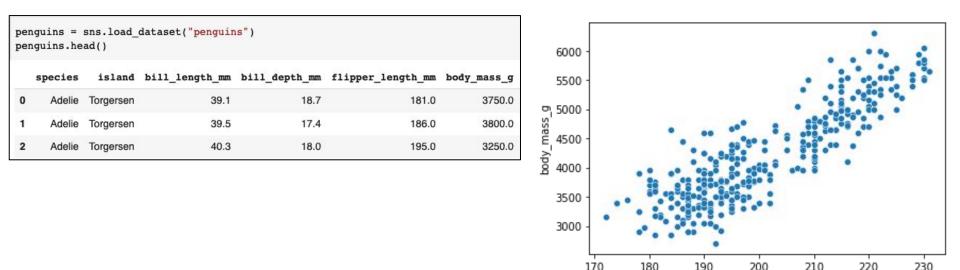

3



15000 -

5000

⁻ 10000 - ک لیز



41

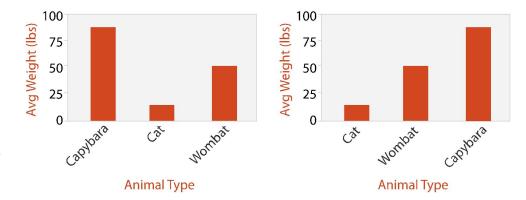
Basic Scatterplot using Seaborn

sns.scatterplot(data=penguins, x="flipper_length_mm", y="body_mass_g")

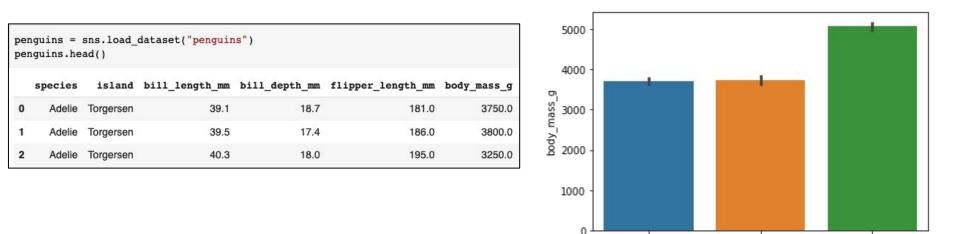
notebook: <u>https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe</u>

@weiglemc | REU Site Intro to Data Visualization | June 16, 2022

flipper length mm


Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other
 - -using space to *separate* (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions


Idiom: bar chart

- one key, one value
 - data
 - 1 categ attrib, 1 quant attrib
 - mark: lines
 - channels: length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - » by label (alphabetical), by length attrib (data-driven)
 - task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib

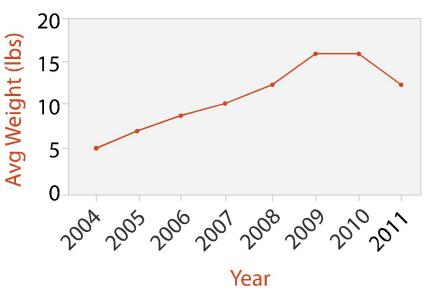
Basic Bar Chart using Seaborn

sns.barplot(data=penguins, x="species", y="body_mass_g");

notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

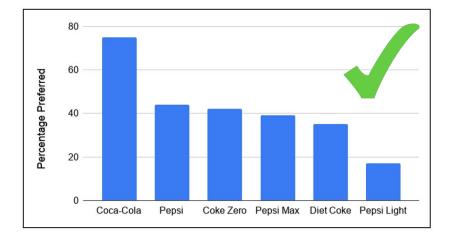
@weiglemc | REU Site Intro to Data Visualization | June 16, 2022

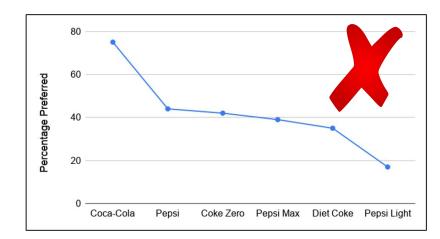
Adelie


Chinstrap

species

Gentoo

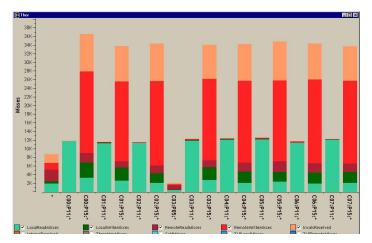

Idiom: line chart


- one key, one value
 - data
 - 1 quant attrib, 1 ordered attrib
 - mark: points
 - line connection marks between them
 - channels
 - aligned vertical position
 - separated and ordered by key attrib into horizontal regions
 - task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

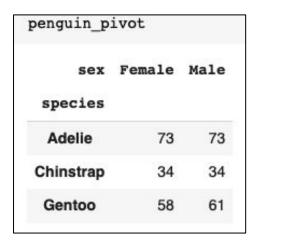
- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered
- do not use line charts for categorical key attribs
 - violates expressiveness principle
 - implication of trend so strong that it overrides semantics!

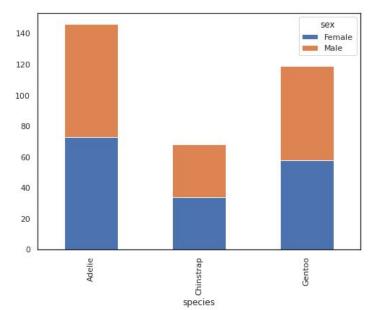
Basic Line Chart using Seaborn


sns.lineplot(data=per_month, x="month", y="passengers")

notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

Idiom: stacked bar chart

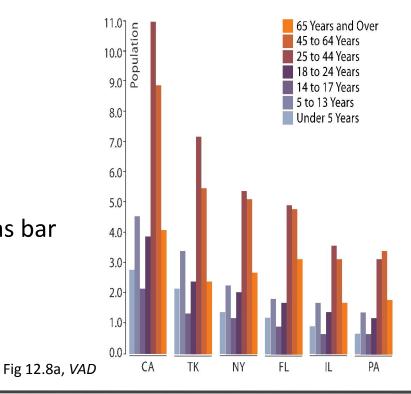

- data: 2 categ attrib, 1 quant attrib
- mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
- channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
- task: part-to-whole relationship
- scalability: several to one dozen levels for stacked attrib



source: [Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

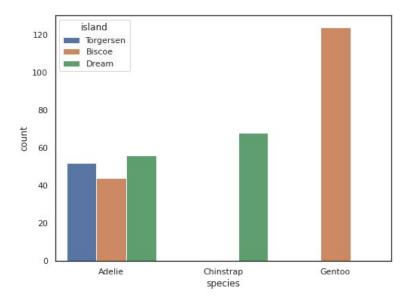
Stacked Bar Chart using Pandas Plot

penguin_pivot.plot.bar(stacked=True)



notebook: <u>https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe</u>

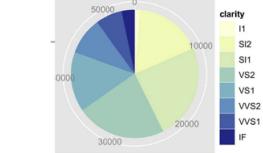
Idiom: Grouped Bar Chart

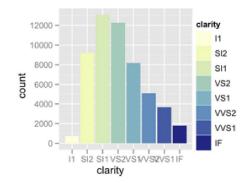

- data: 2 categ attrib, 1 quant attrib
- mark: multibar glyph in each region
- channels
 - length and color hue
 - spatial regions: one per glyph
- task: compare, lookup values (same as bar chart)

Grouped Bar Chart using Seaborn

sns.countplot(data=penguins, x="species", hue="island")

penguins = sns.load_dataset(" <mark>penguins</mark> ") penguins.head()								
	species	island	bill_length_mm	bill_depth_mm				
0	Adelie	Torgersen	39.1	18.7				
1	Adelie	Torgersen	39.5	17.4				
2	Adelie	Torgersen	40.3	18.0				

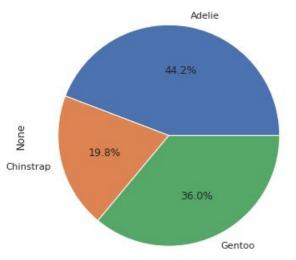



notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

Idioms: pie chart

- pie chart
 - area marks with angle channel
 - accuracy: angle/area much less accurate than line length
- data
 - -1 categ key attrib, 1 quant value attrib
- task
 - part-to-whole judgments

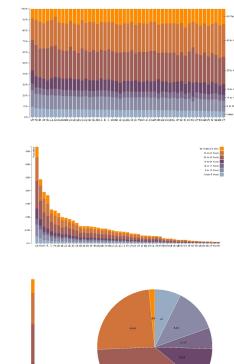
Think carefully before choosing pie charts when there are more than 3-4 categories.



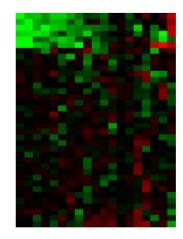
[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

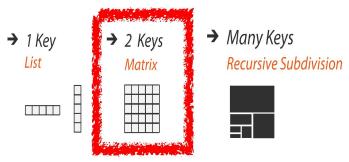
Pie Chart using Pandas Plot

data.plot.pie(autopct="%.1f%%")


data = peng data	<pre>guins.groupby("species").size()</pre>
species Adelie Chinstrap Gentoo dtype: int6	152 68 124 4

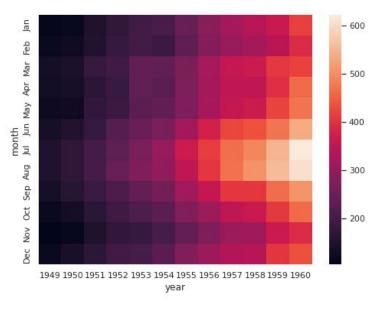
notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe


Idioms: normalized stacked bar chart


- task
 - part-to-whole judgments
- normalized stacked bar chart
 - stacked bar chart, normalized to full vert height
 - single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - information density: requires large circle

Idiom: heatmap

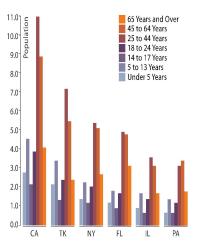
- two keys, one value
 - data
 - 2 categ attribs (gene, experimental condition)
 - 1 quant attrib (expression levels)
 - marks: area
 - separate and align in 2D matrix – indexed by 2 categorical attributes
 - channels
 - color by quant attrib
 - (ordered diverging colormap)
 - task
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels



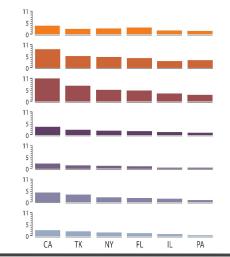
Heatmap using Seaborn

sns.heatmap(pivot)

-	<pre>vivot = flights.pivot("month", "year", "passengers") vivot.head()</pre>												
year month	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	
Jan	112	115	145	171	196	204	242	284	315	340	360	417	
Feb	118	126	150	180	196	188	233	277	301	318	342	391	
Mar	132	141	178	193	236	235	267	317	356	362	406	419	
Apr	129	135	163	181	235	227	269	313	348	348	396	461	
Мау	121	125	172	183	229	234	270	318	355	363	420	472	

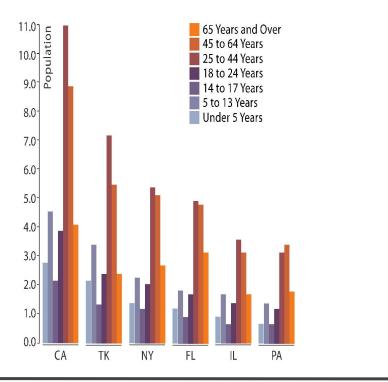

notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

Idiom design choices: Part 2

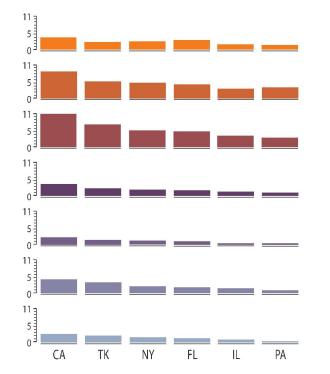

Manipulate	Facet	Reduce
	Juxtapose Juxtapo	→ Filter
Select	 → Partition → → → → → → → → → → → → → → → → → → →	Aggregate
 → Navigate < . · · · > 	 → Superimpose ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 	Embed

Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

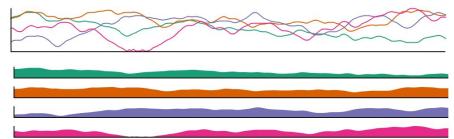


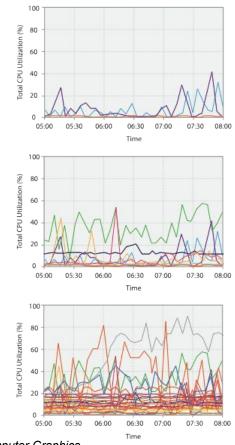
- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states



Partitioning: List alignment and comparison

easy within state, hard across ages

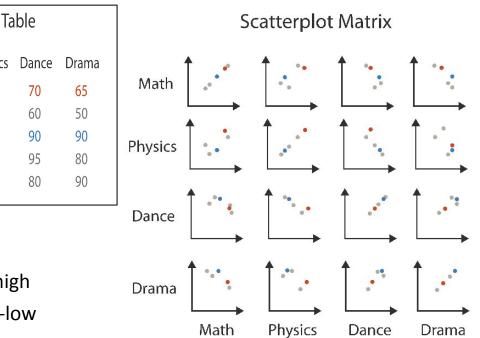

easy within age, harder across states



CPU utilization over time

Superimposing limits

- few layers, but many lines
 - up to a few dozen, but not hundreds
- superimpose vs juxtapose: empirical study
 - superimposed for local visual, multiple for global
 - same screen space for all multiples, single superimposed
 - tasks
 - local: maximum, global: slope, discrimination



[Graphical Perception of Multiple Time Series. Javed, McDonnel, and Elmqvist. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE InfoVis 2010) 16:6 (2010), 927–934.]

Idiom: scatterplot matrix

- scatterplot matrix (SPLOM)
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items
 - task: correlation
 - positive correlation: diagonal low-to-high
 - negative correlation: diagonal high-to-low
 - uncorrelated

source: [Visualization Course Figures. McGuffin, 2014]

Physics

95

80

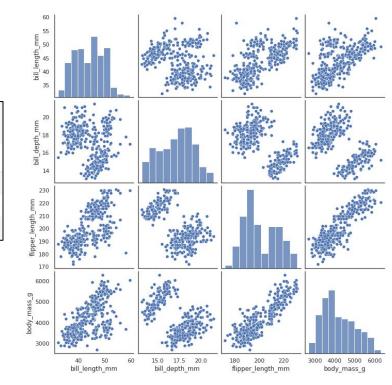
50

40

60

Math

85

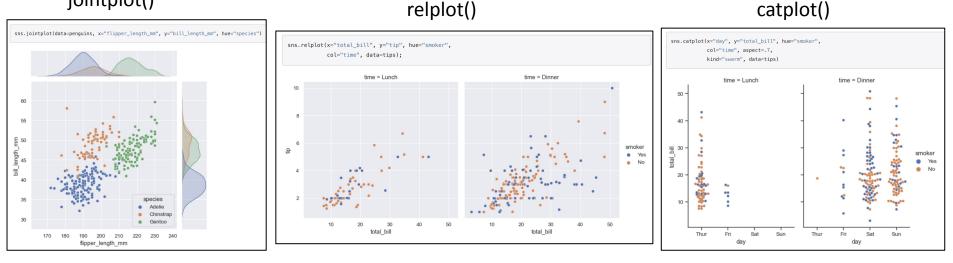

90

65

50

40

Scatterplot Matrix using Seaborn


sns.pairplot(penguins)

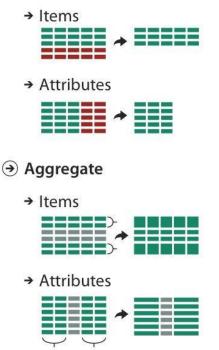
1000	<pre>penguins = sns.load_dataset("penguins") penguins.head()</pre>									
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g				
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0				
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0				
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0				

notebook: https://colab.research.google.com/drive/1Y2IJFV4NgzLc2J3pxvP34VtgUw7jKmEe

More Multiple Views in Seaborn

jointplot()

https://seaborn.pydata.org/tutorial/function_overview.html#combining-multiple-views-on-the-data https://seaborn.pydata.org/tutorial/relational.html#showing-multiple-relationships-with-facets https://seaborn.pydata.org/tutorial/categorical.html#showing-multiple-relationships-with-facets

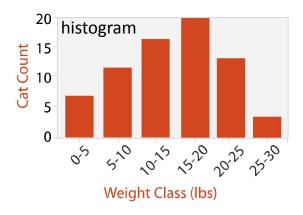

Reduce items and attributes

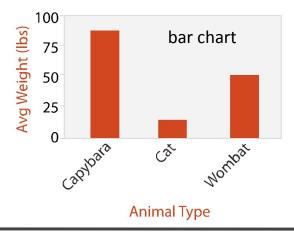
• filter

- pro: straightforward and intuitive
 to understand and compute
- con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet

Reducing Items and Attributes

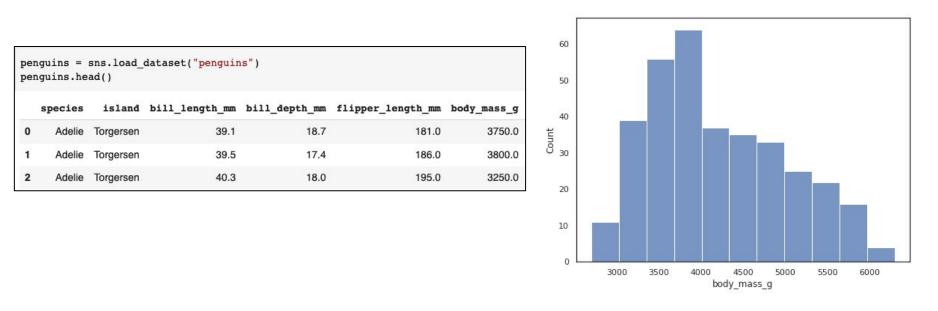
→ Filter



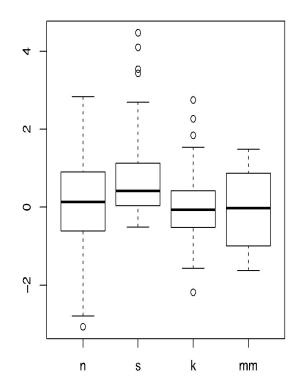

	neuuce					
•	Filter					
•	Aggregate					
•	Embed					

Reduce

Idiom: histogram


- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization (bin size)

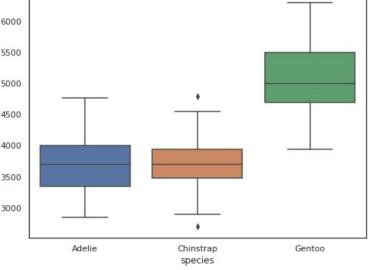
Histogram using Seaborn


sns.histplot(penguins['body_mass_g'])

notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown



source: [40 years of boxplots. Wickham and Stryjewski. 2012]

Boxplot using Seaborn

sns.boxplot(data=penguins, x="species", y="body_mass_g")

	guins = : guins.he		dataset("penguin	s")			5500	
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	5000	
)	Adelie	Torgersen	39.1	18.7	181.0	3750.0	ISS_G	 •
I.	Adelie	Torgersen	39.5	17.4	186.0	3800.0	4500	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	(poq 4000	

notebook: https://colab.research.google.com/drive/1Y2IJFV4NqzLc2J3pxvP34VtqUw7jKmEe

Exercise - Scatterplot

- Divide into groups of 2
- Examine the Seaborn dataset car_crashes
 - <u>https://github.com/mwaskom/seaborn-data/blob/master/car_crashes.csv</u>
 - original description:
 <u>https://www.kaggle.com/datasets/fivethirtyeight/fivethirtyeight-bad-drivers-dataset</u>
- Use Seaborn to generate a **scatterplot** that examines two of the quantitative attributes
 - use informative x, y axis labels and an informative title
- What conclusions can you draw from the chart?
- What further questions do you have after visualizing the data?

Exercise - Bar Chart

- Divide into groups of 2
- Examine the Seaborn dataset car_crashes
 - <u>https://github.com/mwaskom/seaborn-data/blob/master/car_crashes.csv</u>
 - original description:
 <u>https://www.kaggle.com/datasets/fivethirtyeight/fivethirtyeight-bad-drivers-dataset</u>
- Use Seaborn to generate a horizontal bar chart that shows the top 10 states in terms of one of the quantitative values

 use informative x, y axis labels and an informative title
- What conclusions can you draw from the chart?
- What further questions do you have after visualizing the data?

Exercise - Boxplot

- Divide into groups of 2
- Examine the Seaborn dataset tips
 - <u>https://github.com/mwaskom/seaborn-data/blob/master/tips.csv</u>
- Use Seaborn to generate a **boxplot** that shows the distributions of percent tip (*derived attribute*) for Lunch and Dinner

 use informative x, y axis labels and an informative title
- What conclusions can you draw from the chart?
- What further questions do you have after visualizing the data?

Exercise - Think about Data

- Divide into groups of 2
- Examine the Seaborn dataset tips
 - <u>https://github.com/mwaskom/seaborn-data/blob/master/tips.csv</u>
- How would you use the data to answer the question, what factors play into getting the highest percent tips?
 - what data manipulations would you need to perform?
 - what type of chart would be appropriate to show the results? why?

You don't actually have to generate a chart, just plan out what you'd need to do.

Interested in learning more?

Watch Tamara Munzner's D3 Unconference 2015 Keynote (55 min), <u>https://youtu.be/jVC6SQS23ak</u> or her full-day tutorial at IEEE VIS 2021 (18 videos), <u>https://www.youtube.com/playlist?list=PLT4XLHmqHJBdB24LAQPk_PV7wrwpJFh5a</u>

Still interested?

Check out ODU CS 625 - Data Visualization

https://github.com/odu-cs625-datavis/public/tree/main/fall21#readme

covers most of Munzner's textbook

Still interested?

Check out ODU CS 725/825 - Information Visualization and Visual Analytics

https://github.com/odu-cs725-infovis/public/tree/main/spr22#readme

more advanced visualizations, research-based, assumes knowledge of all material from CS 625