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Abstract 

There has been increased interest in reliable, non-intrusive 
methods of biometric identification due to the growing emphasis 
on security and increasing prevalence of identity theft. This paper 
presents a new biometric approach that involves an estimation of 
the unique oculomotor plant (OP) or eye globe muscle parameters 
from an eye movement trace. These parameters model individual 
properties of the human eye, including neuronal control signal, 
series elasticity, length tension, force velocity, and active tension. 
These properties can be estimated for each extraocular muscle, and 
have been shown to differ between individuals. We describe the 
algorithms used in our approach and the results of an experiment 
with 41 human subjects tracking a jumping dot on a screen. Our 
results show improvement over existing eye movement biometric 
identification methods. The technique of using Oculomotor Plant 
Mathematical Model (OPMM) parameters to model the individual 
eye provides a number of advantages for biometric identification: 
it includes both behavioral and physiological human attributes, is 
difficult to counterfeit, non-intrusive, and could easily be 
incorporated into existing biometric systems to provide an extra 
layer of security. 

CR Categories: I.6.4 [Simulation and Modeling]: Model 
Validation and Analysis; J.7 [Computers in Other Systems]: 
Process control, Real time. 
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1 Introduction 
Accurate, non-intrusive, and unforgeable identity recognition is an 
area of increasing concern to just about everyone in today’s 
networked world, with the need for security set against the goals of 
easy access. The majority of the world’s population would like 
secure access to their assets without risk of identity theft, yet do 
not want to be subjected to inconvenient or intrusive detection 
systems.  Many of the most-commonly utilized methods for 
identity determination have known problems. For example, 
password verification has demonstrated many weaknesses in areas 
of accuracy (there is no way to verify that the individual typing the 
password is actually its owner, unless a temporal pattern 
recognition system is employed [Joyce and Gupta 1990]), usability 
(people forget passwords [Wiedenbecka et al.]), and security 
(people write them down or create easy-to-hack passwords 
[Schneier 2005]) . 

As a result, techniques of biometric identification, defined as 
methods for identifying persons based on uniquely identifying 
physical or behavioral traits, have been garnering significant recent 
interest [Daugman 2002; Jain et al. 1999; Kasprowski 2004]. The 

potential for advancement in biometric identification methods is 
substantial due to recent improvements in computer processing 
power, database size, and sensor technologies. 

There are a number of methods employed today for biometric 
purposes. Some examples include the use of fingerprints, iris and 
retina scans, face recognition, hand/finger geometry, voice 
recognition and eye movements [Bednarik et al. 2005; Daugman 
2002; Jain et al. 1999; Josephson and Holmes 2002; Kasprowski 
2004] . 

Current biometric identification technologies are somewhat fraud 
resistant, but they are not completely foolproof and may be 
compromised with available technologies. Even though fingerprint 
identification is a popular methodology, such systems have been 
demonstrated to be insufficiently invulnerable in high security 
environments. Several recent studies have shown that it is possible 
to fool fingerprinting systems with common household articles 
such as gelatin [Williams 2002].  

Face recognition systems are still undergoing research to improve 
their precision and recall [Jain et al. 1999; Zhao et al. 2003]. 
Additionally, identical twins (1:10,000 probability), and related 
issues such as family resemblance may bring the reliability of such 
systems into question. It is also possible to use still images and 
video footage of a person to bypass a face recognition system.  

Further disadvantages of many of these methods involve the ability  

to forge replicas – in some cases even causing injury to the owner 
of the body part used for biometric identification.  Eye movements, 
in contrast, constitute a behavioral characteristic which is 
extremely difficult to forge, and which cannot be stolen from an 
individual. 

 The challenge lies in classifying eye movements in such a manner 
that the differences between individuals are more significant than 
changes in a single human’s behavior over time. In order to do this, 
we turn to physical and behavioral characteristics that are 
relatively constant in an individual human over their lifetime: the 
physical structure and behavior of the muscles that move the eye. 
We propose a person identification method based on the  
Oculomotor Plant Mathematical Model (OPMM) developed by 
[Komogortsev and Khan 2008]), derived from earlier work by 
Bahill [Bahill 1980]. The OPMM models a human eye as a system 
that consists of an eye globe driven by a set of extraocular muscles. 
This system models the anatomical structure of the human eye, 
where each extraocular muscle is driven by a uniquely defined 

 

Figure 1. Biometric Identification Model. 
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neuronal control signal and consists of series elasticity, length 
tension, force velocity, and active tension components. However, 
the specific values for the previously determined OPMM 
parameters were obtained from studies that examined a single 
individual. In this paper, we analyze eye movement traces and 
derive a unique vector of values corresponding to each person over 
a sample set of 41 individuals. We report our results and discuss 
the challenges and advantages provided by biometric identification 
via an OPMM. 

2 Biometric Identification by Oculomotor Plant 
Mathematical Model 

An overview of our method for biometric identification is depicted 
in Figure 1. The recorded eye movement signal u(t) from a single 
individual is supplied to the “Eye Movement Classification” 
module that classifies eye position signal into fixations and 
saccades. We focus on the detected saccade trajectories, 
represented by Θ(t) in the diagram. The detected saccade 
parameters, the onset and offset coordinates and amplitudes of the 
detected saccades, depicted by h(t), are sent to the second module 
labeled OPMM, which generates simulated saccade trajectories 
represented by the signal x(t). The difference between detected 
saccade trajectories Θ(t) and simulated saccade trajectories x(t) is 
computed by the “Error Function” module and the resulting error 
e(t) is produced. The e(t) signal serves as an input to the 
“Optimization Algorithm” module that provides feedback to the 
OPMM module with the goal of minimizing the error e(t). After 
several iterations, the optimum OPMM parameters in the form of 
an “Oculomotor Coefficients Vector” module are supplied to the 
“Person Identification” module which performs the actual 
identification. Detailed descriptions of each module are provided 
in the sections to follow.   

3 Eye Movement Classification 
We employed the Velocity-Threshold (I-VT) algorithm [Salvucci 
and Goldberg 2000] with threshold of  55º/s in the Eye Movement 
Classification module to split an eye movement recording into 
fixations and saccades. The original I-VT algorithm was modified 
to output such characteristics of an individual saccade as onset 

_ , offset _   coordinates, amplitude ( _ ) and the 
coordinates of all eye position points between the onset and the 
offset. The outputs of this module are the detected saccade 
trajectories Θ(t) and the onset and offset coordinates and the 
amplitude of the detected saccades, h(t).  Θ(t) is passed as input to 
the Error Function module described in Section 5, and h(t) is used 
as input to the OPMM module described in the following section. 

4 Oculomotor Plant Mathematical Model 
Six extraocular muscles rotate the eye globe in its socket. The 
muscles are innervated by a neuronal control signal generated by 
the brain. During saccades this signal is a pulse step, where pulse 
characteristics are encoded by the velocity command and step 
characteristics are encoded by the positional command [Leigh and 
Zee 2006]. The horizontal OPMM described in [Komogortsev and 
Khan 2008] models all of the described properties of the 
Oculomotor Plant as linear springs or damping components, 
providing approximate values for the parameters describing these 
components. 

5 Error Function 
Saccade trajectories generated by the Eye Movement Classification 
module and the OPMM module are supplied to the Error Function 
module, where the error e(t) in a form of the Root Mean Squared 

Error (RMSE) is computed between the detected x(t) and the 
simulated by the OPMM  ∆  eye position signal. 

When multiple saccades are detected for an individual by the eye 
movement classification algorithm, the average of the RMSEs 
from the detected and simulated trajectories is presented as a final 
e(t). Note that a good approximate solution of the OPMM 
equations creates an eye movement trajectory with a sampling rate 
of 1000Hz [Komogortsev and Khan 2008]; in the case where the 
eye tracking frequency is lower, the signal ∆  is down-sampled 
to match the eye tracking frequency. 

6 Optimization Algorithm  

6.1 Oculomotor Plant Parameters Vector 
The goal of the Optimization Algorithm module is to provide a set 
of better values for the OPMM parameters by minimizing error 
e(t). The OPMM’s parameters, such as passive elasticity, viscosity, 
series elasticity, length tension, force velocity relationship, height 
and width on the neuronal control signal, are unique for each 
individual. Some of these parameter values were previously 
estimated from a record of just one subject [Bahill 1980]. 
Moreover, some of the parameters such as length tension and 
series elasticity were derived by manual data fitting and hand-
drawn straight line approximations [Bahill 1980]. The values of the 
OPMM parameters derived in this way can be improved to provide 
a much better fit for a specific individual. 

One way to derive more accurate values for the OPMM parameters 
is to employ an optimization algorithm that selects new values for 
the parameters with an objective of minimizing the error e(t). It is 
important to note that some parameters provide higher impact than 
others on the simulated eye movement trajectory [Bahill 1980]. 
The ranking of the parameters starting with those providing the 
highest influence on the simulated saccade trajectory is as follows: 
the width of the pulse of the neuronal control signal for the agonist 
muscle ( ), pulse height of the neuronal control signal for the 
agonist muscle ( ),  length tension ,  series elasticity ,  
passive viscosity of the eye globe ( ) and force velocity 
relationship in the agonist muscle represented by the damping 
component , combined passive elasticity of the eye globe and 
all extraocular muscles ( ), eye globe inertia .  All these 
parameters are selected for actual person identification. 

6.2 Optimization Algorithms & Strategies 
Optimization Algorithms: We employed two optimization 
algorithms to determine optimized values for the OPMM 
parameter vectors ( , , , , , , ) with an objective 
of minimizing the error e(t). 

First, the Trust-Region (TR) algorithm that uses the interior-
reflective Newton method was applied [Coleman and Li 1996]. 
The TR algorithm is an optimization method that searches for a 
better value in an area called the trusted region around the initial 
parameter value. At the start, the region of search is close to the 
initial parameter value and if a better value is found the trusted 
region size is increased, otherwise the size of the search region is 
reduced.  

Additionally, the Nelder-Mead (NM) simplex algorithm was 
applied [Lagarias et al. 1998]. This algorithm employs a simplex of 
n+1 points for a vector y with n dimensions. At the beginning the 
algorithm builds a simplex around the initial value i by adding a 
percentage value of each component of the vector y. Resulting 
values are employed as elements of the simplex in addition to 
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initial value i. As a result new points of the simplex are generated 
until the simplex diameter reaches a specified threshold. 
Optimization Strategies: Two strategies are employed to 
optimize OPMM parameters with the TR and NM  algorithms.  

Strategy 1: the OPMM parameters are optimized sequentially.  An 
already optimized parameter remains in the parameter vector. The 
subsequent parameters are optimized based on the newly optimized 
value of the previous parameter. For example, the value of the Klt 

(after optimization) is employed for subsequent optimization of 
Kse, and the values of both Klt, Kse (after optimization) are 
employed for subsequent optimization Bp, etc. 

Strategy 2: the OPMM parameters are optimized sequentially.  An 
already optimized parameter is saved in the temporal parameter 
vector and the value of this parameter in the original vector is 
restored to the original value. The subsequent parameters are 
optimized based on the original values of the remaining 
parameters. For example, the value of the Klt (after optimization) is 
stored in a temporal vector and the estimation of the Kse occurs 
with the initial value of the Klt. The Kse is stored in the temporal 
vector. The optimization of the Bp is based on the initial values of 
Klt, Kse, etc. When all OPMM parameters are estimated the 
temporal vector holds the data for person identification.  

7 Person Identification 
The input to the Person Identification module consists of a set of 
OPMM parameter vectors estimated for each qualifying saccade. 
The output is an authorization score classifying each saccade as 
belonging to an authorized user or an imposter.  In order to 
perform the classification, we evaluated two different statistical 
algorithms, the K-nearest neighbor (KNN) algorithm, and C4.5. 
KNN is a very simple instance-based learning algorithm, and C4.5 
is a freely-available classifier that builds a decision tree based on 
the concept of information entropy [Shakhnarovich et al. 2005]. 
The eye movement record for an individual consists of multiple 
saccades, and as a result the biometric identification record for 
each individual will consist of a set of OPMM parameter vectors. 
We work with the complete set of per-saccade parameter vectors, 
and split them into a training and a testing set to perform 
identification. 
The following methodology is used to partition each participant’s 
data into training and testing sets. Each participant data set 
containing exactly two records is arbitrarily declared to be an 
imposter, and included only with the testing set. For each 
participant data set containing three records or more, the parameter 
vectors are inserted into both testing and training sets as authorized 
users; the first record is inserted into the testing set and subsequent 
samples are inserted into the training set. We decided to split the 
sets in this way because of the relatively small amount of test data; 
however, it is possible that we have thereby introduced a 
systematic bias into the training set, and we plan further 
experiments to eliminate this possibility. We also note that samples 
identified as imposters, although not included in the training set, 
are still tracked in order to obtain the correct false acceptance rate 
(FAR) value for available imposters. 

KNN Classification Algorithm: The k-nearest neighbor (KNN) 
algorithm [Shakhnarovich et al. 2005] (in our implementation, 
k=5) is one of the simplest classification algorithms, but is accurate 
and powerful when samples with similar classification tend to 
appear nearby. ‘Nearby’ means that the distance between similar 
classifications is generally closer than the distance between 
samples with different classification [Kasprowski 2004]. For each 
oculomotor parameter coefficient, a distance value is obtained and 

recorded into a distance vector. The pseudocode for the algorithm 
can be found in [Komogortsev et al. 2009].  

C4.5 Classification Algorithm: C4.5 is a classification algorithm 
which builds a decision tree from a training set of data, where the 
split at each node maximizes the information gain which represents 
the difference in entropy in the set after and before the split. We 
selected a decision tree classifier because they are robust to noisy 
data and C4.5 because it is widely used and easy to implement. 
The pseudocode for the algorithm can be found in [Komogortsev et 
al. 2009]. 

7.1 Methodology 
Apparatus: The experiments were conducted with a Tobii x120 
eye tracker [Tobii 2009], 24-inch flat panel screen with resolution 
of 1980x1200 pix. Subjects were seated approximately 710 mm 
from the eye tracker. Sampling of eye position coordinates was 
done at 120Hz.  

Accuracy test: An accuracy test was employed prior to the 
experiment providing us with average calibration error and invalid 
data percentage for each subject. The accuracy test is described in 
more detail in [Koh et al. 2009]. 

Eye Movement Invocation Task: The stimulus was presented as 
a ‘jumping point’ with vertical coordinate fixed to the middle of 
the screen. The first point was presented at the middle of the 
screen; the subsequent points moved horizontally to the left and to 
the right of the center of the screen with a spatial amplitude of 20, 
providing average stimuli amplitude of approximately 19.3.  The 
jumping sequence consisted of 15 points including the original 
point in the center, yielding 14 saccades for each participant. After 
each jump, the point remained stationary for 1.5s before the next 
jump was initiated. The size of the point was approximately 1 of 
the visual angle with the center marked as a black dot.  Each point 
consisted of white pixels (except for the central black dot), with the 
remainder of the screen left black. 

Participants: The test data consisted of 68 student volunteers ages 
18-25 with an average age of 21.2 and standard deviation of 3.2, 
24 males and 44 females, with normal or corrected-to-normal 
vision. None of the participants had prior experience with eye 
tracking.  The data collection was verified to be accurate by 
employing two parameters, the average calibration error of the 
right eye and the invalid data percentage of the right eye. The data 
analyzer was instructed to discard recordings from subjects with a 
calibration error of > 3.0 , with mean of 1.25, standard deviation 
of 0.77 and invalid data percentage of >50%. Only 41 subject 
records passed these criteria, resulting in mean accuracy of 1.25º 
(SD=0.77) and a mean invalid data percentage of 12.43% 
(SD=17.22%). Only saccades with amplitudes of 17-22º were 
employed for biometric identification. 

Performance evaluation metrics: Performance evaluation of a 
biometric system is measured with the following two parameters. 

False Acceptance Rate (FAR) – The ratio of the number of 
imposter samples classified as authentic to the total number of all 
the imposter samples. This metric measures the probability that the 
system incorrectly matches the input pattern of the testing set to a 
non-matching template in the training set. It measures the percent 
of invalid inputs which are incorrectly accepted.  False Rejection 
Rate (FRR) – The ratio of the number of authentic samples 
classified as imposters to the number of all the authentic samples. 
This metric calculates the probability that the system fails to detect 
a match between the input pattern of the testing set and a matching 
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template in the training set. It measures the percent of valid inputs 
which are incorrectly rejected. 

8 Results 
We conducted the classification with both the KNN and C4.5 
algorithms on each of the OPMM parameters, and determined that 
the best results were obtained with KNN utilizing the TR algorithm 
with optimization strategy 1 for the length tension coefficient. 
These results improve on previous work in the field by Kasprowski 
[Kasprowski 2004] and Bednarik et al [Bednarik et al. 2005]. C4.5 
did not produce acceptable results with the tested algorithm 
parameters. 

KNN: The smallest FAR and FRR values were achieved with the 
Trust-Region algorithm using optimization strategy 1 for the length 
tension coefficient (KLT). The two next best results were provided 
by the Nelder-Mead algorithm using optimization strategy 1 for the 
passive elasticity coefficient (Kp) and the distance created by all 
parameters (D). The FAR=5.4% and FRR=56.6%  results improve 
on the previously reported results of FAR=9.4% and FRR=63.4% 
given by Kasprowski in 2004 using the KNN algorithm 
[Kasprowski 2004].   

C4.5: Unfortunately, we did not obtain good FAR rates with the 
C4.5 algorithm, even if we accepted an increase in FRR. We 
believe the FAR can be improved by further tuning of the 
algorithm parameters. The best FAR=80% and FRR=0% values 
were achieved by Nelder-Mead with optimization strategy 2. For 
comparison, Kasprowski obtained an FAR of 45.8% and an FRR 
of 12.4% using C4.5 in 2004 [Kasprowski 2004].  

9 Discussion, Conclusions and Further Work 
We have introduced a novel method of biometric identification 
based on the utilization of Oculomotor Plant Mathematical Model 
parameters from horizontal positive saccadic eye movements. We 
evaluated the effectiveness of this method via two different 
statistical classification techniques on a data set of horizontal 
saccadic eye trajectories collected from 41 human participants, and 
achieved promising results using the k-nearest neighbor 
classification algorithm. Our results improve on previous biometric 
methods involving eye movements. 

The OPMM method of biometric identification leverages 
physiological and behavioral characteristics that are unique to each 
individual – the mechanical properties of the eye globe and its 
musculature – rather than simply looking at unprocessed saccadic 
trajectories. The resulting additional information provides further 
structure to the eye movement data and perhaps this is what leads 
to the improved performance of our method over previous work. A 
further advantage of the proposed method is its use of a dynamic 
oculomotor plant model consisting of the eye globe and 
extraocular muscles that is extremely difficult to counterfeit. 

Via our tests, we demonstrated the potential to distinguish 
authorized users from imposters with this technique. However, 
further testing with larger subject pools and different statistical 
classification algorithms is needed to improve on the accuracy 
rates of our method.  Nevertheless, this technique shows promise 
for improving the state of biometric identification. This new 
method could also be easily combined with existing biometric 
identification systems that incorporate digital cameras to scan the 
face or iris, to provide an additional layer of security. In an ever-
more security-conscious and highly networked world, non-
intrusive and unforgeable personal identity-based authorization 

methods will become increasingly critical across a wide range of 
commercial and government applications. 
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