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Abstract 

This paper presents a set of qualitative and quantitative scores 
designed to assess performance of any eye movement 
classification algorithm. The scores are designed to provide a 
foundation for the eye tracking researchers to communicate about 
the performance validity of various eye movement classification 
algorithms. The paper concentrates on the five algorithms in 
particular: Velocity Threshold Identification (I-VT), Dispersion 
Threshold Identification (I-DT), Minimum Spanning Tree 
Identification (MST), Hidden Markov Model Identification (I-
HMM) and Kalman Filter Identification (I-KF). The paper 
presents an evaluation of the classification performance of each 
algorithm in the case when values of the input parameters are 
varied. Advantages provided by the new scores are discussed.  
Discussion on what is the "best" classification algorithm is 
provided for several applications. General recommendations for 
the selection of the input parameters for each algorithm are 
provided. 

CR Categories: I.6.4 [Simulation and Modeling]: Model 
Validation and Analysis; J.7 [Computers in Other Systems]: 
Process control, Real time. 

Keywords: Eye movements, classification, algorithm, 
analysis, scoring, metrics. 

1 Introduction 

Accurate eye movement classification is a fundamental necessity 
in the field of eye tracking. Almost every experiment that involves 
an eye tracker as a measurement or interaction tool requires an 
eye movement classification algorithm for data reduction and/or 
analysis. The main role of any eye movement classification 
algorithm is to break eye position temporal stream into basic eye 
movement types, as well as provide a set of characteristics about 
each eye movement type detected. In general, there are six major 
eye movement types: fixations, saccades, smooth pursuits, 
optokinetic reflex, vestibulo-ocular reflex, and vergence [Leigh 
and Zee 2006]. Fixations and saccades are the types of most 
researched eye movements that are employed in human computer 
interaction, psychological studies and reading, medical studies, 
and usability studies [Ceballos et al. 2009; Duchowski et al. 2009; 
Garbutt et al. 2003] 

The development of the eye movement classification algorithms 
has a long history [McConkie 1980; Munn et al. 2008; Salvucci 
and Goldberg 2000]. Almost every eye movement classification 

algorithm has a set of input parameters that can significantly 
impact the result of classification. A large number of the eye 
tracking studies selects the input parameters for the classification 
algorithms empirically without a discussion of how the selection 
of  those parameters  affects  the outcome of the classification. 
The first goal of this paper is to provide a set of quantitative and 
qualitative metrics that allow assessment of the performance of 
any eye movement classification algorithm. The second goal of 
this paper is to provide an evaluation of the performance of the 
major classification algorithms employed in the eye tracking field 
today. This paper also aims to provide a discussion on how the 
selection of input parameters affects the performance of the 
algorithm in terms of the proposed metrics. The third goal of this 
paper is to select the "best" classification algorithm for a specific 
application. 

2 Qualitative and Quantitative Scoring 

The description and pseudocodes for the Velocity Threshold 
Identification (I-VT), Dispersion Threshold Identification (I-DT), 
Minimum Spanning Tree Identification (MST), Hidden Markov 
Model Identification (I-HMM), and Kalman Filter employed in 
this paper can be found in [Komogortsev et al. 2009]. 

To establish a common ground between eye movement 
classification algorithms, it is important to define a set of the 
qualitative and quantitative scores for the assessment of the 
performance of the classification algorithms. Assuming that a 
classification algorithm classifies eye position trace into fixation 
and saccades, the following performance metrics can be 
considered Average Number of Saccades (ANS), Average 
Number of Fixations (ANF), Average Fixation Duration (AFD) 
and Average Saccade Amplitude (ASA). The performance of the 
classification algorithms can be assessed by these metrics with or 
without the knowledge of the stimuli. The values of these metrics 
have been previously employed in usability [Duchowski 2007], 
psychology [Ceballos et al. 2009], and physical therapy [Garbutt 
et al. 2003]. We propose three new metrics: the Fixation 
Quantitative Score, the Fixation Qualitative Score, the Saccade 
Quantitative Score to evaluate saccade and fixation behavior and 
complement the metrics mentioned above.  

2.1 Fixation Quantitative Score 

The intuitive idea behind Fixation Quantitative Score (FQnS) is to 
compare the amount of the detected fixation behavior to the 
amount of presented  fixation stimuli. The FQnS compliments the 
AFD and the ANF metrics, because it validates detected fixations 
in regard to the spacial and temporal properties of the stimuli 
signal.  To calculate the FQnS, the fixation stimuli position signal 
is sampled with the same frequency as the recorded eye position 
signal. Every resulting coordinate tuple (xs,ys) inside of the 
fixation stimuli is compared to the corresponding coordinate tuple 
(xe,ye) in the recorded eye position signal. If the corresponding 
eye position sample is marked as a fixation with coordinates close 
to stimuli fixation, then fixation detection counter is increased.  
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The FQnS is calculated by normalizing detection success counter 
by total amount of the stimuli fixation points.  

FQnS 100 ·
_ _

_ _
 1 

where _ _  represents the  amount  of  
eye position points identified as fixations when corresponding 
fixation stimuli was  present. _ _  
represents the total amount of stimuli points presented as fixation 
and sampled at the eye tracker's sampling frequency. It is 
important to mention that practically, the FQnS will not reach the 
100% mark if the stimuli consists of both fixations and saccades. 
When a future fixation target appears in the periphery, the brain 
approximately requires 200ms to calculate and send the neuronal 
signal to the extraocular muscles to execute a saccade [Leigh and 
Zee 2006]. Additionally, saccade duration approximates to 

_ 2.2 _ 21 , where _  is saccade's 
amplitude measured in degrees [Leigh and Zee 2006].  Due to this 
phenomena, the onset of the fixation will be always delayed by at 
least 200ms plus the duration of the saccade.  

2.2 Fixation Qualitative Score 

The intuitive idea behind the Fixation Quantitative Score (FQlS) 
is to compare the proximity of the detected fixation to the 
presented stimuli, therefore providing the information about 
positional accuracy of the detected fixation. The FQlS calculation 
is similar to the FQnS, i.e., for every fixation related point (xs,ys)  
of the  presented stimuli, the check is made for the point in the eye 
position trace (xe,ye); if such point is classified as a fixation, the 
Euclidean distance between presented fixation coordinates and the 
centroid of the detected fixation coordinates (xc,yc) is computed. 
The sum of such distances is normalized by the amount of points 
compared. 

FQlS
1
· _

1

 2 

N is the amount of stimuli position points where stimuli fixation 
state is matched with corresponding eye position sample detected 
as a fixation. _  and 
represents the distance between stimuli position and the center of 
the detected fixation. 
Ideally, the FQlS should equal 0º, which can only happen in the 
case of absolute accuracy of the eye tracking equipment and 
assuming that subjects make very accurate saccades to the fixation 
stimuli. In practice, the accuracy of modern eye trackers remains 
in the <0.5º range. In addition, subjects very frequently 
experience undershoots or overshoots when making saccades 
[Leigh and Zee 2006], therefore placing detected fixations slightly 
off-target. As a result, we hypothesize that practical values for the 
FQlS will be around 0.5º or larger. 

2.3 Saccade Quantitative Score 

The intuitive idea behind the Saccade Quantitative Score (SQnS) 
is to compare the amount of the detected saccades given the 
properties of   the saccadic behavior of the presented stimuli. The 
SQnS adds to the ASA and the ANS metrics because it quantifies 
the correct saccade behavior even in cases when subjects 
experience large numbers of express saccades, overshoots or 
undershoots [Leigh and Zee 2006]. 

To calculate SQnS, two separate quantities are computed, one 
measures the amount of the saccade invoking behavior present in 

the stimuli, and the second one computes the total amplitude of 
the detected saccades. To calculate stimuli related metric, each 
jump in the location of the fixation target is considered to be a 
stimuli saccade, and the absolute distances difference between 
targets are added to the total_stimuli_saccade_amplitude. 
Similarly, the quantity called total_detected_saccade_amplitude 
represents the sum of the absolute values of the saccade 
amplitudes detected by a given classification algorithm.  

SQnS 100
_ _ _

_ _ _
 3 

The SQnS of 100% indicates that the amount of the detected 
saccades equals the amount of the saccades invoked by the 
presented stimuli. The SQnS can be larger than 100%, which 
essentially means two things: abnormal saccadic behavior of the 
subject or classification algorithm that amplifies saccadic 
behavior, i.e., some of the fixations are classified as saccades.  An 
example of the abnormal saccadic behavior can be a subject with 
a large number of hypermetric saccades (target overshoots) 
followed by glissades (post saccadic drifts) and possibly saccadic 
intrusions or oscillations (inappropriate movements that take the 
eye away from the target during attempted fixation [Leigh and 
Zee 2006]). The amplification of the saccadic behavior by a 
classification algorithm can be caused by the erroneous selection 
of the threshold classification parameter. The SQnS can be 
smaller than 100% in cases of hypometric saccadic behavior 
(target undershoots) or damping behavior of the  classification 
algorithm. 

3 METHODOLOGY 

Apparatus: The experiments were conducted with a Tobii x120 
eye tracker (sampling rate 120Hz), which is represented by a 
standalone unit connected to a 24-inch flat panel screen with 
resolution of 1980x1200. Chin rest was employed to provide 
additional head stability. Fixation & Saccade Invocation Task: 
The stimulus was presented as a ‘jumping point’ with a vertical 
coordinate fixed to the middle of the screen. The first point was 
presented in the middle of the screen, the subsequent points 
moved to the left and to the right of the center of the screen with a 
spacial amplitude of 20º, therefore providing average stimuli 
amplitude of approximately 19.3º.The jumping sequence 
consisted of 15 points, including the original point in the center, 
therefore providing 14 stimuli saccades. After each subsequent 
jump, the point remained stationary for 1.5s before the next jump. 
The size of the point was approximately 1º of the visual angle 
with the center marked as a black dot. The point was presented 
with white color with peripheral background colored in black. 
Participants & Data Quality: The test data consisted of a 
heterogeneous subject pool, age 18-25, with normal or corrected-
to-normal vision. Advanced accuracy test procedures were used to 
control the data collection by employing two parameters, first 
with the average calibration error eye and second with the invalid 
data percentage [Koh et al. 2009]. The data analyzer was 
instructed to discard recordings from subjects with a calibration 
error of >1.70º and invalid data percentage of >20%. Only 22 out 
of 77 subjects’ records passed these criteria. The remaining 
records had a mean accuracy of 1º and a mean invalid data 
percentage of 3.23%. 

4  Results & Discussion 

Figure 1 presents the results, where each models’ behavior is 
given for a range of the threshold values. The I-VT and the I-
HMM models were tested for the velocity threshold range of 5º/s 
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to 300º/s the I-MST and the I-DT were tested for the 
distance/dispersion threshold range of 0.033º to 2º, and the I-KF 
was tested for the Chi-square test threshold range of 1 to 60. The 
range values came as suggestions from the research literature 
[Duchowski 2007; Koh et al. 2009; Leigh and Zee 2006; Salvucci 
and Goldberg 2000].The x-axis of the graphs presented by Figure 
2 depicts the range coefficient value that allows mapping of the 
specific threshold range of each model into a unifying range 
coefficient space. Threshold values for each algorithm can be 
represented by the input threshold function Th=RC*Inc+C. Where 
Th is the resulting value of the threshold, RC is a range coefficient 
changing from 0 to 59, C is the initial threshold value for every 
model,  and Inc is the threshold increment value for each model. 
For the I-VT and the I-HMM, the C value is 5º/s; for the I-MST 
and the I-DT, this value is 0.033º; and for the I-KF, this value is 1. 
For the I-VT and the I-HMM Inc, the value is 5º/s; for I-MST and 
I-DT, this value is 0.033º; and for the I-KF, this value is 1. The 
input threshold function allows for comparison of performance of 
the classification models in the same range coefficient 
dimensions. 

Performance Metrics: ANS, ANF, AFD, and ASA behavior 
varied greatly depending on the values of the threshold values. 
Such difference in classification performance between algorithms 
frequently reached 100% mark or higher. Based on the results it is 
possible to distinguish trends in classification performance 
depending on the threshold values, but such trendlines continue to 
be extremely jittery. 

Fixation Qualitative Score (FQlS): The performance of the four 
(I-VT, I-KF, I-DT, I-MST) algorithms was very similar in terms 
of the positional accuracy of the detected fixation, with the I-KF 
providing a slightly lower score, therefore indicating higher 
accuracy in terms of the coordinates of the detected fixation. Our 
previous study provided similar results in an online comparison of 
a real-time eye-gaze-guided system, showing 10% improvement 
in accuracy when the I-KF was compared to the I-VT [Koh et al. 
2009]. The I-HMM was an outlier and provided the FQlS score 
that was essentially 33% higher than other algorithms, indicating 
a much lower accuracy in fixation coordinate detection.  

Fixation Quantitative Score (FQnS): The FQnS was 
monotonically growing for all classification algorithms. For all 
algorithms except the I-DT, there was an immediate jump in the 
score; and after a certain threshold value, there was a point of 

saturation where the increased threshold value did not produce an 
increased amount of the eye position points classified as fixations. 
All algorithms merged into the FQnS score of 74-77% which is 
agreeable with physiological latencies discussed in Section 2.1. 
The outlier from the rest of the group was the I-MST algorithm 
providing the saturated FQnS of 57% which was approximately 
23% lower than the FQnS provided by other algorithms.  

Saccade Quantitative Score (SQnS): Each algorithm had a point 
of the maximum SQlS performance after which the score values 
monotonically decreased. This peak value was highest for the I-
HMM algorithm with a value of approximately 110% and lowest 
for the I-KF with the value of 90%. The SQlS performance of the 
I-MST and the I-DT was slightly higher than the performance of 
the I-KF. For the high threshold values, the SQlS performance of 
the I-VT, I-DT and the I-HMM was quite similar. The I-KF 
provided the most damping behavior in terms of  the amount of 
the detected saccades. The difference in performance between 
each individual algorithm did not exceed 22% after the Range 
Coefficient (RC) of 30 was reached. Prior to that RC value, the I-
DT algorithm presented itself as an outlier with very low SQnS 
score. 

Advantages of Quantitative/Qualitative Scores: The Fixation 
Qualitative Score (FQlS) proved to be extremely useful in being 
able to distinguish the accuracy of the eye movement detection 
method given the threshold value or any other input parameters.  

The Fixation Quantitative Score (FQnS) was able to provide an 
overall picture for the fixation detection behavior that was much 
less "noisier"  than the data provided by the Average Fixation 
Duration (AFD) and the Average Number of Fixations (ANF) 
metrics. This can be observed for the I-VT, I-DT, I-HMM and the 
I-KF models that provide varying behavior in terms of the AFD 
and the ANF but essentially converge in terms of the FQnS. The 
important feature of the FQnS is that it ensures the temporal 
validity of the presented fixations by matching them with the 
spacial and temporal characteristics of the stimuli signal. The 
FQnS is able to pick out classification disadvantages of an 
algorithm, such as I-the MST algorithm where spurious fixations 
can be detected due to the overlapping data. 

The Saccade Quantitative Score (SQnS) is able to identify specific 
values for the input parameters (thresholds) that allow detection of 
the same amount of saccadic behavior as presented by the stimuli. 

Figure 1. Quantitative/Qualitative Scores and Performance Metrics.
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This was not entirely possible with the Average Number of 
Saccades (ANS) and the Average Saccade Amplitude (ASA) 
metrics, due to some subjects making multiple saccades to reach a 
target. This produced large ANS with small ASA and lead to an 
erroneous conclusion that the algorithm provides incorrect 
classification. 

Limitations: 1) Practical use of the FQlS, FQnS, and SQnS 
metrics will require a presentation of a controlled stimulus prior to 
the experiment for the selection of the thresholds values. While 
we agree that this can be considered as an extra step in the 
calibration process, the outcome of such calibration will allow to 
have a much better, performance-based values for the input 
thresholds for the actual experiment. 2) This paper varies just 
single input parameter for each classification algorithm. The 
change in other input parameters or/and eye-tracker’s sampling 
rate, noise in the eye tracking signal or/and random amplitude of 
the ramp stimulus would definitely affect the performance of the 
scores. Therefore, the amount of variability in our evaluation 
setup was minimized to show that classification performance is 
greatly affected just by a single parameter. 

Best eye movement classification algorithm: It is difficult to 
select "best" eye movement classification algorithm or to set  a 
"golden standard" in terms of the eye movement classification 
scores/metrics. The most accurate classification algorithm would 
be the algorithm that achieves the minimum value (0º) for the 
Fixation Qualitative Score, maximum value for the Fixation 
Quantitative Score (100%)  and the Saccade Quantitative Score 
value of approximately 100% with values from the remaining eye 
movement metrics in sync with the stimuli behavior.  The 
selection of the "best" eye movement detection algorithm will also 
depend on the actual application. For a real-time eye-gaze-based 
interaction where dwell-time is the primary mode of selection the 
I-KF can be considered as the best performer for the following 
reasons: high accuracy (lowest FQlS), FQnS was at an acceptable 
level of 70%, saccadic performance was dampened (signal jumps 
are smoothed) SQnS=68.5%,  number of fixations and saccades 
was very close to the number present in the stimuli signal, 
detected fixation duration was closest to the value presented in the 
stimuli among all classification methods, and the detected saccade 
amplitude was second closest to the stimuli.  

For the studies related to sciences that investigate saccadic 
behavior, e.g, Physical Therapy, Psychiatry, the accurate detection 
of saccadic behavior is of paramount importance. Traditionally, 
the I-VT is a model of choice in this domain. From the results 
presented in this paper, we can validate this choice by looking at 
the FQnS behavior which indicates the same amount of saccades 
in the classified signal as in the stimuli signal for the velocity 
threshold range of 30-70°/s. There is large number of saccades 
(ANS) detected by the I-VT in this threshold range, and those 
saccades have smaller amplitudes (ASA). This behavior provides 
an opportunity to properly detect eye movement artifacts such as 
overshoots,  undershoots, express saccades, corrective saccades 
and dynamic overshoots. Additionally, the velocity threshold 
window (30-70°/s) in the threshold range provides an opportunity 
to fine-tune the performance of the I-VT model. This can be done 
in terms of the fine tuning the fixation related metrics by selecting 
a higher velocity threshold. 

5 Conclusion 

In this paper, we have discussed a set of scores that allows one to 
assess an implementation of any eye movement classification 

algorithm by providing the qualitative and the quantitative 
information about the classification performance. Such 
information allows to provide a point of reference offering a 
capability to validate the results of an experiment involving an 
eye tracker. The performance of the five most usable 
classification algorithms was discussed in terms of the proposed 
scores. The results indicate that the classification performance 
differs significantly based on the algorithm and the selected 
threshold values. This result suggests that the description of the 
eye movement detection algorithms, and their parameters, in the 
research papers is of paramount importance. Specifically, we 
suggest that the performance of each classification algorithm 
should be reported in terms of qualitative and quantitative metrics 
discussed in this paper due to the fact that these metrics provide a 
more complete and accurate information about classification 
behavior.  

The choice of the "best" algorithm in terms of eye movement 
classification proves to be challenging. We provide the argument 
that among the five classification algorithms we considered in this 
paper, Kalman filter shows the most benefits for implementation 
for the real-time eye-gaze-guided systems. The Velocity 
Threshold algorithm proves to be the better choice for the systems 
measuring saccadic performance. 
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