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Abstract—Adults diagnosed with Attention-Deficit / Hyperac-
tivity Disorder (ADHD) have reduced working memory capacity,
indicating attention control deficits. Such deficits affect the char-
acteristic movements of human gaze, thus making it a potential
avenue to investigate attention disorders. This paper presents a
converging operations approach toward the objective detection
of neurocognitive indices of ADHD symptomatology that is
grounded in the cognitive neuroscience literature of ADHD. The
development of these objective measures of ADHD will facilitate
its diagnosis. We hypothesize that the characteristic movements
of human gaze within specific areas of interests (AOIs) may
be used to estimate psychometric measures and that distinct
eye movement scan patterns can be used to better understand
ADHD. The results of this feasibility study confirm the utility
of a combination of fixation and saccade feature set captured
within specific AOIs indexing Working Memory Capacity (WMC)
as a predictor of a diagnosis of ADHD in adults. Tree-based
classifiers performed best in-terms of predicting ADHD with 86%
percent accuracy using physiological measures of sustained visual
attention during a WMC task.

Keywords-component; working memory capacity, eye move-
ments, ADHD

I. INTRODUCTION

With the release of the Diagnostic and Statistical Manual
of Mental Disorders 5th edition (DSM-V), researchers have
increasingly recognized that ADHD persists through adult-
hood, with prevalence estimated to increase from 6.1% in
1997 to 10.2% in 2016 in the U.S. [1]. Adults with ADHD
have difficulty attending to important details, planning task
completion, modulating responses, and processing auditory
information [2], [3]. We also know that adults with ADHD
have reduced working memory when compared to their peers
[4]. Differences in working memory capacity (WMC) predict
performance during a range of cognitively demanding tasks,
such as complex learning, dichotic listening, and processing
speech in noise [5], presumably because of differences in at-
tention control. Attention control is the psychological construct
responsible for regulating and allocating attention according
to task demands, especially in the presence of distracting
stimuli [6], and serves as the underlying resource for executive
functions [7], [8] accounting for approximately 60% of the
variance seen across people in measures of WMC [9]. Despite
the understanding that ADHD deficits are associated with seri-
ous long-term negative academic and occupational outcomes,

there is a paucity of data investigating and understanding
how factors, like WMC and eye gaze characteristics, relate
to ADHD diagnostic criteria.

The primary goal of this paper is to understand the utility
of area of interest (AOI) in order to capture eye gaze metrics
and predict ADHD in the context of a WMC task using
machine learning algorithms. In addition, we are interested in
investigating the differences between ADHD and non-ADHD
participants by analyzing two main sequence relationships of
saccade amplitude towards saccade duration and peak velocity.

II. BACKGROUND

Eye movement behavior is a result of complex cognitive
processes; therefore, eye gaze metrics can reveal objective and
quantifiable information about the quality, predictability, and
consistency of these covert processes [10]. Saccade is a rapid
eye movement from one fixation point to another. Fixations
require preceding saccades to help place the gaze on target
stimuli to gather salient and relevant information.

At present, machine learning is being used for diagnostic
prediction based on data extracted from wearable devices.
Classification algorithms build a mathematical model by dis-
covering the data patterns in the training dataset in order to
classify the class accurately. The first study to use machine
learning for ADHD classification is [11] and they have used
support vector machine (SVM) algorithm with event related
potential (ERP) dataset. In [12], authors have used SVM with
EEG training dataset to predict ADHD. They has achieved an
accuracy of 97% . In [13], authors have used extreme learning
machine (ELM) algorithm to predict ADHD using structural
MRI data and has achieved 90.18% accuracy.

In [14], authors have developed an ensemble classifiers for
ADHD, Non-ADHD classification for both adult and children
using MRI training dataset with accuracies 66% for adults and
67% for children.

The study [15] have used data from 5 channels of EEG
during an attention network task as the training dataset for a
Gaussian mixture model to classify ADHD and Non-ADHD.
They have achieved an average of 92% accuracy classifi-
cation of ADHD and Non-ADHD. Authors concluded that
performance of ADHD detection depends on the type of task
employed in the experiment.
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In [16], authors have used fMRI data to propose a bi-
objective ADHD classification scheme based on SVM which
facilitates to choose an efficient classifier to predict the di-
agnosis of ADHD. Similarly [17] have used a fMRI training
dataset to figure out the features which discriminate ADHD
and Non-ADHD the best. Using the discriminating features
for ADHD as the training data, the authors have used a SVM
classifier to classify ADHD subjects. They have achieved a
highest accuracy of 86.7%.

From the literature, it is evident that machine learning
algorithms could accurately predict ADHD with the use of
various types of datasets. Though there are studies which
uses machine learning approaches to predict ADHD, [18] is
the only study to investigate the eye gaze metrics indexing
working memory capacity as a feature set to predict a di-
agnosis of ADHD using six classifiers. The results of [18]
indicated a combination of fixation, and saccade feature set
could achieve a higher percentage of accuracy around with
91% with multiple classical classifier.

The studies [19] and [20] have considered AOIs of stimuli
for statistical analysis of the eye tracking. The study [21]
compared borderline personality disorder (BPD) patients to
Cluster-C personality disorder (CC) patients and non-patients
(NP) regarding emotion recognition in ambiguous faces and
their visual attention allocation to the eyes which is the AOI.
The authors have found BPD have a biased visual attention
towards the eyes. In [22], authors have investigated the imme-
diate effects of coloured overlays on reading performance of
preschool children with ASD. The authors of the study have
used eye tracking and concluded that coloured overlays may
not be useful to improve reading and ocular performance in
children with ASD in a single occasion.

According to the literature, AOIs have been used in multiple
studies related to various attention tasks. Even though AOIs
have been used, there is a paucity of using eye movement fixa-
tions and saccades occurred within the AOIs when completing
a WMC measure for ADHD classification using machine
learning approach.

In this paper, we look at the consistency and stability of eye
movement fixations and saccades occurred within the AOIs
of stimuli when completing a WMC measure [18]. This is an
important line of inquiry because it investigates how relevance
may be reflected in eye movements features for atypical and
complex attentional systems, such as in the context of ADHD.

III. METHODOLOGY

A. Working Memory Capacity Task

WMC is measured using complex span tasks. Reading Span
(RSPAN) is one of the complex span tasks which reflects the
cognitive system’s ability to maintain activated representations
[9], [23]. During the RSPAN task, participants are asked to
read 42 sentences which are presented in varying sets of 2-5
sentences with a letter printed at the end of the each sentence
on a computer screen and remember the letter. In addition,
participants are asked to judge sentence coherency by saying
’yes’ or ’no’ at the end of each sentence. After a 2-5 sentence

set, participants need to recall all the letters they can remember
from that set.

Based on the evidence that WMC is reduced in adults with
ADHD [4], measurement of eye movements in the context of
WMC will address the following research questions:

• Using only the eye movement feature values on all
stimulus items during the RSPAN, are there significant
differences in main sequence relationships for adults with
and without ADHD?

• Do the eye movement feature values within AOIs based
on scenes during the RSPAN predict classification of
ADHD in adults?

• Do the eye movement feature values within AOIs based
on sentences during the RSPAN predict classification of
ADHD in adults?

• Using only the eye movement feature values within AOIs
based on scenes during the RSPAN, are there significant
differences in main sequence relationships for adults with
and without ADHD?

• Using only the eye movement feature values within
AOIs based on sentences during the RSPAN, are there
significant differences in main sequence relationships for
adults with and without ADHD?

B. Apparatus

We used Tobii Pro X2-60 computer screen-based eye tracker
with Tobii Studio analysis software for recording and ana-
lyzing eye gaze metrics. Tobii I-VT fixation filter was used
to pre-process eye gaze metrics within Tobii Studio analysis
software. We used Tobii Studio analysis software’s [24] Area
of Interest tool to draw the boundaries around elements of the
eye tracking stimulus. The three AOI groups include (see Fig.
1):

• AOI 1 - Stimulus (the whole sentence)
• AOI 2 - Critical word (critical word when determining

the coherency of the sentence)
• AOI 3 - Determiner (the decision point with the letter to

be remembered)
We then applied Tobii Studio analysis software to infer the eye
gaze metrics within the boundary based on the classificaiton
filter.

C. Participants

We recruited a total of 14 adult participants with and without
a diagnosis of ADHD for this study. All of the participants
fulfilled the following inclusion criteria:

• Between 18 and 65 years of age
• Spoke English as their first language
• Self-reported normal vision with or without corrective

lenses
• No history of psychotic symptoms
• No comorbid cognitive impairments (e.g. documented

learning disabilities, reading disabilities)
There were seven adults with a diagnosis of ADHD and

seven adults without a diagnosis of ADHD as shown in the
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Table I. The participants with a diagnosis of ADHD confirmed
their diagnosis through verified documentation. In addition,
each ADHD participant went through a verbal informational
interview in order to confirm the diagnosis. We asked adult
ADHD participants to avoid medication for 12 hours prior
to our experiment. We informed them the risks of avoiding
medication as well. Participants were allowed to take part in
the study only upon providing their consent by signing forms
approved by the University’s Institutional Review Board (IRB)
in accordance with the Helsinki Declaration. We gave a ten
dollar Amazon or Chick-Fil-A gift card to the participants who
completed the study.

D. Procedure

The entire experiment lasted approximately for 45 minutes.
Before starting the experiment, participants were briefed re-
garding the purpose of the study. Participants were entered to
the testing area only upon providing their consent.

A Dell Computer with a 21-inch monitor was used for the
test. In order to maintain the viewing angle of the monitor as
45 degrees, the distance and position of each participant were
modified. Before starting the experimental task, each partic-
ipant’s eye gaze was calibrated. Then, they were presented
with a presentation with several tasks, including the RSPAN
task. RSPAN task consisted of 42 sentences presented in 2-5
sentences sets. Before starting the RSPAN task, participants
were given three practice sentences to familiarize with the
testing environment.

E. Eye Movement Features

Fixations, saccades, smooth pursuits, optokinetic reflex,
vestibule-ocular reflex, and vergence [25] are the six main eye
movement types. Eye-trackers provide the X and Y coordinates
of participant’s eye position along with other gaze related
parameters such as gaze event type (fixation or saccade),
gaze event duration, timestamp etc. In addition to these basic
features, we derived other gaze related parameters required to
analyze participant’s’ attention patterns such as saccade peak
velocity.

ADHD causes reduced working memory capacity, resulting
in attention control deficits in adults [4]. Such deficits affect
the characteristic movements of the human gaze because there
is substantial overlap in brain systems that are involved in
oculomotor control and cognitive dysfunction in ADHD. Eye
gaze metrics measured during a cognitively demanding task,
especially saccade features could reliably reveal important dif-
ferences of underlying cognitive functionality between adults
with and without ADHD.

F. Main-Sequence Relationship

We investigated the main sequence relationship [26] (the
duration, peak velocity and amplitude of saccadic eye move-
ments) for both ADHD and Non-ADHD groups. Feature sets
for the main sequence relationships are based on the following
qualifiers: saccade amplitude measured in degrees, saccade
duration measured in milliseconds, and saccade peak velocity

measured in degrees per second. Saccade amplitude is the size
of a saccade. Saccade peak velocity is the highest velocity
reached during a saccade. Saccade duration is the time taken
to complete the saccade.

Saccade peak velocity is calculated by (1) in degrees/second
[27],

θ̇peak velocity = θ̇MAX × (1− e−θamplitude/C). (1)

where θ̇peak velocity is the saccade peak velocity, θ̇MAX is
the asymptotic peak velocity (500 degree/second), θamplitude

is the saccade amplitude (degrees) and C is the constant
(14 for normal humans). Fig. 3(c) shows the relationship
between saccade amplitude and saccade peak velocity for
normal humans.

Saccade duration in milliseconds is calculated by (2) [28].
Fig. 4(c) shows the relationship between saccade amplitude
and saccade duration for normal humans.

tduration = (2.2× θamplitude + 21). (2)

G. Area of Interests

In addition, we employed a number of fixation and saccade
based features captured within three AOI groups in sentences
presented in RSPAN task. We utilized a standard RSPAN task
where participants are instructed to read a sentence and a
letter displayed on a computer screen, judge the sentence’s
coherency, and memorize the letter at the end. We extracted
their eye movement features based on three stimuli: 1) area of
the sentence, 2) area of the critical word that determines the
coherency of the sentence, and 3) the decision area with the
letter to be remembered. Fig. 1 shows the three AOIs drawn
on a single sentence using Tobii Analysis software. Note that
the boundaries of AOIs are drawn manually (static AOIs).

We derived two feature sets for the investigation of fixations
and saccades within AOIs based on the following qualifiers:
number of fixations in AOI 1, 2 and 3, fixation duration in
AOI 1, 2 and 3, average fixation duration in AOI 2, fixation
standard deviation in AOI 2, pupil diameter of both eyes in
AOI 2 and 3, maximum and minimum saccade amplitude in
AOI 1, 2 and 3, average saccade amplitude in AOI 1, 2 and 3,
and standard deviation of saccade amplitude in AOI 1, 2 and
3, respectively.

• Scene-based: Feature set including the above qualifiers
within the AOIs of sets of 2-5 sentences.

• Sentence-based: Feature set including the above qualifiers
within the AOIs of all the sentences.

All fixation features and saccade features were calculated
using Pandas [29], a Python data analysis library. Prior studies
[30] suggested that diagnostic criteria for ADHD should be
adjusted to gender differences. We find that including gender
in the feature set slightly increases the performance across all
our classifiers.
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Figure 1. AOIs During WMC Task from a Sentence generated using Tobii Studio Analysis Software.

Figure 2. Comparison of Eye Fixations for ADHD (Left) and Non-ADHD (Right) Participant During WMC Task from a Temporal Point as Generated during
the Replay Mode of the Tobii Studio Analysis Software.

(a) Amplitude vs. Peak Velocity of
ADHD

(b) Amplitude vs. Peak Velocity of Non-
ADHD

(c) Amplitude vs. Peak Velocity of Nor-
mal

Figure 3. Main Sequence Relationships (a) the relationship between saccade amplitude (degree) and saccade peak velocity (degrees/second) of ADHD subjects,
(b) the relationship between saccade amplitude (degree) and saccade peak velocity (degrees/second) of Non-ADHD subjects, and (c) the relationship between
saccade amplitude (degree) and saccade peak velocity (degrees/second) of Normal humans.

IV. RESULTS

A. Analysis of Main Sequence Relationships
In general, saccades are stereotyped: The relationships be-

tween saccade amplitude, saccade peak velocity, and saccade

duration are relatively fixed for normal human beings, and
are referred to as main sequence relationships. The two main
sequence relationships are: 1) the relationship between saccade
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(a) Amplitude vs. Duration of ADHD (b) Amplitude vs. Duration of non-ADHD (c) Amplitude vs. Duration of Normal

Figure 4. Main Sequence Relationships, (a) the relationship between saccade amplitude (degree) and duration (ms) of ADHD subjects, (b) the relationship
between saccade amplitude (degree) and duration (ms) of Non-ADHD subjects, and (c) the relationship between saccade amplitude (degree) and duration (ms)
of Normal humans.

amplitude (degree) and duration (ms), and 2) the relation-
ship between saccade amplitude (degree) and saccade peak
velocity (degree/second). We hypothesize that any differences
encountered in main sequence relationships could lead to the
conclusion that the saccade is not normal.

Fig. 3 presents the relationships between saccade amplitude
and saccade peak velocity in representative ADHD and Non-
ADHD adults during the entire session of WMC task. The
data in Fig. 3(a) and Fig. 3(b) show a similar relationship
between saccade amplitude and the saccade peak velocity with
trend line as well for normal humans (see Fig. 3(c)). These
results are consistent with the study [31] which describes the
main sequence relationship indexing the test of variables of
attention.

The data in Fig. 4 show a similar relationship between
saccade amplitude and the saccade duration for ADHD and
Non-ADHD adults during the entire WMC task. In addition,
it shows similar trend line with normal humans as well (see
Fig. 4(a), Fig. 4(b), and Fig. 4(c)).

B. Machine Learning on Feature Set
We chose standard information retrieval evaluation measures

precision, recall, f1 and accuracy for the evaluation of our
work. Precision measures the correctly predicted number of
labels out of all predicted data instances. Recall measures
the correctly predicted number of labels out of all labeled
data instances for a specific a category label. F1 measures the
balance between precision and recall. Accuracy indicates the
percentage of correctly classified instances.

We obtained all performance metrics using WEKA [32] by
executing the selected classifier with a 10-fold cross validation

TABLE I
CLASSIFICATION OF THE PARTCIPANS.

Participant Age Gender Classification

3 18 F Non-ADHD
7 35 M Non-ADHD
9 19 F Non-ADHD
17 23 M Non-ADHD
20 21 F Non-ADHD
25 32 M Non-ADHD
26 20 F Non-ADHD

30 21 F ADHD
34 19 M ADHD
35 26 F ADHD
36 29 F ADHD
37 21 F ADHD
38 21 F ADHD
47 23 F ADHD

using the both feature sets we developed for the investigation
of fixations and saccades within AOIs. The reason for using
WEKA is that, it facilitates users to execute machine learning
algorithms out-of-the-box and visualize how different algo-
rithms perform for the same data set.

Table I shows the classification of the participants in the
current study. Fig. 2 presents images of eye gaze patterns from
two adults participants, one with and one without ADHD.
According to the Fig. 2, the adult with ADHD is fixating
primarily below the AOIs of stimulus items in sentence
including: the words, the decision point, and the item to be
remembered (see Fig. 1). The adult without ADHD has a larger
number of fixations which are in-line with AOIs.
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In [18], authors showed that a combination of fixation,
and saccade feature set could achieve a higher percentage of
accuracy around with 91% when using the RandomForest clas-
sifier indicating that the combination of fixation and saccade
feature set classifies a diagnosis of ADHD with greater than 90
percent accuracy. We selected the six top performing classifiers
listed in [18] for our study. We utilize our feature sets which
primarily consist of fixation and saccade features within AOIs
to train the six classifiers.

Table II lists the classification results of the scene-based
feature set. The RandomForest classifier yielded the highest
percent accuracy of with 83.33% indicating that the scene-
based feature set alone classifies a diagnosis of ADHD with
greater than 80% accuracy. The Kstar classifier yielded the
lowest percent accuracy at 63.04% for the scene-based feature
set.

Table III lists the results of the sentence-based feature
set. The RandomForest classifier yielded the highest percent
accuracy of with 86.20% indicating that the sentence-based
feature set classifies a diagnosis of ADHD with greater than
85% accuracy. For sentence-based feature set, K star classifier
yielded the lowest percent accuracy at 71.83%.

Since any differences encountered in main sequence rela-
tionships could lead to the conclusion that the saccade is not
normal, we plot Fig. 5 and Fig. 6 to analyze the main sequence
relationships of the two feature sets we generated using AOIs.
Fig. 5(c) presents the relationship between saccade amplitude
and the saccade peak velocity in representative ADHD adults
and 5(d) presents the relationship between saccade amplitude
and the saccade peak velocity in representative Non-ADHD
adults when using the scene-based feature set during the entire
WMC task. The data in Fig. 5(c) and Fig. 5(d) show a similar
relationship between saccade amplitude vs. the saccade peak
velocity and similar saccade amplitude range for both ADHD
and Non-ADHD subject groups. The data in Fig. 5(a) and Fig.
5(b) show a similar relationship between saccade amplitude
and the saccade duration for ADHD and Non-ADHD adults
when using the scene-based feature set during the entire WMC
task. The results indicate when considering AOIs of scence-
based sentences, ADHD and Non-ADHD adults display sim-
ilarities in main sequence relationships which are similar to
normal humans as well.

The data in Fig. 6(c) and Fig. 6(d) show a similar re-
lationship between saccade amplitude vs. the saccade peak
velocity for both ADHD and Non-ADHD subject groups
when using the sentence-based feature set during the entire
WMC task. The data in Fig. 6(a) and Fig. 6(b) also show
a similar relationship between saccade amplitude and the
saccade duration for ADHD and Non-ADHD adults. These
relationships are similar to the relationships obtained from the
scene-based feature set (see Fig. 5).

V. DISCUSSION

Since participants are presented with varying sets of 2-
5 sentences, we developed one feature set considering the
AOIs in the first sentence of all the sentence sets (scene-based

TABLE II
CLASSIFICATION OF EYE FIXATION AND SACCADE FEATURES WITHIN

AOIS OF SCENCE-BASED DURING WMC

Classifier Precision Recall F1 Accuracy

J48 0.75 0.75 0.75 75.36
LMT 0.79 0.79 0.79 79.71

RandomForest 0.83 0.83 0.83 83.33
REPTree 0.70 0.70 0.69 70.29

K* 0.63 0.63 0.63 63.04
Bagging 0.80 0.79 0.79 79.71

TABLE III
CLASSIFICATION OF EYE FIXATION AND SACCADE FEATURES WITHIN

AOIS OF SENTENCE-BASED DURING WMC

Classifier Precision Recall F1 Accuracy

J48 0.79 0.79 0.79 79.39
LMT 0.82 0.82 0.82 82.61

RandomForest 0.86 0.86 0.86 86.20
REPTree 0.82 0.82 0.82 82.04

K* 0.72 0.71 0.71 71.83
Bagging 0.84 0.83 0.83 83.93

feature set) and the other feature set considering the AOIs
of all the 42 sentences in the RSPAN task (sentence-based
feature set). We used common AOIs among all the participants,
thus they are static shapes and would not change from one
subject to another. In the case of static AOIs, the granularity
of the sentence-based feature set is increased when compared
to the granularity of the scene-based feature set. As a result,
we observe better accuracy in each classifier(See Table III).

Consideration of fixation as well as saccade features set
according to stimulus AOIs, lead us to classify a diagnosis of
ADHD with greater than 80% accuracy. Our results confirm
the utility of eye movement feature set generated according to
stimulus AOIs indexing WMC as a predictor of a diagnosis
of ADHD in adults. RandomForest classifiers performed best
in-terms of predicting a classification of ADHD with 86.20%
percent accuracy by using sentence-based feature set repre-
senting a physiological measure of visual attention during a
WMC task.

Since we are utilizing the eye gaze metrics calculated by
Tobii Studio analysis software within the manually marked
static AOI boundaries for the development of our feature sets,
there might be instances where we have less data points. The
static AOIs may not be enough in terms of the area boundary
to capture eye gaze metrics of some of the participants. We
did not consider device error or human error when creating the
AOI boundaries. In the future, we are interested in identifying
AOIs dynamically for each participant in each sentence.

VI. CONCLUSION

A WMC measure, like the RSPAN task, is a validated and
reliable reflection of a person’s ability to maintain attention
on a target task while ignoring irrelevant information, making
it an interesting measure for ADHD because disinhibition has
been suggested to be a distinguishing diagnostic criterion. This
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(a) ADHD (b) Non-ADHD (c) ADHD (d) Non-ADHD

Amplitude vs. Duration Amplitude vs. Peak Velocity

Figure 5. Main Sequence relationships obtained from the Scene-based Feature set including eye gaze metrics within the AOIs; (a) Saccade Amplitude
vs. Saccade Duration relationship of ADHD participants, (b) Saccade Amplitude vs. Saccade Duration relationship of Non-ADHD participants, (c) Saccade
Amplitude vs. Saccade Peak Velocity relationship of ADHD participants, and (d) Saccade Amplitude vs. Saccade Peak Velocity relationship of Non-ADHD
participants

(a) ADHD (b) Non-ADHD (c) ADHD (d) Non-ADHD

Amplitude vs. Duration Amplitude vs. Peak Velocity

Figure 6. Main Sequence relationships obtained from the Sentence-based Feature set including eye gaze metrics within the AOIs ; (a) Saccade Amplitude
vs. Saccade Duration relationship of ADHD participants, (b) Saccade Amplitude vs. Saccade Duration relationship of Non-ADHD participants, (c) Saccade
Amplitude vs. Saccade Peak Velocity relationship of ADHD participants, and (d) Saccade Amplitude vs. Saccade Peak Velocity relationship of Non-ADHD
participants

feasibility study generates a better understanding of the phys-
iological underpinnings of an important cognitive construct
which can inform the ”how” of the working memory system
and has potential as a predictor of a diagnosis of ADHD.
The results of this feasibility study confirmed the utility of
a combination of fixation, and saccade feature set generated
within AOIs while completing RSPAN tasks as a predictor
of a diagnosis of ADHD in adults. Tree-based classifiers per-
formed best in-terms of predicting a classification of ADHD
with 86% percent accuracy using physiological measures of
sustained visual attention within AOIs during a WMC task.
This project is a necessary first step in delineating a feature
set of eye gaze metrics captured within AOIs which represent

physiological diagnostic criteria, including executive attention
in adult ADHD.

In the future, we will expand the experimental studies to
further analyze eye gaze metrics according to dynamically
changing stimulus AOIs with respect to the participants using
a larger sample size. Specifically, creating a boundary for
the AOIs; the sentence, the word which determine sentence
accuracy, the visual point of decision, and the item to be
remembered. Identifying these AOIs dynamically for each
participant will enable us to generate a detailed feature set
which could be utilized to classify a diagnosis of ADHD with
a greater percentage of accuracy than of this study.
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[5] J. Rönnberg, T. Lunner, A. Zekveld, P. Sörqvist, H. Danielsson, B. Lyx-
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